Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Declarations
2.2. Selection of Trials
2.3. Test Centre and Pig Sources
2.4. The Vaccine
2.5. Characterisation and Preparation of the Challenge Strains
2.6. Aerosol Dosing Technique
- Pig body weight [53] and volume;
- Number of pigs placed in the chamber for one run (6–10);
- Volume of chamber;
- Volume of liquid, turned to aerosol by the ultrasonic nebulizer in 10 min (usually 100–150 mL, depending on air temperature and humidity).
2.7. Intranasal (IN) Challenge
2.8. Determination of Individual A. pleuropneumoniae Strain Challenge Dose
2.9. Trial Design
2.10. Post-Mortem Evaluation of Weighted Lung Lesion Score (LLS) and Other Data
2.11. Statistical Analyses
3. Results
3.1. Serovar-Independent Protection
3.2. High Repeatability and Reliability of AC Challenge Model
3.3. Other Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bossé, J.T.; Janson, H.; Sheehan, B.J.; Beddek, A.J.; Rycroft, A.N.; Kroll, J.S.; Langford, P.R. Actinobacillus pleuropneumoniae: Pathobiology and pathogenesis of infection. Microbes Infect. 2002, 4, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Langford, P.R.; Stringer, O.W.; Li, Y.; Bossé, J.T. Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: An exemplar of a veterinary pathogen. Anim. Health Res. Rev. 2021, 22, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Sassu, E.L.; Bossé, J.T.; Tobias, T.J.; Gottschalk, M.; Langford, P.R.; Hennig-Pauka, I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg. Dis. 2018, 65, 72–90. [Google Scholar] [CrossRef] [Green Version]
- Dreyfus, A.; Schaller, A.; Nivollet, S.; Segers, R.P.; Kobisch, M.; Mieli, L.; Soerensen, V.; Hüssy, D.; Miserez, R.; Zimmermann, W.; et al. Use of recombinant ApxIV in serodiagnosis of Actinobacillus pleuropneumoniae infections, development and prevalidation of the ApxIV ELISA. Vet. Microbiol. 2004, 99, 227–238. [Google Scholar] [CrossRef]
- Holmgren, N.; Lundeheim, N.; Wallgren, P. Infections with Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae in fattening pigs. Influence of piglet production systems and influence on production parameters. Zentralbl. Veterinarmed. B 1999, 46, 535–544. [Google Scholar] [CrossRef]
- Gottschalk, M.; Broes, A. Actinobacillosis. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; John Wiley & Sons, Inc.: London, UK, 2019; pp. 749–766. [Google Scholar]
- Cárceles, S.; Cuestas, F.; Celma, S.; Oliver-Ferrando, S.; Del Carmen, P.; Carmona, M.; Lasierra, M.; Espigares, D.; Mortensen, P. High Return on Investment Following Control of Actinobacillus pleuropneumoniae with an Actinobacillus pleuropneumoniae Vaccine Expression APX Toxins I, II and III under Field Conditions. In Proceedings of the Asian Pig Veterinary Society Congress, Busan, Korea, 25–28 August 2019; p. 148. [Google Scholar]
- Sipos, W.; Cvjetković, V.; Dobrokes, B.; Sipos, S. Evaluation of the Efficacy of a Vaccination Program against Actinobacillus pleuropneumoniae Based on Lung-Scoring at Slaughter. Animals 2021, 11, 2778. [Google Scholar] [CrossRef]
- Trachtman, A.R.; Bergamini, L.; Palazzi, A.; Porrello, A.; Capobianco Dondona, A.; Del Negro, E.; Paolini, A.; Vignola, G.; Calderara, S.; Marruchella, G. Scoring pleurisy in slaughtered pigs using convolutional neural networks. Vet. Res. 2020, 51, 51. [Google Scholar] [CrossRef] [Green Version]
- Hannan, P.C.; Bhogal, B.S.; Fish, J.P. Tylosin tartrate and tiamutilin effects on experimental piglet pneumonia induced with pneumonic pig lung homogenate containing mycoplasmas, bacteria and viruses. Res. Vet. Sci. 1982, 33, 76–88. [Google Scholar] [CrossRef]
- Merialdi, G.; Dottori, M.; Bonilauri, P.; Luppi, A.; Gozio, S.; Pozzi, P.; Spaggiari, B.; Martelli, P. Survey of pleuritis and pulmonary lesions in pigs at abattoir with a focus on the extent of the condition and herd risk factors. Vet. J. 2012, 193, 234–239. [Google Scholar] [CrossRef]
- Sibila, M.; Aragón, V.; Fraile, L.; Segalés, J. Comparison of four lung scoring systems for the assessment of the pathological outcomes derived from Actinobacillus pleuropneumoniae experimental infections. BMC Vet. Res. 2014, 10, 165. [Google Scholar] [CrossRef]
- Jacobsen, M.J.; Nielsen, J.P.; Nielsen, R. Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model. Vet. Microbiol. 1996, 49, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Rosendal, S.; Miniats, O.P.; Sinclair, P. Protective efficacy of capsule extracts of Haemophilus pleuropneumoniae in pigs and mice. Vet. Microbiol. 1986, 12, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, G.F.; Anderson, C.; Klashinsky, S.; Rossi-Campos, A.; Potter, A.A.; Willson, P.J. Molecular characterization of a protective outer membrane lipoprotein (OmlA) from Actinobacillus pleuropneumoniae serotype 1. Infect. Immun. 1993, 61, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furesz, S.E.; Mallard, B.A.; Bossé, J.T.; Rosendal, S.; Wilkie, B.N.; MacInnes, J.I. Antibody- and cell-mediated immune responses of Actinobacillus pleuropneumoniae-infected and bacterin-vaccinated pigs. Infect. Immun. 1997, 65, 358–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossé, J.T.; MacInnes, J.I. Urease activity may contribute to the ability of Actinobacillus pleuropneumoniae to establish infection. Can. J. Vet. Res. 2000, 64, 145–150. [Google Scholar]
- Tonpitak, W.; Baltes, N.; Hennig-Pauka, I.; Gerlach, G.F. Construction of an Actinobacillus pleuropneumoniae serotype 2 prototype live negative-marker vaccine. Infect. Immun. 2002, 70, 7120–7125. [Google Scholar] [CrossRef] [Green Version]
- Antenucci, F.; Fougeroux, C.; Deeney, A.; Ørskov, C.; Rycroft, A.; Holst, P.J.; Bojesen, A.M. In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae. Vet. Res. 2018, 49, 4. [Google Scholar] [CrossRef] [Green Version]
- Bunka, S.; Christensen, C.; Potter, A.A.; Willson, P.J.; Gerlach, G.F. Cloning and characterization of a protective outer membrane lipoprotein of Actinobacillus pleuropneumoniae serotype 5. Infect. Immun. 1995, 63, 2797–2800. [Google Scholar] [CrossRef] [Green Version]
- Baltes, N.; Tonpitak, W.; Gerlach, G.F.; Hennig-Pauka, I.; Hoffmann-Moujahid, A.; Ganter, M.; Rothkötter, H.J. Actinobacillus pleuropneumoniae iron transport and urease activity: Effects on bacterial virulence and host immune response. Infect. Immun. 2001, 69, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Maas, A.; Jacobsen, I.D.; Means, J.; Gerlach, G.F. Use of an Actinobacillus pleuropneumoniae multiple mutant as a vaccine that allows differentiation of vaccinated and infected animals. Infect. Immun. 2006, 74, 4124–4132. [Google Scholar] [CrossRef] [Green Version]
- Buettner, F.F.; Maas, A.; Gerlach, G.F. An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation. Vet. Microbiol. 2008, 127, 106–115. [Google Scholar] [CrossRef]
- Buettner, F.F.; Bendallah, I.M.; Bossé, J.T.; Dreckmann, K.; Nash, J.H.; Langford, P.R.; Gerlach, G.F. Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence. Infect. Immun. 2008, 76, 2284–2295. [Google Scholar] [CrossRef] [Green Version]
- Brauer, C.; Hennig-Pauka, I.; Hoeltig, D.; Buettner, F.F.; Beyerbach, M.; Gasse, H.; Gerlach, G.F.; Waldmann, K.H. Experimental Actinobacillus pleuropneumoniae challenge in swine: Comparison of computed tomographic and radiographic findings during disease. BMC Vet. Res. 2012, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Sebunya, T.N.; Saunders, J.R.; Osborne, A.D. Dose response relationship of Haemophilus pleuropneumoniae aerosols in pigs. Can. J. Comp. Med. 1983, 47, 54–56. [Google Scholar]
- Sebunya, T.N.; Saunders, J.R.; Osborne, A.D. A model aerosol exposure system for induction of porcine Haemophilus pleuropneumonia. Can. J. Comp. Med. 1983, 47, 48–53. [Google Scholar]
- Rosendal, S.; MacInnes, J.I. Characterization of an attenuated strain of Actinobacillus pleuropneumoniae, serotype 1. Am. J. Vet. Res. 1990, 51, 711–717. [Google Scholar]
- Renken, C. Seroprävalenz von Actinobacillus pleuropneumoniae sowie zugehöriger Serotypen und Vorkommen von Pleuritiden bei Mastschweinen aus Beständen mit klinischen Anzeichen einer Atemwegserkrankung. Ph.D Thesis, Ludwig-Maximilians-Universität, München, Germany, 29 July 2017. [Google Scholar]
- Gottschalk, M. The challenge of detecting herds sub-clinically infected with Actinobacillus pleuropneumoniae. Vet. J. 2015, 206, 30–38. [Google Scholar] [CrossRef]
- Gottschalk, M.; Lacouture, S. Canada: Distribution of Streptococcus suis (from 2012 to 2014) and Actinobacillus pleuropneumoniae (from 2011 to 2014) serotypes isolated from diseased pigs. Can. Vet. J. 2015, 56, 1093–1094. [Google Scholar]
- Min, K.; Chae, C. Serotype and apx genotype profiles of Actinobacillus pleuropneumoniae field isolates in Korea. Vet. Rec. 1999, 145, 251–254. [Google Scholar] [CrossRef]
- Kim, B.; Hur, J.; Lee, J.Y.; Choi, Y.; Lee, J.H. Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea. Vet. Q. 2016, 36, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Stringer, O.W.; Bossé, J.T.; Lacouture, S.; Gottschalk, M.; Fodor, L.; Angen, Ø.; Velazquez, E.; Penny, P.; Lei, L.; Langford, P.R.; et al. Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars. Vet. Microbiol. 2021, 255, 109021. [Google Scholar] [CrossRef]
- Bossé, J.T.; Li, Y.; Sárközi, R.; Fodor, L.; Lacouture, S.; Gottschalk, M.; Casas Amoribieta, M.; Angen, Ø.; Nedbalcova, K.; Holden, M.T.G.; et al. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet. Microbiol. 2018, 217, 1–6. [Google Scholar] [CrossRef]
- Renken, C.; Ritzmann, M.; Weiß, C.; Luppi, A.; Stoiber, J.; Waehner, C.; Eddicks, M. Seroprevalence of Actinobacillus pleuropneumoniae and corresponding serotypes in fattening pigs in three different epidemiological regions in Germany. In Proceedings of the ESPHM & IPVS Congress, Dublin, Ireland, 7–10 June 2016. [Google Scholar]
- Nahar, N.; Turni, C.; Tram, G.; Blackall, P.J.; Atack, J.M. Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis. Adv. Microb. Physiol. 2021, 78, 179–216. [Google Scholar] [CrossRef]
- Shao, M.; Wang, Y.; Wang, C.; Guo, Y.; Peng, Y.; Liu, J.; Li, G.; Liu, H.; Liu, S. Evaluation of multicomponent recombinant vaccines against Actinobacillus pleuropneumoniae in mice. Acta Vet. Scand. 2010, 52, 52. [Google Scholar] [CrossRef] [Green Version]
- Chiers, K.; De Waele, T.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet. Res. 2010, 41, 65. [Google Scholar] [CrossRef]
- Loera-Muro, A.; Angulo, C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet. Microbiol. 2018, 217, 66–75. [Google Scholar] [CrossRef]
- Wu, H.C.; Yeh, P.H.; Hsueh, K.J.; Yang, W.J.; Chu, C.Y. Recombinant ApxIV protein enhances protective efficacy against Actinobacillus pleuropneumoniae in mice and pigs. J. Appl. Microbiol. 2018, 124, 1366–1376. [Google Scholar] [CrossRef]
- Ramjeet, M.; Deslandes, V.; Gouré, J.; Jacques, M. Actinobacillus pleuropneumoniae vaccines: From bacterins to new insights into vaccination strategies. Anim. Health Res. Rev. 2008, 9, 25–45. [Google Scholar] [CrossRef]
- Thevenon, J.; Ivok, M.; Rozsnyay, Z.; Alapi, I.; Imre, A.; Tenk, M. Coglapix, an Actinobacillus pleuropneumoniae inactivated vaccine induces high levels of anti-Apx and anti-capsular antibodies. In Proceedings of the ESPHM Congress, Sorrento, Italy, 7–9 May 2014. [Google Scholar]
- Tumamao, J.Q.; Bowles, R.E.; van den Bosch, H.; Klaasen, H.L.; Fenwick, B.W.; Storie, G.J.; Blackall, P.J. Comparison of the efficacy of a subunit and a live streptomycin-dependent porcine pleuropneumonia vaccine. Aust. Vet. J. 2004, 82, 370–374. [Google Scholar] [CrossRef] [Green Version]
- van den Bosch, H.; Frey, J. Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs. Vaccine 2003, 21, 3601–3607. [Google Scholar] [CrossRef]
- Lu, Y.C.; Li, M.C.; Chen, Y.M.; Chu, C.Y.; Lin, S.F.; Yang, W.J. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge. Vaccine 2011, 29, 7740–7746. [Google Scholar] [CrossRef]
- Lopez-Bermudez, J.; Quintanar-Guerrero, D.; Lara Puente, H.; Tórtora Perez, J.; Suárez Güemez, F.; Ciprián Carrasco, A.; Mendoza Elvira, S. Oral immunization against porcine pleuropneumonia using the cubic phase of monoolein and purified toxins of Actinobacillus pleuropneumoniae. Vaccine 2014, 32, 6805–6811. [Google Scholar] [CrossRef]
- Porcine actinobacillosis vaccine (inactivated). In European Pharmacopoeia, 10th ed.; Council of Europe: London, UK, 2013; Volume 10, pp. 1139–1140.
- IDEXX, IDEXX APP-ApxIV Ab Test. Available online: https://www.idexx.com/en/livestock/livestock-tests/swine-tests/idexx-app-apxiv-ab-test/ (accessed on 18 August 2022).
- The European Medicines Agency, Coglapix®. Annex I, List of the Names, Pharmaceutical Form, Strengths of the Veterinary Medicinal Product, Animal Species, Route of Administration, Marketing Authorisation Holder in the Member States. Available online: https://www.ema.europa.eu/en/documents/referral/coglapix-article-334-referral-annex-i-ii-iii_en.pdf (accessed on 18 August 2022).
- Bossé, J.T.; Li, Y.; Fernandez Crespo, R.; Lacouture, S.; Gottschalk, M.; Sárközi, R.; Fodor, L.; Casas Amoribieta, M.; Angen, Ø.; Nedbalcova, K.; et al. Comparative sequence analysis of the capsular polysaccharide loci of Actinobacillus pleuropneumoniae serovars 1-18, and development of two multiplex PCRs for comprehensive capsule typing. Vet. Microbiol. 2018, 220, 83–89. [Google Scholar] [CrossRef]
- Osborne, A.D.; Saunders, J.R.; Sebunya, T.K.; Willson, P.; Green, G.H. A simple aerosol chamber for experimental reproduction of respiratory disease in pigs and other species. Can. J. Comp. Med. 1985, 49, 434–435. [Google Scholar]
- Kleinsasser, A.; Olfert, I.M.; Loeckinger, A.; Prisk, G.K.; Hopkins, S.R.; Wagner, P.D. Tidal volume dependency of gas exchange in bronchoconstricted pig lungs. J. Appl. Physiol. 2007, 103, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.F.; Rapp-Gabrielson, V.; Wilke, R.; Thacker, E.L.; Thacker, B.J.; Gergen, L.; Sweeney, D.; Washmoen, T. Intradermal vaccination for Mycoplasma hyopneumoniae. J. Swine Health Prod. 2005, 13, 19–27. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 18 August 2022).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Hölzen, P.; Warnck, T.; Hoy, S.; Schlegel, K.; Hennig-Pauka, I.; Gaumann, H. Comparison of Protectivity and Safety of Two Vaccines against Actinobacillus pleuropneumoniae in a Field Study. Agriculture 2021, 11, 1143. [Google Scholar] [CrossRef]
- Frey, J. RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics. Toxins 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Langford, P.R.; (Imperial College, London, UK). Personal communication, 2022.
- Doná, V.; Ramette, A.; Perreten, V. Comparative genomics of 26 complete circular genomes of 18 different serotypes of Actinobacillus pleuropneumoniae. Microb. Genom. 2022, 8, 000776. [Google Scholar] [CrossRef]
Serovar | Origin | Strain ID | CFU/Pig | Group | Pigs | Year | Pig Breed | Official Approval ID |
---|---|---|---|---|---|---|---|---|
1 | Denmark | App. St1 ch BS5689 | 4 × 108 IN | Vac | 8 * | 2012 | Hungaro-Seghers | BA01/2005-1/2010 |
Vac | 8 ** | |||||||
Pos | 7 | |||||||
Neg | n.a. | |||||||
2 | Hungary | App. St2 ch 2008/3 + 2 | 1 × 106 AC | Vac | 11 | 2015 | Topigs-Norsvin x PIC | BA01/2005 és 1/2010-1/2012 |
Pos | 11 | |||||||
Neg | 5 | |||||||
1 × 107 AC | Vac | 9 | 2017 | Danbred | BA02/2000-43/2017 | |||
Pos | 10 | |||||||
Neg | 5 | |||||||
1 × 108 AC | Vac | 10 | 2014 | Hungaro-Seghers | BA01/2005 és 1/2010-1/2012 | |||
Pos | 10 | |||||||
Neg | 10 | |||||||
4 | Spain | App.90993 | 1 × 108 AC | Vac | 10 | 2018 | Danbred | BA02/2000-43/2017 |
Pos | 9 | |||||||
Neg | 5 | |||||||
1 × 108 AC | Vac | 20 | 2020 | Danbred | BA02/2000-43/2017 | |||
Pos | 20 | |||||||
Neg | 10 | |||||||
5 | Italy | App St.5 13ITA | 1 × 106 AC | Vac | 10 | 2011 | Hungaro-Seghers | BA01/2005-1/2010 |
Pos | 10 | |||||||
Neg | 10 | |||||||
6 | Denmark | App. J.no. 101059 + 2SP | 1 × 108 AC | Vac | 10 | 2018 | Danbred | BA02/2000-43/2017 |
Pos | 9 | |||||||
Neg | 5 | |||||||
1 × 108 AC | Vac | 18 | 2019 | Danbred | BA02/2000-43/2017 | |||
Pos | 14 | |||||||
Neg | 10 | |||||||
7 | Hungary | App. St7 ch CH.G-I/7-7/12 | 2.8 × 108 IN | Vac | 17 | 2012 | Hungaro-Seghers | BA01/2005-1/2010 |
Pos | 17 | |||||||
Neg | n.a. | |||||||
9/11 | Hungary | App. St.9 ch (B-2011) | 1 × 106 AC | Vac | 11 | 2012 | Hungaro-Seghers | BA01/2005-1/2010 |
Vac | 10 + | |||||||
Pos | 10 | |||||||
Neg | 6 | |||||||
1 × 108 AC | Vac | 10 | 2014 | Hungaro-Seghers | BA01/2005 és 1/2010-1/2012 | |||
Pos | 10 | |||||||
Neg | 10 | |||||||
13 | Spain | App.99865 + 1 | 1 × 107 AC | Vac | 20 | 2020 | Danbred | BA02/2000-43/2017 |
Pos | 20 | |||||||
Neg | 10 |
Vac | Pos | ||||||
---|---|---|---|---|---|---|---|
Serovar | n | LLS | SD(LLS) | n | LLS | SD(LLS) | p-Value 1 |
1 | 16 | 0.23 | 0.31 | 7 | 1.96 | 1.14 | 0.00007 |
2 | 30 | 0.75 | 1.22 | 31 | 2.11 | 2.05 | 0.00124 |
4 | 30 | 0.65 | 0.41 | 29 | 1.46 | 1.25 | 0.00044 |
5 | 10 | 0.18 | 0.54 | 10 | 1.18 | 1.61 | 0.00953 |
6 | 28 | 0.71 | 0.60 | 23 | 1.56 | 1.13 | 0.00195 |
7 | 17 | 0.04 | 0.10 | 17 | 1.17 | 1.15 | 2.9 × 10−10 |
9/11 | 31 | 2.26 | 1.89 | 20 | 3.84 | 1.82 | 0.00663 |
13 | 20 | 1.03 | 1.44 | 20 | 2.66 | 1.93 | 0.00319 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortensen, P.; Toft, N.; Kiss, I.; Palya, V.; Smits, H.; Tenk, M. Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs. Animals 2022, 12, 3244. https://doi.org/10.3390/ani12233244
Mortensen P, Toft N, Kiss I, Palya V, Smits H, Tenk M. Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs. Animals. 2022; 12(23):3244. https://doi.org/10.3390/ani12233244
Chicago/Turabian StyleMortensen, Preben, Nils Toft, István Kiss, Vilmos Palya, Han Smits, and Miklós Tenk. 2022. "Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs" Animals 12, no. 23: 3244. https://doi.org/10.3390/ani12233244
APA StyleMortensen, P., Toft, N., Kiss, I., Palya, V., Smits, H., & Tenk, M. (2022). Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs. Animals, 12(23), 3244. https://doi.org/10.3390/ani12233244