Thermal Stress Induces Metabolic Responses in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Preparation and Maintenance
2.2. Experimental Design and Sample Collection
2.3. Metabolite Extraction
2.4. LC–MS Detection
2.5. Data Processing and Differential Metabolite Identification
3. Results
3.1. Total Ion Map Analysis of Metabolites
3.2. Statistical Analysis of Data
3.3. Screening of Differential Metabolites
3.4. Differential Metabolite KEGG Pathway Analysis
4. Discussion
4.1. Lipid Metabolism
4.2. Amino-Acid Metabolism
4.3. Carbohydrate Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Guo, H.; Chen, Z.; Jiang, Y.; Shen, J.; Pang, X.; Li, Y. Effects of acclimation temperature regime on the thermal tolerance, growth performance and gene expression of a cold-water fish, Schizothorax prenanti. J. Therm. Biol. 2021, 98, 102918. [Google Scholar] [CrossRef] [PubMed]
- Wiles, S.C.; Bertram, M.G.; Martin, J.M.; Tan, H.; Lehtonen, T.K.; Wong, B. Long-Term Pharmaceutical Contamination and Temperature Stress Disrupt Fish Behavior. Environ. Sci. Technol. 2020, 54, 8072–8082. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.F.; Faria, A.M.; Dupont, S. Elevated temperature, but not decreased pH, impairs reproduction in a temperate fish. Sci. Rep. 2020, 10, 20805. [Google Scholar] [CrossRef] [PubMed]
- Quirino, P.P.; Rodrigues, S.; Cabral, E.; Siqueira-Silva, D.H.; Mori, R.H.; Butzge, A.J.; Nobrega, R.H.; Ninhaus-Silveira, A.; Verissimo-Silveira, R. The influence of increased water temperature on the duration of spermatogenesis in a neotropical fish, Astyanax altiparanae (Characiformes, Characidae). Fish Physiol. Biochem. 2021, 47, 747–755. [Google Scholar] [CrossRef]
- Garcia-Cruz, E.L.; Yamamoto, Y.; Hattori, R.S.; Vasconcelos, L.M.; Yokota, M.; Strussmann, C.A. Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 245, 110701. [Google Scholar] [CrossRef]
- Guillen, A.C.; Borges, M.E.; Herrerias, T.; Kandalski, P.K.; de Arruda Marins, E.; Viana, D.; Souza, M.; Daloski, L.; Donatti, L. Effect of gradual temperature increase on the carbohydrate energy metabolism responses of the Antarctic fish Notothenia rossii. Mar. Environ. Res. 2019, 150, 104779. [Google Scholar] [CrossRef]
- Arabinda, M.G.; Purohit, G.K.; Sudeshna, B.D.; Karunakaran, S.M.; Bimal, P.M. Physiological response of juvenile turbot (Scophthalmus maximus L.) during hyperthermal stress. Aquaculture 2020, 529, 735645. [Google Scholar]
- Barbarossa, V.; Bosmans, J.; Wanders, N.; King, H.; Bierkens, M.F.P.; Huijbregts, M.A.J.; Schipper, A.M. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 2021, 12, 1701. [Google Scholar] [CrossRef]
- Besson, M.; Vandeputte, M.; Arendonk, J.A.M.; Aubin, J.; Boer, I.J.M.; Quillet, E.; Komen, H. Influence of water temperature on the economic value of growth rate in fish farming: The case of sea bass (Dicentrarchus labrax) cage farming in the Mediterranean. Aquaculture 2016, 462, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Ma, A.; Yang, S.; Huang, Z. Integrated metabolome and transcriptome analyses revealing the effects of thermal stress on lipid metabolism in juvenile turbot Scophthalmus maximus. J. Therm. Biol. 2021, 99, 102937. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Ye, S.; Bureau, D.P.; Liu, H.; Yin, J.; Mou, Z.; Lin, H.; Hao, F. Global metabolic responses of the lenok (Brachymystax lenok) to thermal stress. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 29, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, A.; Purohit, G.K.; Banerjee, S.; Karunakaran, D.; Mohanty, S.; Mohanty, B.P. Proteomic changes in the liver of Channa striatus in response to high temperature stress. Electrophoresis 2016, 37, 1704–1717. [Google Scholar] [CrossRef] [PubMed]
- Yebra-Pimentel, E.S.; Reis, B.; Gessner, J.; Wuertz, S.; Dirks, R.P.H. Temperature training improves transcriptional homeostasis after heat shock in juvenile Atlantic sturgeon (Acipenser oxyrinchus). Fish Physiol. Biochem. 2020, 46, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, J.M.; Cole, N.J.; Kemp, K.M.; Johnston, I.A. The biomechanics and evolutionary significance of thermal acclimation in the common carp Cyprinus carpio. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R657–R665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.; Yu, H.B.; Sun, J.; Chang, Z.G.; Gou, N.N.; Huang, C.C.; Zhao, J.L.; Zhou, J.S.; Ji, H. Molecular characterization and tissue distribution of SREBP-1 and PPARα in Onychostoma macrolepis and their mRNA expressions in response to thermal exposure. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 230, 16–27. [Google Scholar] [CrossRef]
- Zhu, T.; Li, X.; Wu, X.; Yang, D. Temperature Acclimation Alters the Thermal Tolerance and Intestinal Heat Stress Response in a Tibetan Fish Oxygymnocypris stewarti. Front. Microbiol. 2022, 13, 898145. [Google Scholar] [CrossRef]
- Dalvi, R.S.; Pal, A.K.; Tiwari, L.R.; Baruah, K. Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Gunther). Fish Physiol. Biochem. 2012, 38, 919–927. [Google Scholar] [CrossRef]
- Crawford, D.L.; Powers, D.A. Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. Proc. Natl. Acad. Sci. USA 1989, 86, 9365–9369. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.X.; Teng, J.; Zhao, Y.; Li, N.; Wang, H.; Ji, X.S. Gonad Transcriptome Analysis of High-Temperature-Treated Females and High-Temperature-Induced Sex-Reversed Neomales in Nile Tilapia. Int. J. Mol. Sci. 2018, 19, 689. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Ma, A.; Huang, Z.; Liu, Z.; Sun, Z.; Zhu, C.; Yang, J.; Li, Y.; Wang, Q.; Qiao, X.; et al. Transcriptome analysis reveals that high temperatures alter modes of lipid metabolism in juvenile turbot (Scophthalmus maximus) liver. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 40, 100887. [Google Scholar] [CrossRef]
- Huang, D.; Ren, M.; Liang, H.; Ge, X.; Xu, H.; Wu, L. Transcriptome analysis of the effect of high-temperature on nutrient metabolism in juvenile grass carp (Ctenopharyngodon idellus). Gene 2022, 809, 146035. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, Q.; Li, J.; Wang, F.; Wen, S.; Li, N. Transcriptomic responses to heat stress in gill and liver of endangered Brachymystax lenok tsinlingensis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 38, 100791. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Zhao, J.; Wen, H.S.; Li, Y.; Li, J.F.; Li, L.M.; Tao, Y.X. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS ONE 2019, 14, e0217133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, W.; Hu, L.; Guo, L.; Zhang, J.; Tang, L.; Zhang, E.; Zhang, J.; Luo, S.; Tang, J.; Chen, X. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system. Proc. Natl. Acad. Sci. USA 2018, 115, E546–E554. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Wu, Q.; Liu, T.; Hou, Y.; Miao, Y.; Hu, M.; Liu, Q. Hepatopancreas Transcriptome Profiling Analysis Reveals Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Front. Physiol. 2020, 11, 1110. [Google Scholar] [CrossRef]
- Xie, J.; Hu, L.; Tang, J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proc. Natl. Acad. Sci. USA 2011, 108, E1381–E1387. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Chen, X.; Wang, J.; Chen, H.; Yue, W.; Lu, G.; Wang, C. Comparative skin transcriptome of two Oujiang color common carp (Cyprinus carpio var. color) varieties. Fish Physiol. Biochem. 2019, 45, 177–185. [Google Scholar] [CrossRef]
- Jiang, Y.; Qi, M.; Zhang, J.; Wen, Y.; Sun, J.; Liu, Q. Metabolomic Profiling Analysis of Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus Carpio Var Qingtianensis. Front. Physiol. 2022, 13, 853850. [Google Scholar] [CrossRef]
- Qiang, J.; Khamis, O.A.M.; Jiang, H.J.; Cao, Z.M.; He, J.; Tao, Y.F.; Xu, P.; Bao, J.W. Effects of dietary supplementation with apple peel powder on the growth, blood and liver parameters, and transcriptome of genetically improved farmed tilapia (Oreochromis niloticus). PLoS ONE 2019, 14, e0224995. [Google Scholar] [CrossRef]
- Bechmann, L.P.; Hannivoort, R.A.; Gerken, G.; Hotamisligil, G.S.; Trauner, M.; Canbay, A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 2012, 56, 952–964. [Google Scholar] [CrossRef] [Green Version]
- Harper, C.; Wolf, J.C. Morphologic effects of the stress response in fish. ILAR J. 2009, 50, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.J.; Brasfield, S.M.; Carroll, L.C.; Doyle, M.A.; van den Heuvel, M.R.; Munkittrick, K.R. Reproductive strategies and seasonal changes in the somatic indices of seven small-bodied fishes in Atlantic Canada in relation to study design for environmental effects monitoring. Environ. Monit. Assess. 2015, 187, 305. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Y.; Li, B.; Ding, L.; Wei, X.; Wang, P.; Chen, Z.; Han, S.; Huang, T.; Wang, B.; et al. Physiological responses to heat stress in the liver of rainbow trout (Oncorhynchus mykiss) revealed by UPLC-QTOF-MS metabolomics and biochemical assays. Ecotoxicol. Environ. Saf. 2022, 242, 113949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, X.; Li, J.; Shen, Y. Transcriptomic Analysis of the Liver and Brain in Grass Carp (Ctenopharyngodon idella) Under Heat Stress. Mar. Biotechnol. 2022, 24, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhao, L.; Wu, H.; Lian, W.; Cui, C.; Du, Z.; Luo, W.; Li, M.; Yang, S. Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures. Funct. Integr. Genom. 2019, 19, 265–280. [Google Scholar] [CrossRef]
- He, S.; Liang, X.F.; Li, R.Q.; Li, G.G.; Wang, L.; Shen, D. Molecular characterization of heat shock protein 70 genes in the liver of three warm freshwater fishes with differential tolerance to microcystin-LR. J. Biochem. Mol. Toxicol. 2010, 24, 293–302. [Google Scholar] [CrossRef]
- Casu, F.; Watson, A.M.; Yost, J.; Leffler, J.W.; Gaylord, T.G.; Barrows, F.T.; Sandifer, P.A.; Denson, M.R.; Bearden, D.W. Metabolomics Analysis of Effects of Commercial Soy-based Protein Products in Red Drum (Sciaenops ocellatus). J. Proteome Res. 2017, 16, 2481–2494. [Google Scholar] [CrossRef]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Kodama, H.; Otani, K.; Iwasaki, T.; Takenaka, S.; Horitani, Y.; Togase, H. Metabolomic investigation of pathogenesis of myxosporean emaciation disease of tiger puffer fish Takifugu rubripes. J. Fish Dis. 2014, 37, 619–627. [Google Scholar] [CrossRef]
- Ma, Y.M.; Yang, M.J.; Wang, S.; Li, H.; Peng, X.X. Liver functional metabolomics discloses an action of L-leucine against Streptococcus iniae infection in tilapias. Fish Shellfish Immunol. 2015, 45, 414–421. [Google Scholar] [CrossRef]
- Olsvik, P.A.; Berntssen, M.H.G.; Softeland, L. In vitro toxicity of pirimiphos-methyl in Atlantic salmon hepatocytes. Toxicol. Vitr. 2017, 39, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhao, T.; Ma, A.; Huang, Z.; Liu, Z.; Cui, W.; Zhang, J.; Zhu, C.; Guo, X.; Yuan, C. Metabolic responses in Scophthalmus maximus kidney subjected to thermal stress. Fish Shellfish Immunol. 2020, 103, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–w494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, J.C.; Wheeler, J.R. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models. Aquat. Toxicol. 2018, 197, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, S.; Gaivao, I.; Santos, M.A.; Pacheco, M. DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide-elucidation of organ-specificity and the role of oxidative stress. Mutat. Res. 2012, 743, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, P.; Aftabuddin, M.; Pati, M.K. Thermal stress-induced oxidative damages in the liver and associated death in fish, Labeo rohita. Fish Physiol. Biochem. 2021, 47, 21–32. [Google Scholar] [CrossRef]
- Yenari, M.A. Heat shock proteins and neuroprotection. Adv. Exp. Med. Biol. 2002, 513, 281–299. [Google Scholar] [CrossRef]
- Nishikawa, M.; Takemoto, S.; Takakura, Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm. 2008, 354, 23–27. [Google Scholar] [CrossRef]
- Collier, R.J.; Collier, J.L.; Rhoads, R.P.; Baumgard, L.H. Invited review: Genes involved in the bovine heat stress response. J. Dairy Sci. 2008, 91, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Nuno, S.; Sanahuja, I.; Fernandez-Alacid, L.; Ordonez-Grande, B.; Carbonell, T.; Ibarz, A. Oxidative attack during temperature fluctuation challenge compromises liver protein homeostasis of a temperate fish model. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2019, 236, 110311. [Google Scholar] [CrossRef]
- Johnston, I.A.; Dunn, J. Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish. Symp. Soc. Exp. Biol. 1987, 41, 67–93. [Google Scholar] [PubMed]
- Cheng, Y.; Lu, T.; Guo, J.; Lin, Z.; Jin, Q.; Zhang, X.; Zou, Z. Helicoverpa armigera miR-2055 regulates lipid metabolism via fatty acid synthase expression. Open Biol. 2022, 12, 210307. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jia, G.; Wu, C.; Wang, W.; Cheng, L.; Li, Q.; Li, Z.; Luo, K.; Yang, S.; Yan, W.; et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021, 31, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Yang, I.; Lee, H.S.; Lee, J.Y.; Kim, K. Lipid-modifying effects of krill oil vs fish oil: A network meta-analysis. Nutr. Rev. 2020, 78, 699–708. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef] [Green Version]
- Zalatan, F.; Black, P. Characterization of long-chain fatty acid uptake in Caulobacter crescentus. Arch. Microbiol. 2011, 193, 479–487. [Google Scholar] [CrossRef]
- Lim, G.H.; Singhal, R.; Kachroo, A.; Kachroo, P. Fatty Acid– and Lipid-Mediated Signaling in Plant Defense. Annu. Rev. Phytopathol. 2017, 55, 505. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Fatty Acids, Lipid Emulsions and the Immune and Inflammatory Systems. World Rev. Nutr. Diet 2015, 112, 17–30. [Google Scholar] [CrossRef]
- Alpay Savasan, Z.; Yilmaz, A.; Ugur, Z.; Aydas, B.; Bahado-Singh, R.O.; Graham, S.F. Metabolomic Profiling of Cerebral Palsy Brain Tissue Reveals Novel Central Biomarkers and Biochemical Pathways Associated with the Disease: A Pilot Study. Metabolites 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Balsinde, J.; Winstead, M.V.; Dennis, E.A. Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett. 2002, 531, 2–6. [Google Scholar] [CrossRef]
- Ballou, L.R.; Cheung, W.Y. Inhibition of human platelet phospholipase A2 activity by unsaturated fatty acids. Proc. Natl. Acad. Sci. USA 1985, 82, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, S.; Merrill, A.H., Jr. Sphingolipid metabolism and cell growth regulation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1996, 10, 1388–1397. [Google Scholar] [CrossRef]
- Ruvolo, P.P. Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol. Res. 2003, 47, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Cuvillier, O. Sphingosine in apoptosis signaling. Biochim. Biophys. Acta 2002, 1585, 153–162. [Google Scholar] [CrossRef]
- Currie, S.; Bagatto, B.; DeMille, M.; Learner, A.; LeBlanc, D.; Marks, C.; Ong, K.; Parker, J.; Templeman, N.; Tufts, B.L.; et al. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. Can. J. Zool. 2010, 88, 43–58. [Google Scholar] [CrossRef]
- Mitrakou, A. Kidney: Its impact on glucose homeostasis and hormonal regulation. Diabetes Res. Clin. Pract. 2011, 93 (Suppl. 1), S66–S72. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef]
- Cruz, C.R.; Yamamoto, F.Y.; Ju, M.; Chen, K.; Velasquez, A.; Gatlin, D.M., 3rd. Efficacy of purified nucleotide supplements on the growth performance and immunity of hybrid striped bass Morone chrysops × Morone saxatilis. Fish Shellfish Immunol. 2020, 98, 868–874. [Google Scholar] [CrossRef]
- Banerjee, B.; Koner, D.; Hasan, R.; Bhattacharya, S.; Saha, N. Transcriptome analysis reveals novel insights in air-breathing magur catfish (Clarias magur) in response to high environmental ammonia. Gene 2019, 703, 35–49. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Wu, G. Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 2020, 52, 671–691. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.J.; Cowey, C.B. Aspects of ammoniogenesis in rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. Part B Comp. Biochem. 1977, 57, 143–149. [Google Scholar] [CrossRef]
- Viant, M.R.; Werner, I.; Rosenblum, E.S.; Gantner, A.S.; Tjeerdema, R.S.; Johnson, M.L. Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiol. Biochem 2003, 29, 159–171. [Google Scholar] [CrossRef]
- Kullgren, A.; Jutfelt, F.; Fontanillas, R.; Sundell, K.; Samuelsson, L.; Wiklander, K.; Kling, P.; Koppe, W.; Larsson, D.G.; Bjornsson, B.T.; et al. The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 164, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.P.; Espe, M.; Zhang, Z.; Guimarães, I.G.; Holen, E. Surplus arginine reduced lipopolysaccharide induced transcription of proinflammatory genes in Atlantic salmon head kidney cells. Fish Shellfish Immunol. 2019, 86, 1130–1138. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336 Pt 1, 1–17. [Google Scholar] [CrossRef]
- Qian, B.; Xue, L. Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress. Mar. Genom. 2016, 25, 95–102. [Google Scholar] [CrossRef]
- Gouillou-Coustans, M.F.; Fournier, V.; Métailler, R.; Vachot, C.; Desbruyeres, E.; Huelvan, C.; Moriceau, J.; Le Delliou, H.; Kaushik, S.J. Dietary arginine degradation is a major pathway in ureagenesis in juvenile turbot (Psetta maxima). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 132, 305–319. [Google Scholar] [CrossRef]
- Buentello, J.A.; Gatlin, D.M., III. The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous syn-thesis of arginine from glutamic acid. Aquaculture 2000, 188, 311–321. [Google Scholar] [CrossRef]
- Aragao, C.; Corte-Real, J.; Costas, B.; Dinis, M.T.; Conceiçao, L.E. Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids 2008, 34, 143–148. [Google Scholar] [CrossRef]
- Benli, A.C.; Koksal, G.; Ozkul, A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Chapel-Crespo, C.C.; Diaz, G.A.; Oishi, K. Efficacy of N-carbamoyl-L-glutamic acid for the treatment of inherited metabolic disorders. Expert Rev. Endocrinol. Metab. 2016, 11, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Engelking, L.R. Urea Cycle (Krebs-Henseleit Ornithine Cycle). In Textbook of Veterinary Physiological Chemistry, 3rd ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 58–64. [Google Scholar] [CrossRef]
- Madeira, D.; Costa, P.M.; Vinagre, C. When warming hits harder: Survival, cellular stress and thermal limits of Sparus aurata larvae under global change. Mar. Biol. 2016, 163, 91. [Google Scholar] [CrossRef]
- Feidantsis, K.; Portner, H.O.; Antonopoulou, E.; Michaelidis, B. Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata. J. Comp. Physiol. B 2015, 185, 185–205. [Google Scholar] [CrossRef]
- Wiseman, S.; Vijayan, M.M. Aroclor 1254 disrupts liver glycogen metabolism and enhances acute stressor-mediated glycogenolysis in rainbow trout. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2011, 154, 254–260. [Google Scholar] [CrossRef]
- Chandel, N.S. Carbohydrate Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef]
- Chavin, W.; Young, J.E. Factors in the determination of normal serum glucose levels of goldfish, Carassius auratus L. Comp. Biochem. Physiol. 1970, 33, 629–653. [Google Scholar] [CrossRef] [PubMed]
- Forgati, M.; Kandalski, P.K.; Herrerias, T.; Zaleski, T.; Machado, C.; Souza, M.; Donatti, L. Effects of heat stress on the renal and branchial carbohydrate metabolism and antioxidant system of Antarctic fish. J. Comp. Physiol. B 2017, 187, 1137–1154. [Google Scholar] [CrossRef]
Metabolic Pathway (KEGG Pathway) | Metabolite | ESI+/− | Rt (min) | m/z | VIP Value | p-Value | Up/Downregulated | ||
---|---|---|---|---|---|---|---|---|---|
CG vs. EG34 | CG vs. EG38 | EG34 vs. EG38 | |||||||
Carbohydrate metabolism | Stachyose | ESI+ | 1.011 | 684.25 | 1.07 | 0.017 | ↑ | - | - |
d-Fructose | ESI+ | 0.636 | 213.09 | 2.36 | 0.010 | - | ↑ | ↑ | |
d-Ribulose 5-phosphate | ESI+ | 0.926 | 211.00 | 1.05 | 0.042 | - | ↑ | - | |
Amino-acid metabolism | N2-Acetylornithine | ESI+ | 1.814 | 175.10 | 1.81 | 0.027 | ↑ | ↓ | - |
Gluconic acid | ESI− | 0.648 | 195.05 | 1.13 | 0.025 | ↑ | ↑ | ↑ | |
Glucose | ESI+ | 0.538 | 132.09 | 1.02 | 0.002 | ↑ | ↑ | - | |
3-Dehydroquinic acid | ESI+ | 1.954 | 191.05 | 2.70 | 0.010 | - | ↓ | ↓ | |
Glutamate (Glu) and glutamine | ESI− | 5.70 | 506.02 | 2.09 | 0.05 | ↑ | ↑ | - | |
N-Acetyl-neuraminic acid | ESI− | 0.68 | 160.06 | 3.10 | 0.035 | - | ↑ | ↓ | |
O-Phospho-l-serine | ESI− | 0.608 | 184.00 | 1.17 | 0.042 | - | ↓ | - | |
Ornithine | ESI+ | 0.536 | 133.09 | 1.23 | 0.002 | ↑ | |||
Lipid metabolism | PC (18:4/0:0) | ESI+ | 5.97 | 516.30 | 2.29 | 0.050 | ↓ | - | - |
PC (15:0/0:0) | ESI+ | 6.106 | 504.30 | 1.127 | 0.007 | ↓ | ↑ | - | |
PC (18:3 (9Z,12Z,15Z)/20:4 (8Z,11Z,14Z,17Z)) | ESI+ | 6.66 | 804.55 | 1.766 | 0.001 | ↑ | ↓ | ↓ | |
PC (16:0/22:6 (4Z,7Z,10Z,13Z,16Z,19Z)) | ESI+ | 6.787 | 806.56 | 1.32 | 0.007 | ↓ | - | - | |
PC (16:0/20:4 (5Z,8Z,11Z,14Z)) | ESI+ | 6.739 | 826.56 | 1.147 | 0.008 | ↓ | ↑ | - | |
PC (22:6 (4Z,7Z,10Z,13Z,16Z,19Z)/16:0) | ESI+ | 6.593 | 850.56 | 1.082 | 0.034 | - | ↓ | - | |
LysoPC (16:0/0:0) | ESI− | 7.15 | 540.33 | 1.17 | 0.015 | ↓ | - | - | |
LysoPC (17:0/0:0) | ESI+ | 6.477 | 532.33 | 1.244 | 0.048 | ↑ | ↓ | - | |
LysoPC (20:2 (11Z,14Z)/0:0) | ESI+ | 6.302 | 570.35 | 1.205 | 0.005 | - | ↓ | - | |
LysoPC (22:4 (7Z,10Z,13Z,16Z)/0:0) | ESI+ | 6.184 | 572.37 | 1.79 | 0.002 | ↑ | ↑ | - | |
LysoPE (0:0/18:1 (11Z)) | ESI+ | 6.293 | 524.30 | 1.708 | 0.020 | - | ↓ | - | |
LysoPE (0:0/20:1 (11Z)) | ESI+ | 6.022 | 528.31 | 1.105 | 0.022 | ↑ | ↓ | ↑ | |
LysoPE (20:4 (5Z,8Z,11Z,14Z)/0:0) | ESI+ | 5.985 | 500.28 | 1.449 | 0.002 | - | ↓ | - | |
LysoPE (0:0/22:4 (7Z,10Z,13Z,16Z)) | ESI+ | 5.933 | 562.34 | 1.866 | 0.006 | - | ↓ | - | |
LysoPE (22:6 (4Z,7Z,10Z,13Z,16Z,19Z)/0:0) | ESI− | 5.963 | 524.80 | 1.072 | 0.016 | - | ↓ | - | |
LysoPI (20:4 (5Z,8Z,11Z,14Z)/0:0) | ESI− | 6.476 | 619.29 | 2.265 | 0.002 | - | ↓ | - | |
LysoPI (18:1 (9Z)/0:0) | ESI+ | 7.144 | 619.29 | 2.034 | 0.001 | - | ↓ | - | |
Choline phosphate | ESI+ | 0.598 | 184.07 | 1.10 | 0.002 | - | ↓ | - | |
Dodecanoic acid | ESI+ | 5.24 | 218.21 | 2.11 | 0.032 | ↑ | - | - | |
Cortolone | ESI+ | 6.011 | 399.27 | 1.02 | 0.023 | - | ↑ | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Cheng, X.; Lu, J.; Xu, G.; Liu, Q.; Sun, J. Thermal Stress Induces Metabolic Responses in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Animals 2022, 12, 3395. https://doi.org/10.3390/ani12233395
Jiang Y, Cheng X, Lu J, Xu G, Liu Q, Sun J. Thermal Stress Induces Metabolic Responses in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Animals. 2022; 12(23):3395. https://doi.org/10.3390/ani12233395
Chicago/Turabian StyleJiang, Yuhan, Xiangbing Cheng, Junjie Lu, Guanhong Xu, Qigen Liu, and Jiamin Sun. 2022. "Thermal Stress Induces Metabolic Responses in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis" Animals 12, no. 23: 3395. https://doi.org/10.3390/ani12233395
APA StyleJiang, Y., Cheng, X., Lu, J., Xu, G., Liu, Q., & Sun, J. (2022). Thermal Stress Induces Metabolic Responses in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Animals, 12(23), 3395. https://doi.org/10.3390/ani12233395