Reproductive Resumption in Winter and Spring Related to MTNR1A Gene Polymorphisms in Sarda Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Blood Sampling and Genotyping
2.3. Reproductive Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldman, B.D. Mammalian Photoperiodic System: Formal Properties and Neuroendocrine Mechanisms of Photoperiodic Time Measurement. J. Biol. Rhythm. 2001, 16, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J. Melatonin and the Pineal Gland: Influence on Mammalian Seasonal and Circadian Physiology. Rev. Reprod. 1998, 3, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Chemineau, P.; Daveau, A.; Pelletier, J.; Malpaux, B.; Karsch, F.J.; Viguié, C. Changes in the 5-HT2A Receptor System in the Pre-Mammillary Hypothalamus of the Ewe Are Related to Regulation of LH Pulsatile Secretion by an Endogenous Circannual Rhythm. BMC Neurosci. 2003, 4, 1. [Google Scholar] [CrossRef]
- Carcangiu, V.; Mura, M.C.; Parmeggiani, A.; Piccione, G.; Bini, P.P.; Cosso, G.; Luridiana, S. Daily Rhythm of Blood Melatonin Concentrations in Sheep of Different Ages. Biol. Rhythm. Res. 2013, 44, 908–915. [Google Scholar] [CrossRef]
- Martínez-Royo, A.; Lahoz, B.; Alabart, J.L.; Folch, J.; Calvo, J.H. Characterisation of the Melatonin Receptor 1A (MTNR1A) Gene in the Rasa Aragonesa Sheep Breed: Association with Reproductive Seasonality. Anim. Reprod. Sci. 2012, 133, 169–175. [Google Scholar] [CrossRef]
- Starič, J.; Farci, F.; Luridiana, S.; Mura, M.C.; Pulinas, L.; Cosso, G.; Carcangiu, V. Reproductive Performance in Three Slovenian Sheep Breeds with Different Alleles for the MTNR1A Gene. Anim. Reprod. Sci. 2020, 216, 106352. [Google Scholar] [CrossRef]
- Luridiana, S.; Mura, M.C.; Daga, C.; Diaz, M.L.; Bini, P.P.; Cosso, G.; Carcangiu, V. The Relationship between Melatonin Receptor 1A Gene (MTNR1A) Polymorphism and Reproductive Performance in Sarda Breed Sheep. Livest. Sci. 2015, 171, 78–83. [Google Scholar] [CrossRef]
- Dubocovich, M.L.; Rivera-Bermudez, M.A.; Gerdin, M.J.; Masana, M.I. Molecular Pharmacology, Regulation and Function of Mammalian Melatonin Receptors. Front. Biosci. 2003, 8, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- Notter, D.R.; Cockett, N.E.; Hadfield, T.S. Evaluation of Melatonin Receptor 1a as a Candidate Gene Influencing Reproduction in an Autumn-Lambing Sheep Flock. J. Anim. Sci. 2003, 81, 912–917. [Google Scholar] [CrossRef]
- Luridiana, S.; Mura, M.C.; Daga, C.; Cosso, G.; Bodano, S.; Farci, F.; Zidda, F.; Carcangiu, V. Influences of Melatonin Treatment, Melatonin Receptor 1A (MTNR1A) and Kisspeptin (KiSS-1) Gene Polymorphisms on First Conception in Sarda Ewe Lambs. Reprod. Fertil. Dev. 2016, 28, 750–756. [Google Scholar] [CrossRef]
- Calvo, J.H.; Serrano, M.; Martinez-Royo, A.; Lahoz, B.; Sarto, P.; Ibañez-Deler, A.; Folch, J.; Alabart, J.L. SNP Rs403212791 in Exon 2 of the MTNR1A Gene Is Associated with Reproductive Seasonality in the Rasa Aragonesa Sheep Breed. Theriogenology 2018, 113, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateescu, R.G.; Lunsford, A.K.; Thonney, M.L. Association between Melatonin Receptor 1A Gene Polymorphism and Reproductive Performance in Dorset Ewes. J. Anim. Sci. 2009, 87, 2485–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosso, G.; Nehme, M.; Luridiana, S.; Pulinas, L.; Curone, G.; Hosri, C.; Mura, M.C. Detection of Polymorphisms in MTNR1A Gene and Association with Reproductive Performance in Awassi Ewes. Animals 2021, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Malpaux, B.; Daveau, A.; Maurice-Mandon, F.; Duarte, G.; Chemineau, P. Evidence That Melatonin Acts in the Premammillary Hypothalamic Area to Control Reproduction in the Ewe: Presence of Binding Sites and Stimulation of Luteinizing Hormone Secretion by in Situ Microimplant Delivery 1. Endocrinology 1998, 139, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, T.; Donovan, A.; Karsch, F.J.; Roche, J.F.; O’Callaghan, D. Influence of Previous Photoperiodic Exposure on the Reproductive Response to a Specific Photoperiod Signal in Ewes. Biol. Reprod. 1997, 56, 916–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, H.J.D.; Bryant, M.J. Seasonality of Reproduction in Sheep. Small Rumin. Res. 2003, 48, 155–171. [Google Scholar] [CrossRef]
- Mura, M.C.; Luridiana, S.; Pulinas, L.; di Stefano, M.V.; Carcangiu, V. Reproductive Response to Male Joining with Ewes with Different Allelic Variants of the MTNR1A Gene. Anim. Reprod. Sci. 2019, 200, 67–74. [Google Scholar] [CrossRef]
- Luridiana, S.; Cosso, G.; Pulinas, L.; di Stefano, M.V.; Curone, G.; Carcangiu, V.; Mura, M.C. New Polymorphisms at MTNR1A Gene and Their Association with Reproductive Resumption in Sarda Breed Sheep. Theriogenology 2020, 158, 438–444. [Google Scholar] [CrossRef]
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective Assessment of Body Fat in Live Sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.V.; Buerkner, P.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Riebl, H.; Singmann, H. Estimated Marginal Means, Aka Least-Squares Means; R Package Version 1.8.0. 2022. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 30 July 2022).
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package version 1.3-1. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 30 July 2022).
- Carcangiu, V.; Mura, M.C.; Vacca, G.M.; Pazzola, M.; Dettori, M.L.; Luridiana, S.; Bini, P.P. Polymorphism of the Melatonin Receptor MT1 Gene and Its Relationship with Seasonal Reproductive Activity in the Sarda Sheep Breed. Anim. Reprod. Sci. 2009, 116, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Pulinas, L.; Starič, J.; Cosso, G.; Curone, G.; Mura, M.C.; Carcangiu, V.; Luridiana, S. MTNR1A Gene Polymorphisms and Reproductive Recovery after Seasonal Anoestrus in Different Mediterranean Sheep Breeds. Anim. Reprod. Sci. 2022, 236, 106905. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V.K.; Jha, B.K.; Meena, A.S.; Naqvi, S.M.K. Characterization of MTNR1A Gene in Terms of Genetic Variability in a Panel of Subtemperate and Subtropical Indian Sheep Breeds. J. Genet. 2015, 94, 715–721. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, Z.; Liu, Q.; Chu, M. Polymorphisms of the Melatonin Receptor 1A Gene That Affects the Reproductive Seasonality and Litter Size in Small Tail Han Sheep. Reprod. Domest. Anim. 2019, 54, 1400–1410. [Google Scholar] [CrossRef] [Green Version]
- Niles, L.P.; Wang, J.; Shen, L.; Lobb, D.K.; Younglai, E.V. Melatonin Receptor MRNA Expression in Human Granulosa Cells. Mol. Cell. Endocrinol. 1999, 156, 107–110. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, W.J.; Wang, L.K.; Pang, X.S.; Yang, L.G. The Role of Melatonin Receptor MTNR1A in the Action of Melatonin on Bovine Granulosa Cells. Mol. Reprod. Dev. 2017, 84, 1140–1154. [Google Scholar] [CrossRef]
- Wang, S.; Liu, W.; Pang, X.; Dai, S.; Liu, G. The Mechanism of Melatonin and Its Receptor MT2 Involved in the Development of Bovine Granulosa Cells. Int. J. Mol. Sci. 2018, 19, 2028. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin Reduces Lipid Peroxidation and Membrane Viscosity. Front. Physiol. 2014, 5, 377. [Google Scholar] [CrossRef] [Green Version]
- Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Asada, H.; Yamagata, Y.; et al. Melatonin as a Free Radical Scavenger in the Ovarian Follicle. Endocr. J. 2013, 60, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hardeland, R. Antioxidative Protection by Melatonin: Multiplicity of Mechanisms from Radical Detoxification to Radical Avoidance. Endocrine 2005, 27, 119–130. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, W.J.; Wu, C.J.; Ma, F.H.; Ahmad, S.; Liu, B.R.; Han, L.; Jiang, X.P.; Zhang, S.J.; Yang, L.G. Melatonin Suppresses Apoptosis and Stimulates Progesterone Production by Bovine Granulosa Cells via Its Receptors (MT1 and MT2). Theriogenology 2012, 78, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, T.A.; Sharma, R.K.; Phulia, S.K.; Balhara, A.K.; Ghuman, S.S.; Singh, I. Manipulation of Reproductive Performance of Lactating Buffaloes Using Melatonin and Controlled Internal Drug Release Device Treatment during Out-of-Breeding Season under Tropical Conditions. Theriogenology 2016, 86, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Z.; Zhang, L.; Zhang, Z.; Chen, J.; Chen, W.; Tong, D. Melatonin Stimulates the Secretion of Progesterone along with the Expression of Cholesterol Side-Chain Cleavage Enzyme (P450scc) and Steroidogenic Acute Regulatory Protein (StAR) in Corpus Luteum of Pregnant Sows. Theriogenology 2018, 108, 297–305. [Google Scholar] [CrossRef]
- Barrett, P.; Conway, S.; Morgan, P.J. Digging Deep—Structure-Function Relationships in the Melatonin Receptor Family. J. Pineal. Res. 2003, 35, 221–230. [Google Scholar] [CrossRef]
- Conway, S.; Canning, S.J.; Barrett, P.; Guardiola-Lemaitre, B.; Delagrange, P.; Morgan, P.J. The Roles of Valine 208 and Histidine 211 in Ligand Binding and Receptor Function of the Ovine Mel(1αβ) Melatonin Receptor. Biochem. Biophys. Res. Commun. 1997, 239, 418–423. [Google Scholar] [CrossRef]
- Kokkola, T.; Watson, M.-A.; White, J.; Dowell, S.; Foord, S.M.; Laitinen, J.T. Mutagenesis of Human Mel(1a) Melatonin Receptor Expressed in Yeast Reveals Domains Important for Receptor Function. Biochem. Biophys. Res. Commun. 1998, 249, 531–536. [Google Scholar] [CrossRef]
- Trecherel, E.; Batailler, M.; Chesneau, D.; Delagrange, P.; Malpaux, B.; Chemineau, P.; Migaud, M. Functional Characterization of Polymorphic Variants for Ovine MT1 Melatonin Receptors: Possible Implication for Seasonal Reproduction in Sheep. Anim. Reprod. Sci. 2010, 122, 328–334. [Google Scholar] [CrossRef]
- Hirshfield, A.N. Development of Follicles in the Mammalian Ovary. Int. Rev. Cytol. 1991, 124, 43–101. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Tamura, H.; Takayama, H.; Kato, H. Increased Endogenous Level of Melatonin in Preovulatory Human Follicles Does Not Directly Influence Progesterone Production. Fertil. Steril. 2003, 80, 1012–1016. [Google Scholar] [CrossRef]
- Itoh, M.T.; Ishizuka, B.; Kuribayashi, Y.; Amemiya, A.; Sumi, Y. Melatonin, Its Precursors, and Synthesizing Enzyme Activities in the Human Ovary. Mol. Hum. Reprod. 1999, 5, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Nakamura, Y.; Korkmaz, A.; Manchester, L.C.; Tan, D.X.; Sugino, N.; Reiter, R.J. Melatonin and the Ovary: Physiological and Pathophysiological Implications. Fertil. Steril. 2009, 92, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Abecia, J.A.; Forcada, F.; González-Bulnes, A. Hormonal Control of Reproduction in Small Ruminants. Anim. Reprod. Sci. 2012, 130, 173–179. [Google Scholar] [CrossRef] [PubMed]
Group n. 60 | Farm | Genotype | n. | Average Age | Average BCS |
---|---|---|---|---|---|
A | 1 | CC/CC | 10 | 4.8 ± 0.6 | 2.9 ± 0.8 |
CT/CT | 10 | 4.7 ± 0.6 | 3.0 ± 0.6 | ||
TT/TT | 10 | 4.8 ± 0.7 | 2.8 ± 0.6 | ||
2 | CC/CC | 10 | 5.0 ± 0.7 | 2.9 ± 0.6 | |
CT/CT | 10 | 4.9 ± 0.7 | 3.0 ± 0.5 | ||
TT/TT | 10 | 4.9 ± 0.5 | 2.8 ± 0.6 | ||
B | 1 | CC/CC | 10 | 4.9 ± 0.7 | 3.1 ± 0.7 |
CT/CT | 10 | 4.9 ± 0.5 | 2.8 ± 0.7 | ||
TT/TT | 10 | 4.8 ± 0.5 | 3.0 ± 0.8 | ||
2 | CC/CC | 10 | 4.9 ± 0.6 | 3.0 ± 0.6 | |
CT/CT | 10 | 5.0 ± 0.8 | 2.9 ± 0.5 | ||
TT/TT | 10 | 4.9 ± 0.4 | 2.9 ± 0.7 | ||
C | 1 | CC/CC | 10 | 4.8 ± 0.6 | 2.9 ± 0. |
CT/CT | 10 | 4.9 ± 0.4 | 2.8 ± 0.7 | ||
TT/TT | 10 | 4.9 ± 0.6 | 3.0 ± 0.5 | ||
2 | CC/CC | 10 | 5.0 ± 0.6 | 2.9 ± 0.6 | |
CT/CT | 10 | 4.9 ± 0.5 | 2.9 ± 0.5 | ||
TT/TT | 10 | 4.9 ± 0.7 | 2.9 ± 0.7 | ||
D | 1 | CC/CC | 10 | 4.7 ± 0.5 | 2.9 ± 0.8 |
CT/CT | 10 | 5.0 ± 0.7 | 2.9 ± 0.5 | ||
TT/TT | 10 | 4.9 ± 0.4 | 2.8 ± 0.7 | ||
2 | CC/CC | 10 | 4.9 ± 0.6 | 3.0 ± 0.5 | |
CT/CT | 10 | 4.9 ± 0.6 | 3.0 ± 0.6 | ||
TT/TT | 10 | 4.8 ± 0.8 | 2.9 ± 0.5 |
Id Variant | Position in Oar_Rambouillet_v1.0 | Position in ARS-UI_Ramb_v2.0 | GENOTYPE | Genotype Frequency | Allele | MAF | HW Equilibrium | AA Change | SIFT |
---|---|---|---|---|---|---|---|---|---|
rs419680097 | 17355611 | 15571482 | CC | 0.28 | A | 0.47 | 0.971 | - | |
CA | 0.50 | ||||||||
AA | 0.22 | ||||||||
rs406779174 | 17355458 | 15571329 | GG | 0.51 | A | 0.29 | 0.952 | - | |
GA | 0.41 | ||||||||
AA | 0.08 | ||||||||
rs430181568 | 17355452 | 15571323 | CC | 0.62 | T | 0.28 | 0.000 | - | |
CT | 0.20 | ||||||||
TT | 0.18 | ||||||||
rs407388227 | 17355358 | 15571229 | CC | 0.62 | T | 0.28 | 0.000 | Ile/Val | 0.26 |
CT | 0.20 | ||||||||
TT | 0.18 | ||||||||
rs404378206 | 17355190 | 15571061 | CC | 0.53 | T | 0.27 | 0.883 | Ile/Val | 0.05 |
CT | 0.40 | ||||||||
TT | 0.07 | ||||||||
rs429718221 | 17355173 | 15571044 | GG | 0.12 | G | 0.31 | 0.203 | - | |
GA | 0.37 | ||||||||
AA | 0.51 | ||||||||
rs403212791 | 17354971 | 15570842 | GG | 0.85 | A | 0.07 | 0.417 | Cys/Arg | 0.07 |
GA | 0.15 | ||||||||
AA | 0.00 | ||||||||
rs426523476 | 17354963 | 15570834 | GG | 0.11 | G | 0.30 | 0.341 | - | |
GA | 0.38 | ||||||||
AA | 0.51 | ||||||||
rs413084140 | 17354943 | 15570814 | CC | 0.52 | T | 0.30 | 0.153 | His/Arg | 0.13 |
CT | 0.36 | ||||||||
TT | 0.12 | ||||||||
rs403826495 | 17354935 | 15570806 | CC | 0.52 | T | 0.29 | 0.440 | Ile/Val | 1 |
CT | 0.38 | 0.971 | |||||||
TT | 0.10 |
Genotypes | ||||
---|---|---|---|---|
Period | CC/CC | CT/CT | TT/TT | p Value |
February | 0.84 | 0.85 | 0.61 | 0.000 |
March | 0.86 | 0.85 | 0.59 | 0.000 |
April | 0.83 | 0.84 | 0.59 | 0.000 |
May | 0.82 | 0.83 | 0.58 | 0.000 |
p value | 0.186 | 0.094 | 0.978 |
Factor | Level | DRIL | p Value |
---|---|---|---|
Genotype | CC/CC | 173.08 ± 7.78 | 0.0001 |
CT/CT | 173.60 ± 8.02 | ||
TT/TT | 187.15 ± 8.06 | ||
Period | February | 177.38 ± 9.79 | 0.986 |
March | 177.10 ± 10.57 | ||
April | 177.71 ± 9.59 | ||
May | 177.60 ± 10.84 | ||
Genotype by Period | CC/CC–February | 172.00 ± 8.08 | 0.973 |
CC/CC–March | 172.88 ± 6.88 | ||
CC/CC–April | 173.53 ± 6.18 | ||
CC/CC–May | 174.07 ± 10.31 | ||
CT/CT–February | 173.75 ± 9.20 | ||
CT/CT–March | 174.46 ± 6.36 | ||
CT/CT–April | 172.60 ± 7.87 | ||
CT/CT–May | 173.60 ± 8.96 | ||
TT/TT–February | 186.78 ± 8.19 | ||
TT/TT–March | 187.76 ± 8.43 | ||
TT/TT–April | 188.16 ± 7.18 | ||
TT/TT–May | 186.00 ± 9.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mura, M.C.; Cosso, G.; Pulinas, L.; Carcangiu, V.; Luridiana, S. Reproductive Resumption in Winter and Spring Related to MTNR1A Gene Polymorphisms in Sarda Sheep. Animals 2022, 12, 2947. https://doi.org/10.3390/ani12212947
Mura MC, Cosso G, Pulinas L, Carcangiu V, Luridiana S. Reproductive Resumption in Winter and Spring Related to MTNR1A Gene Polymorphisms in Sarda Sheep. Animals. 2022; 12(21):2947. https://doi.org/10.3390/ani12212947
Chicago/Turabian StyleMura, Maria Consuelo, Giovanni Cosso, Luisa Pulinas, Vincenzo Carcangiu, and Sebastiano Luridiana. 2022. "Reproductive Resumption in Winter and Spring Related to MTNR1A Gene Polymorphisms in Sarda Sheep" Animals 12, no. 21: 2947. https://doi.org/10.3390/ani12212947
APA StyleMura, M. C., Cosso, G., Pulinas, L., Carcangiu, V., & Luridiana, S. (2022). Reproductive Resumption in Winter and Spring Related to MTNR1A Gene Polymorphisms in Sarda Sheep. Animals, 12(21), 2947. https://doi.org/10.3390/ani12212947