Increasing Doses of Bacterial Phytase (Citrobacter braakii) Improves Performance and Carcass Characteristics of Pigs in Growing and Finishing Phases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adeola, O.; Cowieson, A.J. BOARD-INVITED REVIEW: Opportunities and Challenges in Using Exogenous Enzymes to Improve Nonruminant Animal Production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, J.C.; Walk, C.L.; Stein, H.H. Effects of Microbial Phytase on Apparent and Standardized Total Tract Digestibility of Calcium in Calcium Supplements Fed to Growing Pigs. J. Anim. Sci. 2015, 93, 2255–2264. [Google Scholar] [CrossRef]
- Almeida, F.N.; Htoo, J.K.; Thomson, J.; Stein, H.H. Comparative Amino Acid Digestibility in US Blood Products Fed to Weanling Pigs. Anim. Feed Sci. Technol. 2013, 181, 80–86. [Google Scholar] [CrossRef]
- González-Vega, J.C.; Walk, C.L.; Liu, Y.; Stein, H.H. The Site of Net Absorption of Ca from the Intestinal Tract of Growing Pigs and Effect of Phytic Acid, Ca Level and Ca Source on Ca Digestibility. Arch. Anim. Nutr. 2014, 68, 126–142. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.A.; Weihrauch, D.; Nyachoti, C.M. Effect of Dietary Phytic Acid on Performance and Nutrient Uptake in the Small Intestine of Piglets. J. Anim. Sci. 2012, 90, 543–549. [Google Scholar] [CrossRef]
- Zeng, Z.K.; Li, Q.Y.; Tian, Q.Y.; Xu, Y.T.; Piao, X.S. The Combination of Carbohydrases and Phytase to Improve Nutritional Value and Non-Starch Polysaccharides Degradation for Growing Pigs Fed Diets with or without Wheat Bran. Anim. Feed Sci. Technol. 2018, 235, 138–146. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Moughan, P.J. Effect of Microbial Phytase on Phytate P Degradation and Apparent Digestibility of Total P and Ca throughout the Gastrointestinal Tract of the Growing Pig. J. Anim. Sci. 2014, 92, 189–197. [Google Scholar] [CrossRef]
- Da Silva, C.A.; Callegari, M.A.; Dias, C.P.; Bridi, A.M.; Pierozan, C.R.; Foppa, L.; Da Silva Martins, C.C.; Falleiros Dias, F.T.; Passos, A.; Hermes, R. Increasing Doses of Phytase from Citrobacter braakii in Diets with Reduced Inorganic Phosphorus and Calcium Improve Growth Performance and Lean Meat of Growing and Finishing Pigs. PLoS ONE 2019, 14, 1–13. [Google Scholar] [CrossRef]
- Holloway, C.L.; Dean Boyd, R.; Koehler, D.; Gould, S.A.; Li, Q.; Patience, J.F. The Impact of “Super-Dosing” Phytase in Pig Diets on Growth Performance during the Nursery and Grow-out Periods. Transl. Anim. Sci. 2019, 3, 419–428. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Ragland, D.; Plumstead, P.; Adeola, O. The Efficacy of a New 6-Phytase Obtained from Buttiauxella Spp. Expressed in Trichoderma Reesei on Digestibility of Amino Acids, Energy, and Nutrients in Pigs Fed a Diet Based on Corn, Soybean Meal, Wheat Middlings, and Corn Distillers’ Dried Grain with solubles. J. Anim. Sci. 2014, 93, 168–175. [Google Scholar] [CrossRef]
- Velayudhan, D.E.; Heo, J.M.; Dersjant-Li, Y.; Owusu-Asiedu, A.; Nyachoti, C.M. Efficacy of Novel 6-Phytase from Buttiauxella Sp. on Ileal and Total Tract Nutrient Digestibility in Growing Pigs Fed a Corn-Soy Based Diet. Anim. Feed Sci. Technol. 2015, 210, 217–224. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Schuh, K.; Wealleans, A.L.; Awati, A.; Dusel, G. Effect of a Buttiauxella Phytase on Production Performance in Growing/Finishing Pigs Fed a European-Type Diet without Inclusion of Inorganic Phosphorus. J. Appl. Anim. Nutr. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Beynen, A.C. The Efficacy of Aspergillus niger Phytase in Rendering Phytate Phosphorus Available for Absorption in Pigs Is Influenced by Pig Physiological Status. J. Anim. Sci. 1997, 75, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.N.; Sulabo, R.C.; Stein, H.H. Effects of a Novel Bacterial Phytase Expressed in Aspergillus Oryzae on Digestibility of Calcium and Phosphorus in Diets Fed to Weanling or Growing Pigs. J. Anim. Sci. Biotechnol. 2013, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guggenbuhl, P.; Perez Calvo, E.; Fru, F. Effect of a Bacterial 6-Phytase on Plasma Myo-Inositol Concentrations and P and Ca Utilization in Swine. J. Anim. Sci. 2016, 94, 243–245. [Google Scholar] [CrossRef]
- Ribeiro, V.; Salguero, S.C.; Gomes, G.; Barros, V.R.S.M.; Silva, D.L.; Barreto, S.L.T.; Rostagno, H.S.; Hannas, M.I.; Albino, L.F.T. Efficacy and Phosphorus Equivalency Values of Two Bacterial Phytases (Escherichia coli and Citrobacter braakii) Allow the Partial Reduction of Dicalcium Phosphate Added to the Diets of Broiler Chickens from 1 to 21 Days of Age. Anim. Feed Sci. Technol. 2016, 221, 226–233. [Google Scholar] [CrossRef]
- Zeng, Z.K.; Wang, D.; Piao, X.S.; Li, P.F.; Zhang, H.Y.; Shi, C.X.; Yu, S.K. Effects of Adding Super Dose Phytase to the Phosphorus-Deficient Diets of Young Pigs on Growth Performance, Bone Quality, Minerals and Amino Acids Digestibilities. Asian-Australas. J. Anim. Sci. 2014, 27, 237–246. [Google Scholar] [CrossRef]
- Kühn, I.; Schollenberger, M.; Männer, K. Effect of Dietary Phytase Level on Intestinal Phytate Degradation and Bone Mineralization in Growing Pigs. J. Anim. Sci. 2016, 94, 264–267. [Google Scholar] [CrossRef]
- Laird, S.; Kühn, I.; Wilcock, P.; Miller, H.M. The Effects of Phytase on Grower Pig Growth Performance and Ileal Inositol Phosphate Degradation. J. Anim. Sci. 2016, 94, 142–145. [Google Scholar] [CrossRef]
- Laird, S.; Kühn, I.; Miller, H.M. Super-dosing phytase improves the growth performance of weaner pigs fed a low iron diet. Anim. Feed Sci. Technol. 2018, 242, 150–160. [Google Scholar] [CrossRef] [Green Version]
- She, Y.; Sparks, J.C.; Stein, H.H. Effects of Increasing Concentrations of an Escherichia coli Phytase on the Apparent Ileal Digestibility of Amino Acids and the Apparent Total Tract Digestibility of Energy and Nutrients in Corn-Soybean Meal Diets Fed to Growing Pigs. J. Anim. Sci. 2018, 96, 2804–2816. [Google Scholar] [CrossRef] [PubMed]
- Jongbloed, A.W.; Van Diepen, J.T.M.; Kemme, P.A.; Broz, J. Efficacy of Microbial Phytase on Mineral Digestibility in Diets for Gestating and Lactating Sows. Livest. Prod. Sci. 2004, 91, 143–155. [Google Scholar] [CrossRef]
- Braña, D.V.; Ellis, M.; Castañeda, E.O.; Sands, J.S.; Baker, D.H. Effect of a Novel Phytase on Growth Performance, Bone Ash, and Mineral Digestibility in Nursery and Grower-Finisher Pigs. J. Anim. Sci. 2006, 84, 1839–1849. [Google Scholar] [CrossRef]
- Gonçalves, M.A.D.; Dritz, S.S.; Tokach, M.D.; DeRouchey, J.M.; Woodworth, J.C.; Goodband, R.D. Fact Sheets—Comparing Phytase Sources for Pigs and Effects of Superdosing Phytase on Growth Performance of Nursery and Finishing Pigs. J. Swine Health Prod. 2016, 24, 97–101. [Google Scholar]
- González-Vega, J.C.; Walk, C.L.; Stein, H.H. Effect of Phytate, Microbial Phytase, Fiber, and Soybean Oil on Calculated Values for Apparent and Standardized Total Tract Digestibility of Calcium and Apparent Total Tract Digestibility of Phosphorus in Fish Meal Fed to Growing Pigs. J. Anim. Sci. 2015, 93, 4808–4818. [Google Scholar] [CrossRef] [PubMed]
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of Calcium Interactions with Phytate and Phytase for Poultry and Pigs. Livest. Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Ruckebusch, J.P.; Knap, I.; Guggenbuhl, P.; Fru-Nji, F. Phytate-Free Nutrition: A New Paradigm in Monogastric Animal Production. Anim. Feed Sci. Technol. 2016, 222, 180–189. [Google Scholar] [CrossRef]
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in Pig and Poultry Nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625. [Google Scholar] [CrossRef]
- Fandrejewski, H.; Weremko, D.; Raj, S.; Skiba, G.; Han, I.K. Performance, Body and Carcass Composition and Bone Characteristics of Pigs Fed Rapeseed and Soyabean Meal-Cereal Diets Supplemented with Microbial Phytase. J. Anim. Feed Sci. 1999, 8, 533–547. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; de Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R. Tabelas Brasileiras Para Suínos e Aves, 4th ed.; UFV: Viçosa, Brazil, 2017; ISBN 9788560249725. [Google Scholar]
- Olsen, K.M.; Gould, S.A.; Walk, C.L.; Serão, N.V.L.; Hansen, S.L.; Patience, J.F. Evaluating Phosphorus Release by Phytase in Diets Fed to Growing Pigs That Are Not Deficient in Phosphorus1. J. Anim. Sci. 2019, 97, 327–337. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Ruckebusch, J.P.; Sorbara, J.O.B.; Wilson, J.W.; Guggenbuhl, P.; Tanadini, L.; Roos, F.F. A Systematic View on the Effect of Microbial Phytase on Ileal Amino Acid Digestibility in Pigs. Anim. Feed Sci. Technol. 2017, 231, 138–149. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Ptak, A.; Maćkowiak, P.; Sassek, M.; Pruszyńska-Oszmałek, E.; Zyła, K.; Światkiewicz, S.; Kaczmarek, S.; Józefiak, D. The Effect of Microbial Phytase and Myo-Inositol on Performance and Blood Biochemistry of Broiler Chickens Fed Wheat/Corn-Based Diets. Poult. Sci. 2013, 92, 2124–2134. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Yamaoka, M.; Hasunuma, T.; Ashida, H.; Yoshida, K. Detection of Orally Administered Inositol Stereoisomers in Mouse Blood Plasma and Their Effects on Translocation of Glucose Transporter 4 in Skeletal Muscle Cells. J. Agric. Food Chem. 2013, 61, 4850–4854. [Google Scholar] [CrossRef]
- Ptak, A.; Bedford, M.R.; Świątkiewicz, S.; Żyła, K.; Józefiak, D. Phytase Modulates Ileal Microbiota and Enhances Growth Performance of the Broiler Chickens. PLoS ONE 2015, 10, e0119770. [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, J.; Séon, A.-A.; Aureli, R.; Friedel, A.; Guggenbuhl, P.; Duval, S.; Cowieson, A.J.; Fru-Nji, F. Exploratory Transcriptomic Analysis in Muscle Tissue of Broilers Fed a Phytase-Supplemented Diet. J. Anim. Physiol. Anim. Nutr. 2017, 101, 563–575. [Google Scholar] [CrossRef]
- Dang, N.T.; Mukai, R.; Yoshida, K.-I.; Ashida, H. D-Pinitol and Myo-Inositol Stimulate Translocation of Glucose Transporter 4 in Skeletal Muscle of C57BL/6 Mice. Biosci. Biotechnol. Biochem. 2010, 74, 1062–1067. [Google Scholar] [CrossRef]
- Żyła, K.; Duliński, R.; Pierzchalska, M.; Grabacka, M.; Józefiak, D.; Świątkiewicz, S. Phytases and Myo-Inositol Modulate Performance, Bone Mineralization and Alter Lipid Fractions in the Serum of Broilers. J. Anim. Feed Sci. 2013, 22, 56–62. [Google Scholar] [CrossRef]
- Rosenfelder-Kuon, P.; Siegert, W.; Rodehutscord, M. Effect of Microbial Phytase Supplementation on P Digestibility in Pigs: A Meta-Analysis. Arch. Anim. Nutr. 2020, 74, 1–18. [Google Scholar] [CrossRef]
- Lozano, A.P.; Pacheco, G.D.; Silva, C.A.; Bridi, A.M.; Silva, R.A.M.; Vinokurovas, S.L.; Dalto, D.B.; Tarsitano, M.A.; Agostini, P.S. Níveis de Fitase Em Rações Para Suínos Em Fase de Terminação. Arch. Zootec. 2011, 60, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Brady, S.M.; Callan, J.J.; Cowan, D.; McGrane, M.; O’Doherty, J. V Effect of Two Microbial Phytases on the Performance and Nutrient Retention on Grower-Finisher Pigs Fed Barley-Maize-Soyabean Meal-Based Diets. Ir. J. Agric. Food Res. 2003, 42, 101–117. [Google Scholar]
Ingredients (%) | Growing I (68–91 Days) | Growing II (92–112 Days) | Finishing I (113–140 Days) | Finishing II (141–156 Days) | ||||
---|---|---|---|---|---|---|---|---|
PC | NC | PC | NC | PC | NC | PC | NC | |
Corn | 68.90 | 69.99 | 74.18 | 75.29 | 78.55 | 78.99 | 81.86 | 82.97 |
Soybean meal | 23.99 | 23.80 | 19.45 | 19.25 | 15.62 | 15.54 | 12.63 | 12.43 |
Dicalcium phosphate | 1.49 | 0.79 | 1.26 | 0.56 | 1.12 | 0.42 | 1.07 | 0.36 |
Limestone | 0.67 | 0.83 | 0.61 | 0.77 | 0.57 | 0.73 | 0.56 | 0.72 |
Soybean oil | 3.46 | 3.10 | 3.00 | 2.62 | 2.65 | 2.83 | 2.44 | 2.07 |
L-Lysine | 0.42 | 0.42 | 0.43 | 0.43 | 0.43 | 0.44 | 0.43 | 0.43 |
DL-Methionine | 0.08 | 0.08 | 0.14 | 0.14 | 0.12 | 0.12 | 0.12 | 0.12 |
L-Threonine | 0.15 | 0.15 | 0.13 | 0.13 | 0.13 | 0.13 | 0.11 | 0.10 |
L-Tryptophane | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
L-Valine | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 |
Vitamin Premix 1 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Mineral premix 2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Salt | 0.39 | 0.39 | 0.36 | 0.36 | 0.34 | 0.34 | 0.33 | 0.33 |
Adsorbent 3 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Antioxidant-BHT 99% 4 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Calculated composition | ||||||||
ME (kcal/kg) | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 |
Dry matter, % | 90.33 | 90.23 | 90.12 | 90.02 | 89.95 | 89.91 | 89.83 | 89.73 |
Crude protein, % | 16.97 | 16.97 | 15.34 | 15.34 | 13.94 | 13.94 | 12.82 | 12.82 |
Ethereal extract, % | 6.73 | 6.41 | 6.34 | 6.01 | 6.06 | 6.25 | 5.89 | 5.56 |
Ash, % | 5.21 | 4.68 | 4.67 | 4.14 | 4.28 | 3.75 | 4.05 | 3.52 |
Calcium, % | 0.73 | 0.62 | 0.63 | 0.52 | 0.57 | 0.46 | 0.55 | 0.44 |
Total phosphorus, % | 0.57 | 0.44 | 0.52 | 0.39 | 0.48 | 0.35 | 0.46 | 0.33 |
Available phosphorus, % | 0.36 | 0.23 | 0.13 | 0.18 | 0.28 | 0.15 | 0.27 | 0.14 |
Digestible lysine, % | 1.06 | 1.06 | 0.96 | 0.96 | 0.88 | 0.88 | 0.81 | 0.81 |
Digestible methionine, % | 0.38 | 0.38 | 0.35 | 0.35 | 0.34 | 0.34 | 0.30 | 0.30 |
Digestible meth + cys, % | 0.63 | 0.63 | 0.57 | 0.57 | 0.53 | 0.53 | 0.49 | 0.49 |
Digestible threonine, % | 0.69 | 0.69 | 0.63 | 0.63 | 0.66 | 0.66 | 0.53 | 0.53 |
Digestible tryptophan, % | 0.21 | 0.21 | 0.19 | 0.19 | 0.18 | 0.18 | 0.16 | 0.16 |
Digestible valine, % | 0.74 | 0.74 | 0.67 | 0.67 | 0.61 | 0.61 | 0.56 | 0.56 |
Parameters | Treatments | CV (%) | p-Value | p-Value (Regression Effect) * | |||||
---|---|---|---|---|---|---|---|---|---|
PC | NC | 1500 FYT | 3000 FYT | 4500 FYT | Linear | Quadratic | |||
Growing I (68–91 days) | |||||||||
LW68 (kg) | 25.42 | 25.00 | 25.21 | 25.00 | 25.21 | 3.3 | 0.833 | 0.954 | 0.995 |
DWG (kg) | 1.06 a | 0.95 b | 1.06 a | 1.06 a | 0.98 ab | 7.5 | 0.012 | 0.714 | 0.095 |
DFI (kg) | 1.93 | 1.79 | 1.85 | 1.87 | 1.77 | 7.9 | 0.173 | 0.897 | 0.657 |
FCR | 1.83 | 1.88 | 1.74 | 1.76 | 1.81 | 6.4 | 0.159 | 0.278 | 0.033 1 |
Growing II (92–112 days) | |||||||||
LW91 (kg) | 49.80 a | 46.97 b | 49.59 a | 49.39 ab | 47.66 ab | 3.9 | 0.015 | 0.819 | 0.491 |
DWG (kg) | 1.09 | 1.07 | 1.16 | 1.14 | 1.10 | 6.8 | 0.158 | 0.805 | 0.110 |
DFI (kg) | 2.61 | 2.54 | 2.66 | 2.58 | 2.25 | 6.3 | 0.178 | 0.477 | 0.338 |
FCR | 2.39 | 2.37 | 2.30 | 2.28 | 2.25 | 6.0 | 0.218 | 0.072 | 0.174 |
Finishing I (113–140 days) | |||||||||
LW112 (kg) | 72.75 ab | 69.45 c | 73.90 a | 73.25 ab | 70.44 bc | 3.7 | 0.007 | 0.847 | 0.282 |
DWG (kg) | 1.15 | 1.15 | 1.18 | 1.17 | 1.13 | 7.2 | 0.810 | 0.647 | 0.569 |
DFI (kg) | 3.12 | 3.11 | 3.21 | 3.15 | 2.93 | 7.8 | 0.223 | 0.301 | 0.247 |
FCR | 2.72 | 2.69 | 2.71 | 2.70 | 2.59 | 7.4 | 0.678 | 0.394 | 0.482 |
Finishing II (141–156 days) | |||||||||
LW140 (kg) | 104.93 | 101.73 | 106.96 | 106.01 | 102.18 | 4.0 | 0.062 | 0.974 | 0.275 |
DWG (kg) | 1.06 ab | 1.13 a | 1.20 a | 1.14 a | 0.94 b | 12.4 | 0.008 | 0.006 6 | 0.000 2 |
DFI (kg) | 3.30 | 3.29 | 3.48 | 3.34 | 3.07 | 7.8 | 0.066 | 0.106 | 0.023 3 |
FCR | 3.18 | 2.91 | 2.89 | 2.96 | 3.30 | 11.4 | 0.103 | 0.017 7 | 0.015 4 |
W156 (kg) | 118.73 abc | 116.47 bc | 122.95 a | 120.79 ab | 114.43 c | 4.0 | 0.011 | 0.584 | 0.107 |
Total (68–156 days) | |||||||||
DWG (kg) | 1.10 abc | 1.08 bc | 1.15 a | 1.13 ab | 1.05 c | 4.9 | 0.011 | 0.501 | 0.025 5 |
DFI (kg) | 2.70 | 2.64 | 2.75 | 2.69 | 2.52 | 6.0 | 0.075 | 0.353 | 0.214 |
FCR | 2.46 | 2.45 | 2.39 | 2.39 | 2.39 | 4.7 | 0.590 | 0.383 | 0.558 |
Parameters | Treatments | CV (%) | p-Value | p-Value (Regression Effect) * | |||||
---|---|---|---|---|---|---|---|---|---|
PC | NC | 1500 FYT | 3000 FYT | 4500 FYT | Linear | Quadratic | |||
Final weight (kg) | 120.78 a | 116.47 ab | 121.30 a | 121.21 a | 114.86 b | 6.27 | 0.009 | 0.758 | 0.027 1 |
Carcass weight (kg) | 86.43 ab | 83.48 ab | 87.59 a | 86.15 ab | 82.73 b | 6.58 | 0.022 | 0.680 | 0.046 2 |
Carcass yield (%) | 71.53 | 71.70 | 72.23 | 71.09 | 72.03 | 2.60 | 0.283 | 0.708 | 0.764 |
Backfat thickness (mm) | 19.76 | 18.45 | 17.94 | 18.31 | 16.96 | 22.71 | 0.321 | 0.299 | 0.519 |
Loin depth (mm) | 54.42 | 56.40 | 54.80 | 51.35 | 53.98 | 17.67 | 0.504 | 0.225 | 0.284 |
Lean meat (%) | 51.75 | 52.94 | 53.17 | 52.54 | 53.83 | 6.47 | 0.395 | 0.554 | 0.636 |
Lean meat (kg) | 45.02 | 44.13 | 46.56 | 45.32 | 44.54 | 9.43 | 0.370 | 0.954 | 0.274 |
Color (L*) | 59.75 | 55.47 | 57.78 | 55.26 | 55.25 | 13.59 | 0.233 | 0.657 | 0.676 |
Classes * | Treatments | ||||
---|---|---|---|---|---|
PC | NC | 1500 FYT | 3000 FYT | 4500 FYT | |
S | 0 | 2 | 0 | 0 | 0 |
E | 4 b | 4 b | 6 b | 4 b | 11 a |
U | 7 | 11 | 13 | 15 | 9 |
R | 4 | 5 | 2 | 1 | 1 |
O | 1 | 0 | 0 | 1 | 1 |
P | 0 | 1 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, C.A.; Callegari, M.A.; Dias, C.P.; de Souza, K.L.; de Carvalho, R.H.; Alebrante, L.; da Silva Martins, C.C.; Heck, A.; Fascina, V.B. Increasing Doses of Bacterial Phytase (Citrobacter braakii) Improves Performance and Carcass Characteristics of Pigs in Growing and Finishing Phases. Animals 2022, 12, 2552. https://doi.org/10.3390/ani12192552
da Silva CA, Callegari MA, Dias CP, de Souza KL, de Carvalho RH, Alebrante L, da Silva Martins CC, Heck A, Fascina VB. Increasing Doses of Bacterial Phytase (Citrobacter braakii) Improves Performance and Carcass Characteristics of Pigs in Growing and Finishing Phases. Animals. 2022; 12(19):2552. https://doi.org/10.3390/ani12192552
Chicago/Turabian Styleda Silva, Caio Abércio, Marco Aurélio Callegari, Cleandro Pazinato Dias, Kelly Lais de Souza, Rafael Humberto de Carvalho, Leandro Alebrante, Claudia Cassimira da Silva Martins, Augusto Heck, and Vitor Barbosa Fascina. 2022. "Increasing Doses of Bacterial Phytase (Citrobacter braakii) Improves Performance and Carcass Characteristics of Pigs in Growing and Finishing Phases" Animals 12, no. 19: 2552. https://doi.org/10.3390/ani12192552
APA Styleda Silva, C. A., Callegari, M. A., Dias, C. P., de Souza, K. L., de Carvalho, R. H., Alebrante, L., da Silva Martins, C. C., Heck, A., & Fascina, V. B. (2022). Increasing Doses of Bacterial Phytase (Citrobacter braakii) Improves Performance and Carcass Characteristics of Pigs in Growing and Finishing Phases. Animals, 12(19), 2552. https://doi.org/10.3390/ani12192552