The Application of 3D Imaging as an Appropriate Method of Wildlife Craniometry: Evaluation of Accuracy and Measurement Efficiency
Abstract
:Simple Summary
Abstract
1. Introduction
CT Scanning
2. Material and Methods
2.1. Study Objects
2.2. 3D Scanner Measuring
2.3. CT Scanner Measuring
2.4. Primary Measurement
2.4.1. Digital Caliper
2.4.2. Measuring Cylinder
2.4.3. Reference Object
2.4.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michelinakis, G.; Apostolakis, D.; Tsagarakis, A.; Kourakis, G.; Pavlakis, E. A Comparison of Accuracy of 3 Intraoral Scanners: A Single-Blinded In Vitro Study. J. Prosthet. Dent. 2020, 124, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-the-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation. Sensors 2009, 9, 568–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedelcu, R.; Olsson, P.; Nyström, I.; Thor, A. Finish Line Distinctness and Accuracy in 7 Intraoral Scanners versus Conventional Impression: An In Vitro Descriptive Comparison. BMC Oral Health 2018, 18, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbero, B.R.; Ureta, E.S. Comparative Study of Different Digitization Techniques and Their Accuracy. Comput.-Aided Des. 2011, 43, 188–206. [Google Scholar] [CrossRef]
- Ye, X.; Liu, H.; Chen, L.; Chen, Z.; Pan, X.; Zhang, S. Reverse Innovative Design—An Integrated Product Design Methodology. Comput.-Aided Des. 2008, 40, 812–827. [Google Scholar] [CrossRef]
- Iuliano, L.; Minetola, O. Rapid Manufacturing of Sculptures Replicas: A Comparison between 3D Optical Scanners. In Proceedings of the CIPA 2005 XX International Symposium, Torino, Italy, 26 September–1 October 2005. [Google Scholar]
- Telfer, S.; Woodburn, J. The Use of 3D Surface Scanning for the Measurement and Assessment of the Human Foot. J. Foot Ankle Res. 2010, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tikuisis, P.; Meunier, P.; Jubenville, C.E. Human Body Surface Area: Measurement and Prediction Using Three Dimensional Body Scans. Eur. J. Appl. Physiol. 2001, 85, 264–271. [Google Scholar] [CrossRef]
- Ong, C.S.; Yesantharao, P.; Huang, C.Y.; Mattson, G.; Boktor, J.; Fukunishi, T.; Zhang, H.; Hibino, N. 3D Bioprinting Using Stem Cells. Pediatr. Res. 2018, 83, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Singer, P.M.; De Santis, V.; Vitale, D.; Jeffcoate, W. Multiorgan Failure Is an Adaptive, Endocrine-Mediated, Metabolic Response to Overwhelming Systemic Inaflammation. Lancet 2004, 364, 545–548. [Google Scholar] [CrossRef]
- Counts, D.B.; Averett, E.W.; Garstki, K. A Fragmented Past: (Re)Constructing Antiquity through 3D Artefact Modelling and Customised Structured Light Scanning at Athienou-Malloura, Cyprus. Antiquity 2016, 90, 206–218. [Google Scholar] [CrossRef]
- Haukaas, C.; Hodgetts, L.M. The Untapped Potential of Low-Cost Photogrammetry in Community-Based Archaeology: A Case Study from Banks Island, Arctic Canada. J. Community Archaeol. Herit. 2016, 3, 40–56. [Google Scholar] [CrossRef]
- Porter, S.T.; Roussel, M.; Soressi, M. A Simple Photogrammetry Rig for the Reliable Creation of 3D Artifact Models in the Field. Adv. Archaeol. Pract. 2016, 4, 71–86. [Google Scholar] [CrossRef]
- Núñez, M.A.; Buill, F.; Edo, M. 3D Model of the Can Sadurní Cave. J. Archaeol. Sci. 2013, 40, 4420–4428. [Google Scholar] [CrossRef]
- Sapirstein, P. Accurate Measurement with Photogrammetry at Large Sites. J. Archaeol. Sci. 2016, 66, 137–145. [Google Scholar] [CrossRef]
- Verhoeven, G.; Doneus, M.; Briese, C.; Vermeulen, F. Mapping by Matching: A Computer Vision-Based Approach to Fast and Accurate Georeferencing of Archaeological Aerial Photographs. J. Archaeol. Sci. 2012, 39, 2060–2070. [Google Scholar] [CrossRef]
- Yamafune, K.; Torres, R.; Castro, F. Multi-Image Photogrammetry to Record and Reconstruct Underwater Shipwreck Sites. J. Archaeol. Method Theory 2017, 24, 703–725. [Google Scholar] [CrossRef]
- Bouby, L.; Figueiral, I.; Bouchette, A.; Rovira, N.; Ivorra, S.; Lacombe, T.; Pastor, T.; Picq, S.; Marinval, P.; Terral, J.F. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France. PLoS ONE 2013, 8, e63195. [Google Scholar] [CrossRef] [Green Version]
- Evin, A.; Cucchi, T.; Cardini, A.; Strand Vidarsdottir, U.; Larson, G.; Dobney, K. The Long and Winding Road: Identifying Pig Domestication through Molar Size and Shape. J. Archaeol. Sci. 2013, 40, 735–743. [Google Scholar] [CrossRef]
- Ros, J.Ô.; Evin, A.; Bouby, L.; Ruas, M.P. Geometric Morphometric Analysis of Grain Shape and the Identification of Two-Rowed Barley (Hordeum vulgare Subsp. Distichum L.) in Southern France. J. Archaeol. Sci. 2014, 41, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Neaux, D.; Blanc, B.; Ortiz, K.; Locatelli, Y.; Laurens, F.; Baly, I.; Callou, C.; Lecompte, F.; Cornette, R.; Sansalone, G.; et al. How Changes in Functional Demands Associated with Captivity Affect the Skull Shape of a Wild Boar (Sus scrofa). Evol. Biol. 2021, 48, 27–40. [Google Scholar] [CrossRef]
- Neaux, D.; Blanc, B.; Ortiz, K.; Locatelli, Y.; Schafberg, R.; Herrel, A.; Debat, V.; Cucchi, T. Constraints Associated with Captivity Alter Craniomandibular Integration in Wild Boar. J. Anat. 2021, 239, 489–497. [Google Scholar] [CrossRef]
- Waltenberger, L.; Rebay-Salisbury, K.; Mitteroecker, P. Three-Dimensional Surface Scanning Methods in Osteology: A Topographical and Geometric Morphometric Comparison. Am. J. Phys. Anthropol. 2021, 174, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Singh, G. About the Cover CultLab3D. IEEE Comput. Graph. Appl. 2014, 34, 4–5. [Google Scholar] [PubMed] [Green Version]
- Karaszewski, M.; Sitnik, R.; Bunsch, E. On-Line, Collision-Free Positioning of a Scanner during Fully Automated Three-Dimensional Measurement of Cultural Heritage Objects. Rob. Auton. Syst. 2012, 60, 1205–1219. [Google Scholar] [CrossRef]
- Ferda, J.; Novák, M.; Kreuzberg, B. Výpočetní Tomografie; Galén: Prague, Czech Republic, 2002. [Google Scholar]
- Ferda, J.; Baxa, J.; Ferdová, E.; Kreuzberg, B. CT s Duální Energií Záření: Zobrazení Muskuloskeletálního Systému. Česká Radiol. 2010, 64, 37–43. [Google Scholar]
- Prokop, M. General Principles of MDCT. Eur. J. Radiol. 2003, 45, S4. [Google Scholar] [CrossRef]
- Hagag, U.; Tawfiek, M.; Brehm, W.; Gerlach, K. Computed Tomography of the Normal Bovine Tarsus. J. Vet. Med. Ser. C Anat. Histol. Embryol. 2016, 45, 469–478. [Google Scholar] [CrossRef]
- Dennison, S.E.; Schwarz, T. Computed Tomographic Imaging of the Normal Immature California Sea Lion Head (Zalophus californianus). Vet. Radiol. Ultrasound 2008, 49, 557–563. [Google Scholar] [CrossRef]
- Fraga-Manteiga, E.; Shaw, D.J.; Dennison, S.; Brownlow, A.; Schwarz, T. an optimized computed tomography protocol for metallic gunshot head trauma in a seal model. Vet. Radiol. Ultrasound 2014, 55, 393–398. [Google Scholar] [CrossRef]
- Esmans, M.C.; Soukup, J.W.; Schwarz, T. Optimized Canine Dental Computed Tomographic Protocol in Medium-Sized Mesaticepahlic Dogs. Vet. Radiol. Ultrasound 2014, 55, 506–510. [Google Scholar] [CrossRef]
- Uehata, A.; Matsuguchi, T.; Bittl, J.A.; Orav, J.; Meredith, I.T.; Anderson, T.J.; Selwyn, A.P.; Ganz, P.; Yeung, A.C. Accuracy of Electronic Digital Calipers Compared with Quantitative Angiography in Measuring Coronary Arterial Diameter. Circulation 1993, 88, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Anděra, M.; Horáček, I. Určujeme Savce Podle Lebek. Pozn. Naše Savce 2005, 2, 328. [Google Scholar]
- Hell, P.; Cimbal, D.; Herz, J. Vzťah Medzi Niektorými Kraniologickými Mierami a Trofejovou Kvalitou Srncov na Slovensku. Folia Venat. 1978, 8, 29–36. [Google Scholar]
- Fandos, P.; Reig, S. Craniometric Variability in Two Populations of Roe Deer (Capreolus capreolus) from Spain. J. Zool. 1993, 231, 39–49. [Google Scholar] [CrossRef]
- Hell, P. Srnčia Zver, 1st ed.; Príroda: Bratislava, Slovakia, 1979. [Google Scholar]
- Hell, P.; Herz, J. Existujú Dva Rozne Typy Liebek v Slovenských Populáciách Srnca Horneho Európského (Capreolus c. Capreolus, Linné 1758). Lesn. Čas. 1971, 17, 59–71. [Google Scholar]
- Zejda, J.; Koubek, P. On the Geographical Variability of Roebucks (Capreolus capreolus). Folia Zool. Brno 1988, 37, 219–229. [Google Scholar]
- Bertouille, S.B.; De Crombrugghe, S.A. Body mass and lower jaw development of the Female red Deer as indices of Habitat Quality in the Ardennes. Acta Theriol. 1995, 40, 145–162. [Google Scholar] [CrossRef] [Green Version]
- Markov, G. Morphometric Variations in the Skull of the Red Deer (Cervus elaphus L.) in Bulgaria. Acta Zool. Bulg. 2014, 66, 453–460. [Google Scholar]
- Markov, G.; Ninov, N.; Andreev, R. Craniological Variation of the Balkan Chamois, Rupicapra Rupicapra Balcanica from Bulgaria. Folia Zool. Brno 2013, 62, 200–206. [Google Scholar] [CrossRef]
- Nicolay, W.C.; Vaders, J.M. Cranial Suture Complexity in White-Tailed Deer (Odocoileus virginianus). J. Morphol. 2006, 267, 841–849. [Google Scholar] [CrossRef]
- GENOV, P.V. A Review of the Cranial Characteristics of the Wild Boar (Susscrofa linnaeus 1758), with Systematic Conclusions. Mamm. Rev. 1999, 29, 205–234. [Google Scholar] [CrossRef]
- Randi, E.; Apollonio, M.; Toso, S. The Systematics of Some Italian Populations of Wild Boar (Sus scrofa L)—A Craniometric and Electrophoretic Analysis. Z. Saugetierkd.-Int. J. Mamm. Biol. 1989, 54, 40–56. [Google Scholar]
- Šprem, N.; Piria, M.; Florijančić, T.; Antunović, B.; Dumić, T.; Gutzmirtl, H.; Treer, T.; Curik, I. Morphometrical Analysis of Reproduction Traits for the Wild Boar (Sus scrofa L.) in Croatia. Agric. Conspec. Sci. 2011, 76, 263–265. [Google Scholar]
- Markov, N.; Academy, R. Morphological Traits of Wild Boar in Germany and Russia: Comparison of Autochthonous and Artificial Populations. Beitr. Jagd Wildforsch. 2017, 41, 379–386. [Google Scholar]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild Ungulate Overabundance in Europe: Contexts, Causes, Monitoring and Management Recommendations. Mamm. Rev. 2021, 51, 95–108. [Google Scholar] [CrossRef]
- Iacolina, L.; Corlatti, L.; Buzan, E.; Safner, T.; Šprem, N. Hybridisation in European Ungulates: An Overview of the Current Status, Causes, and Consequences. Mamm. Rev. 2018, 49, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Valente, A.M.; Acevedo, P.; Figueiredo, A.M.; Fonseca, C.; Torres, R.T. Overabundant Wild Ungulate Populations in Europe: Management with Consideration of Socio-Ecological Consequences. Mamm. Rev. 2020, 50, 353–366. [Google Scholar] [CrossRef]
- CIC. The Game-Trophies of the World; International Council for Game and Wildlife Conservation: Paris, France, 2010. [Google Scholar]
- McKey, D.; Elias, M.; Pujol, M.E.; Duputié, A. The Evolutionary Ecology of Clonally Propagated Domesticated Plants. New Phytol. 2010, 186, 318–332. [Google Scholar] [CrossRef]
- Sholts, S.B.; Walker, P.L.; Kuzminsky, S.C.; Miller, K.W.P.; Wärmländer, S.K.T.S. Identification of Group Affinity from Cross-Sectional Contours of the Human Midfacial Skeleton Using Digital Morphometrics and 3D Laser Scanning Technology. J. Forensic Sci. 2011, 56, 333. [Google Scholar] [CrossRef]
- Bradley, C.; Currie, B. Advances in the Field of Reverse Engineering. Comput.-Aided Des. Appl. 2005, 2, 697–706. [Google Scholar] [CrossRef]
- Klusák, K. Hodnocení Loveckých Trofejí Zvěře, 5th ed.; SUCZESS: Velké Meziříčí, Czech Republic, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Van Dessel, J.; Huang, Y.; Depypere, M.; Rubira-Bullen, I.; Maes, F.; Jacobs, R. A Comparative Evaluation of Cone Beam CT and Micro-CT on Trabecular Bone Structures in the Human Mandible. Dentomaxillofac. Radiol. 2013, 42, 20130145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belo, M.; Melo, A.; Delgado, A.; Costa, A.; Anísio, V.; Lemos, A. The Digital Caliper’s Interrater Reliability in Measuring the Interrecti Distance and Its Accuracy in Diagnosing the Diastasis of Rectus Abdominis Muscle in the Third Trimester of Pregnancy. J. Chiropr. Med. 2020, 19, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Korablev, N.P.; Korablev, M.P.; Korablev, A.P.; Korablev, P.N.; Zinoviev, A.V.; Zhagarayte, V.A.; Tumanov, I.L. Factors of Polymorphism of Craniometric Characters in the Red Fox (Vulpes vulpes, Carnivora, Canidae) from the Center of European Russia. Biol. Bull. 2019, 46, 946–959. [Google Scholar] [CrossRef]
- Mattioli, S.; Ferretti, F. Morphometric Characterization of Mesola Red Deer Cervus Elaphus Italicus (Mammalia: Cervidae). Ital. J. Zool. 2014, 81, 144–154. [Google Scholar] [CrossRef]
- Morata, C.; Pizarro, A.; Gonzalez, H.; Frugone-Zambra, R. A Craniometry-Based Predictive Model to Determine Occlusal Vertical Dimension. J. Prosthet. Dent. 2020, 123, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Özen, A.S. Sexual Dimorphism and Variability in the Skull of Martes Foina. Anim. Biol. 2020, 70, 373–383. [Google Scholar] [CrossRef]
- Barba, S.; Fiorillo, F.; De Feo, E. 3D-Antlers: Virtual Reconstruction and Three-Dimensional Measurement. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W1, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Park, H.K.; Chung, J.W.; Kho, H.S. Use of Hand-Held Laser Scanning in the Assessment of Craniometry. Forensic Sci. Int. 2006, 160, 200–206. [Google Scholar] [CrossRef]
- Plomp, K.A.; Dobney, K.; Weston, D.A.; Strand Viarsdóttir, U.; Collard, M. 3D Shape Analyses of Extant Primate and Fossil Hominin Vertebrae Support the Ancestral Shape Hypothesis for Intervertebral Disc Herniation. BMC Evol. Biol. 2019, 19, 226. [Google Scholar] [CrossRef]
- Kim, M.; Huh, K.H.; YI, W.J.; Heo, M.S.; Lee, S.S.; Choi, S.C. Evaluation of Accuracy of 3D Reconstruction Images Using Multi-Detector CT and Cone-Beam CT. Imaging Sci. Dent. 2012, 42, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Ueguchi, T.; Ogihara, R.; Yamada, S. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods. Acad. Radiol. 2018, 25, 1632–1639. [Google Scholar] [CrossRef]
- Lalone, E.A.; Willing, R.T.; Shannon, H.L.; King, G.J.W.; Johnson, J.A. Accuracy Assessment of 3D Bone Reconstructions Using CT: An Intro Comparison. Med. Eng. Phys. 2015, 37, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Baca, D.B.; Deutsch, C.K.; D’Agostino, R.B. Correspondence between Direct Anthropometry and Structured Light Digital Measurement; Raven Press: New York, NY, USA, 1994. [Google Scholar]
- Bhat, S.S.; Smith, J.D. Laser and Sound Scanner for Non-Contact 3D Volume Measurement and Surface Texture Analysis. Physiol. Meas. 1994, 15, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.P.; Linney, A.D.; Grindrod, S.R.; Mosse, C.A. A Laser Scanning System for the Measurement of Facial Surface Morphology. Opt. Lasers Eng. 1989, 10, 179–190. [Google Scholar] [CrossRef]
- Wilson, I.; Snape, L.; Fright, R.; Nixon, M. An Investigation of Laser Scanning Techniques for Quantifying Changes in Facial Soft-Tissue Volume. N. Z. Dent. J. 1997, 93, 110–113. [Google Scholar]
- Yang, W.; Liu, X.; Wang, K.; Hu, J.; Geng, G.; Feng, J. Sex Determination of Three-Dimensional Skull Based on Improved Backpropagation Neural Network. Comput. Math. Methods Med. 2019, 2019, 9163547. [Google Scholar] [CrossRef] [Green Version]
- Gribel, B.F.; Gribel, M.N.; Frazão, D.C.; McNamara, J.A.; Manzi, F.R. Accuracy and Reliability of Craniometric Measurements on Lateral Cephalometry and 3D Measurements on CBCT Scans. Angle Orthod. 2011, 81, 28–37. [Google Scholar] [CrossRef]
- Schaaf, H.; Pons-Kuehnemann, J.; Malik, C.Y.; Streckbein, P.; Preuss, M.; Howaldt, H.P.; Wilbrand, J.F. Accuracy of Three-Dimensional Photogrammetric Images in Non-Synostotic Cranial Deformities. Neuropediatrics 2010, 41, 24–29. [Google Scholar] [CrossRef]
- Hohl, L.S.L.; Sicuro, F.L.; Azorit, C.; Carrasco, R.; Rocha-Barbosa, O. Variaciones Geométricas Del Ramus Mandibulae En Mandíbulas de Sus scrofa (Mammalia: Artiodactyla) Según Edad y Sexo. Int. J. Morphol. 2014, 32, 1282–1288. [Google Scholar] [CrossRef]
- Milenković, M.; Šipetić, V.J.; Blagojević, J.; Tatović, S.; Vujošević, M. Skull Variation in DinaricBalkan and Carpathian Gray Wolf Populations Revealed by Geometric Morphometric Approaches. J. Mamm. 2010, 91, 376–386. [Google Scholar] [CrossRef]
Camera Volume | Reference Points | Number of Images | Number of Positions | Additional Preparation | Number of Sensing Processes | |
---|---|---|---|---|---|---|
Mandible | 300 mm | 4 | 8 | 1 | none | 2 |
Skull | 300 mm | 4–7 | 8 | 2 | anti-reflective spray | 2 |
Object | Polygonization | Program | Basic Modification | Object Correction | Measurement |
---|---|---|---|---|---|
Mandible | Standard level | GOM Inspect 2019 | removing randomly scanned elements | sealing holes in the polygonal network | Measuring the distance between two points |
Skull | Standard level | GOM Inspect 2019 | removing randomly scanned elements | sealing holes in the polygonal network, cutting antlers from the skull | Measuring the mesh volume |
Scanning Protocol | Thickness of the “Acquisition” Section (mm) | Reconstruction Section (mm) | Kernel | Reconstruction | Measuring | |
---|---|---|---|---|---|---|
Mandible | Child’s head | 2 | 1 | U90 | FoV | aligned anatomical plane |
Skull | Child’s head | 2 | 1 | U90 | FoV2 | Volume SW Siemens Syngo application |
Variable | Scanner | CT | ||||
---|---|---|---|---|---|---|
Average Deviation (mm) | p-Value | Mean Relative Deviation (%) | Average Deviation (mm) | p-Value | Mean Relative Deviation (%) | |
LC | 0.873 | <0.001 | 0.48 | −2.683 | 0.014 | 1.57 |
BCP | 0.285 | <0.001 | 0.49 | 0.543 | 0.02 | 0.73 |
BML | −0.069 | 0.42 | 2.83 | −0.222 | 0.10 | 1.76 |
HG | 0.293 | 0.08 | 3.48 | −0.143 | 0.47 | 1.37 |
LBM | −0.342 | <0.001 | 1.64 | −0.298 | 0.10 | 1.55 |
Method | Para-Meter | Mean 1st Measurement/Scanning (mm) | Mean 2nd Measurement/Scanning (mm) | p-Value | Max Difference between 1st and 2nd Measurement/Scanning (mm) | Min Difference between 1st and 2nd Measurement/Scanning (mm) | Average Difference of 1st and 2nd Measurement/Scanning (mm) |
---|---|---|---|---|---|---|---|
Caliper | LC | 202.94 | 203.06 | 0.996 | 2.28 | 0.22 | 1.27 |
HG | 33.50 | 33.50 | 0.999 | 1.63 | 0.24 | 0.67 | |
3D scanner | LC | 203.94 | 203.96 | 0.999 | 0.29 | 0.05 | 0.15 |
HG | 34.07 | 34.07 | 0.999 | 0.13 | 0.01 | 0.05 | |
CT scanner | LC | 207.26 | 207.20 | 0.998 | 0.98 | 0.18 | 0.44 |
HG | 33.30 | 33.12 | 0.958 | 1.45 | 0.14 | 0.57 |
Method | Mean 1st Measurement/Scanning (cm3) | Mean 2nd Measurement/Scanning (cm3) | p | Max Difference between 1st and 2nd Measurement/Scanning (cm3) | Min Difference between 1st and 2nd Measurement/Scanning (cm3) | Average Difference of 1st and 2nd Measurement (cm3) |
---|---|---|---|---|---|---|
Cylinder | 60.47 | 62.83 | 0.646 | 7.00 | 2.00 | 4.30 |
3D scanner | 64.76 | 64.87 | 0.982 | 3.27 | 0.02 | 0.84 |
CT scanner | 61.62 | 64.96 | 0.493 | 6.00 | 0.80 | 3.33 |
CMI | 3D Scanner | CT Scanner | |
---|---|---|---|
Length of side A (mm) | 83.85485 | 83.729 | 83.7 |
Length of side B (mm) | 83.83305 | 83.812 | 83.8 |
Length of side C (mm) | 83.90355 | 83.895 | 83.8 |
Volume (cm3) | 589.826 | 590.455 | 589.4 |
Volume of Antlers on the Skull (cm3) | Volume of the Printed Antler Duplicate (cm3) | ||||
---|---|---|---|---|---|
Measuring Cylinder | CT | 3D Scanner | Before Printing According to GrabCAD | CT | 3D Scanner |
94.00 | 99.20 | 99.42 | 99.42 | 97.40 | 98.75 |
Accuracy (mm) | Scanning Preparation (min)/Preparation | Scanning Time of Mandible/Antlers (min) | Post-Processing Time of Mandible/Antlers (min) | Scannability of Surface Limits | Scannability of Internal Spaces | Special Requirements | |
---|---|---|---|---|---|---|---|
CT | 0.6 | 3 | 2/3 | 3 | Metal-based materials create artifacts | Dependence on the permeability of the outer material for X-ray and the overall size of the object, soft tissue detection in small animals | Radiation protection |
3D | 0.01 | 3 | 2/5 | 2/8 | Feathers and fur, shiny high-contrast surfaces after the use of anti-reflective spray | Not possible | No special requirements |
Digital caliper | 0.02–0.04 | 0 | 0 | 5/10 | Unrepeatable; only distance and volume | Not possible | No special requirements |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Košinová, K.; Turek, J.; Cukor, J.; Linda, R.; Häckel, M.; Hart, V. The Application of 3D Imaging as an Appropriate Method of Wildlife Craniometry: Evaluation of Accuracy and Measurement Efficiency. Animals 2022, 12, 3256. https://doi.org/10.3390/ani12233256
Košinová K, Turek J, Cukor J, Linda R, Häckel M, Hart V. The Application of 3D Imaging as an Appropriate Method of Wildlife Craniometry: Evaluation of Accuracy and Measurement Efficiency. Animals. 2022; 12(23):3256. https://doi.org/10.3390/ani12233256
Chicago/Turabian StyleKošinová, Klára, Jiří Turek, Jan Cukor, Rostislav Linda, Martin Häckel, and Vlastimil Hart. 2022. "The Application of 3D Imaging as an Appropriate Method of Wildlife Craniometry: Evaluation of Accuracy and Measurement Efficiency" Animals 12, no. 23: 3256. https://doi.org/10.3390/ani12233256
APA StyleKošinová, K., Turek, J., Cukor, J., Linda, R., Häckel, M., & Hart, V. (2022). The Application of 3D Imaging as an Appropriate Method of Wildlife Craniometry: Evaluation of Accuracy and Measurement Efficiency. Animals, 12(23), 3256. https://doi.org/10.3390/ani12233256