Diversity of Mitochondrial DNA Haplogroups and Their Association with Bovine Antral Follicle Count
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Reproductive Traits Records
2.2. Genomic DNA Extraction and Sequencing
2.3. Clustering and Haplotype Analysis
2.4. Phylogenetic Tree Construction
2.5. Statistical Methods
2.6. Principal Component Analysis
3. Results
3.1. Abundant Genetic Variations within the mtDNA D-Loop Region in Chinese Holstein Cows
3.2. Distinct Mutations between Haplogroups
3.3. Association Analysis of Haplogroups with Antral Follicle Count
3.4. Different Maternal Origins of HG Haplogroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, S. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res. 1981, 9, 3015–3027. [Google Scholar] [CrossRef]
- Anderson, S.; de Bruijn, M.H.; Coulson, A.R.; Eperon, I.C.; Sanger, F.; Young, I.G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 1982, 156, 683–717. [Google Scholar] [CrossRef]
- Noda, A.; Yonesaka, R.; Sasazaki, S.; Mannen, H. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs? PLoS ONE 2018, 13, e0190937. [Google Scholar]
- Jia, S.; Zhou, Y.; Lei, C.; Yao, R.; Zhang, Z.; Fang, X.; Chen, H. A new insight into cattle’s maternal origin in six Asian countries. J Genet Genomics 2010, 37, 173–180. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.Z.; Baig, M.; Mitra, B.; Lopes, R.J.; Santos, A.M.; Magee, D.A.; Azevedo, M.; Tarroso, P.; Sasazaki, S.; et al. Zebu cattle are an exclusive legacy of the South Asia neolithic. Mol. Biol. Evol. 2010, 27, 1–6. [Google Scholar] [CrossRef]
- Wen, H.; Pan, B.; Wang, Y.; Wang, F.; Yang, Z.; Wang, M. Plasma and milk kinetics of eprinomectin following topical or oral administration to lactating Chinese Holstein cows. Vet. Parasitol. 2010, 174, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, F. Import and Utilization of Holstein Breed in China. China Dairy Cattle 2003, 2003, 34–37. (In Chinese) [Google Scholar]
- Cai, X.; Chen, H.; Lei, C.; Wang, S.; Xue, K.; Zhang, B. mtDNA diversity and genetic lineages of eighteen cattle breeds from Bos taurus and Bos indicus in China. Genetica 2007, 131, 175–183. [Google Scholar] [CrossRef]
- Xia, X.; Huang, G.; Wang, Z.; Sun, J.; Wu, Z.; Chen, N.; Lei, C.; Hanif, Q. Mitogenome Diversity and Maternal Origins of Guangxi Cattle Breeds. Animals 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Qu, K.; Li, F.; Jia, P.; Chen, Q.; Chen, N.; Zhang, J.; Chen, H.; Huang, B.; Lei, C. Abundant Genetic Diversity of Yunling Cattle Based on Mitochondrial Genome. Animals 2019, 9, 641. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.Z.; Chen, H.; Zhang, H.C.; Cai, X.; Liu, R.Y.; Luo, L.Y.; Wang, C.F.; Zhang, W.; Ge, Q.L.; Zhang, R.F.; et al. Origin and phylogeographical structure of Chinese cattle. Anim. Genet. 2006, 37, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Qu, K.; Zhang, G.; Jia, Y.; Ma, Z.; Zhao, X.; Huang, Y.; Chen, H.; Huang, B.; Lei, C. Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle. Anim. Genet. 2019, 50, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Jiao, F.; Yan, J.B.; Yang, X.Y.; Li, H.; Wang, Q.; Huang, S.Z.; Zeng, F.; Zeng, Y.T. Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency. Mol. Reprod. Dev. 2007, 74, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Santos-Biase, W.K.; Biase, F.H.; Buratini, J., Jr.; Balieiro, J.; Watanabe, Y.F.; Accorsi, M.F.; Ferreira, C.R.; Stranieri, P.; Caetano, A.R.; Meirelles, F.V. Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up. Anim. Reprod. Sci. 2012, 134, 141–149. [Google Scholar] [CrossRef]
- Srirattana, K.; McCosker, K.; Schatz, T.; St John, J.C. Cattle phenotypes can disguise their maternal ancestry. BMC Genet. 2017, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos, G.L.; da Cunha, E.V.; Maculan, R.; Sanchez Viafara, J.A.; Barbalho Silva, A.W.; Souza Batista, A.L.; Viana Silva, J.R.; de Souza, J.C. Effects of vulvar width and antral follicle count on oocyte quality, in vitro embryo production and pregnancy rate in Bos taurus taurus and Bos taurus indicus cows. Anim. Reprod. Sci. 2020, 217, 106357. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.F.; Sanderson, N.; Quirke, L.D.; Lawrence, S.B.; Juengel, J.L. Association between antral follicle count and reproductive measures in New Zealand lactating dairy cows maintained in a pasture-based production system. Theriogenology 2016, 85, 466–475. [Google Scholar] [CrossRef]
- Mossa, F.; Walsh, S.W.; Butler, S.T.; Berry, D.P.; Carter, F.; Lonergan, P.; Smith, G.W.; Ireland, J.J.; Evans, A.C. Low numbers of ovarian follicles >/=3 mm in diameter are associated with low fertility in dairy cows. J. Dairy Sci. 2012, 95, 2355–2361. [Google Scholar] [CrossRef]
- Koyama, K.; Koyama, T.; Sugimoto, M. Repeatability of antral follicle count according parity in dairy cows. J Reprod Dev 2018, 64, 535–539. [Google Scholar] [CrossRef]
- Li, J.; Shen, C.; Zhang, K.; Niu, Z.; Liu, Z.; Zhang, S.; Wang, Y.; Lan, X. Polymorphic variants of bovine ADCY5 gene identified in GWAS analysis were significantly associated with ovarian morphological related traits. Gene 2021, 766, 145158. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Shen, C.; Niu, Z.; Yang, H.; Zhang, K.; Liu, Z.; Wang, Y.; Lan, X. Indel mutations within the bovine HSD17B3 gene are significantly associated with ovary morphological traits and mature follicle number. J. Steroid Biochem. Mol. Biol. 2021, 209, 105833. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Jiang, F.; Song, E.; Lan, X.; Zhao, H. Fertility-Associated Polymorphism within Bovine ITGβ5 and Its Significant Correlations with Ovarian and Luteal Traits. Animals 2021, 11, 1579. [Google Scholar] [CrossRef] [PubMed]
- Penitente-Filho, J.M.; Jimenez, C.R.; Zolini, A.M.; Carrascal, E.; Azevedo, J.L.; Silveira, C.O.; Oliveira, F.A.; Torres, C.A. Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Anim Sci J 2015, 86, 148–152. [Google Scholar] [CrossRef]
- Koshy, L.; Anju, A.L.; Harikrishnan, S.; Kutty, V.R.; Jissa, V.T.; Kurikesu, I.; Jayachandran, P.; Jayakumaran Nair, A.; Gangaprasad, A.; Nair, G.M.; et al. Evaluating genomic DNA extraction methods from human whole blood using endpoint and real-time PCR assays. Mol. Biol. Rep. 2017, 44, 97–108. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Gao, J.; Wu, X.; Gao, L.; Li, H.; Hu, P.; Lin, T. The Histology Research of the Relationship between Different Corpus Luteum Types and the Follicular Development from Cattle Ovary. J. Beijing Agric. Coll. 2001, 16, 45–49. (In Chinese) [Google Scholar]
- Scheirer, C.J.; Ray, W.S.; Hare, N. The analysis of ranked data derived from completely randomized factorial designs. Biometrics 1976, 32, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.Z.; Chen, H.; Yang, G.S.; Song, L.S.; Lei, X.Q.; Sun, W.B.; Li, R.B.; Liu, X.L. Study on mitochondrial DNA genetic diversity of some cattle breeds in China. Yi Chuan Xue Bao 2004, 31, 57–62. (In Chinese) [Google Scholar]
- Jia, S.; Chen, H.; Zhang, G.; Wang, Z.; Lei, C.; Yao, R.; Han, X. Genetic variation of mitochondrial D-loop region and evolution analysis in some Chinese cattle breeds. J Genet Genom. 2007, 34, 510–518. [Google Scholar] [CrossRef]
- Yue, X.; Li, R.; Liu, L.; Zhang, Y.; Huang, J.; Chang, Z.; Dang, R.; Lan, X.; Chen, H.; Lei, C. When and how did Bos indicus introgress into Mongolian cattle? Gene 2014, 537, 214–219. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Chiaratti, M.R.; Macabelli, C.H.; Rodrigues, C.A.; Ferraz, M.L.; Watanabe, Y.F.; Smith, L.C.; Meirelles, F.V.; Baruselli, P.S. The Infertility of Repeat-Breeder Cows During Summer Is Associated with Decreased Mitochondrial DNA and Increased Expression of Mitochondrial and Apoptotic Genes in Oocytes. Biol. Reprod. 2016, 94, 66. [Google Scholar] [CrossRef]
- Tamassia, M.; Nuttinck, F.; May-Panloup, P.; Reynier, P.; Heyman, Y.; Charpigny, G.; Stojkovic, M.; Hiendleder, S.; Renard, J.P.; Chastant-Maillard, S. In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup. Biol. Reprod. 2004, 71, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, K.; Tanida, T.; Abdel-Ghani, M.A.; Kanno, C.; Yanagawa, Y.; Katagiri, S.; Nagano, M. Relationship between the antral follicle count in bovine ovaries from a local abattoir and steroidogenesis of granulosa cells cultured as oocyte-cumulus-granulosa complexes. J. Reprod. Dev. 2018, 64, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Sutarno; Cummins, J.M.; Greeff, J.; Lymbery, A.J. Mitochondrial DNA polymorphisms and fertility in beef cattle. Theriogenology 2002, 57, 1603–1610. [Google Scholar] [CrossRef]
- Srirattana, K.; St John, J.C. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Sci. Rep. 2018, 8, 7246. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Li, Y.; Liu, Q.; Lund, M.; Su, G.; Liang, X. Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle. Trop. Anim. Health Prod. 2020, 52, 1655–1660. [Google Scholar] [CrossRef]
- Li, C.; Sun, D.; Zhang, S.; Liu, L.; Alim, M.A.; Zhang, Q. A post-GWAS confirming the SCD gene associated with milk medium- and long-chain unsaturated fatty acids in Chinese Holstein population. Anim. Genet. 2016, 47, 483–490. [Google Scholar] [CrossRef]
- Li, C.; Sun, D.; Zhang, S.; Yang, S.; Alim, M.A.; Zhang, Q.; Li, Y.; Liu, L. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study. BMC Genet. 2016, 17, 110. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, S.; Jiang, J.; Jiang, L.; Zhang, Q.; Liu, J. Genome-wide detection of selective signature in Chinese Holstein. PLoS ONE 2013, 8, e60440. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, Q.; Zhang, Q.; Arbab, A.A.I.; Li, M.; Yang, Z.; Karrow, N.A.; Mao, Y. Polymorphisms of the ACSL1 Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Animals 2020, 10, 2282. [Google Scholar] [CrossRef]
- Wang, D.; Ning, C.; Liu, J.F.; Zhang, Q.; Jiang, L. Short communication: Replication of genome-wide association studies for milk production traits in Chinese Holstein by an efficient rotated linear mixed model. J. Dairy Sci. 2019, 102, 2378–2383. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Song, H.; Zhu, X.; Xing, S.; Zhang, M.; Zhang, H.; Wang, X.; Yang, Z.; Ding, X.; Karrow, N.A.; et al. Toll-like receptor 4 gene polymorphisms influence milk production traits in Chinese Holstein cows. J. Dairy Res. 2018, 85, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, M.; Rong, Y.; Liu, Z.; Yang, S.; Zhang, W.; Li, J.; Cai, Y. A Novel SNPs in Alpha-Lactalbumin Gene Effects on Lactation Traits in Chinese Holstein Dairy Cows. Animals 2019, 10, 60. [Google Scholar] [CrossRef]
- Boettcher, P.J.; Freeman, A.E.; Johnston, S.D.; Smith, R.K.; Beitz, D.C.; McDaniel, B.T. Relationships between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cows. J. Dairy Sci. 1996, 79, 647–654. [Google Scholar] [CrossRef]
- Ortega, M.S.; Wohlgemuth, S.; Tribulo, P.; Siqueira, L.G.; Cole, J.B.; Hansen, P.J. A single nucleotide polymorphism in COQ9 affects mitochondrial and ovarian function and fertility in Holstein cows. Biol. Reprod. 2017, 96, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hu, Y.; Wang, J.; Elzo, M.A.; Yang, X.; Lai, S. Genetic diversities of MT-ND1 and MT-ND2 genes are associated with high-altitude adaptation in yak. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2018, 29, 485–494. [Google Scholar] [PubMed]
- Wang, J.; Shi, Y.; Elzo, M.A.; Dang, S.; Jia, X.; Lai, S. Genetic diversity of ATP8 and ATP6 genes is associated with high-altitude adaptation in yak. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2018, 29, 385–393. [Google Scholar]
Breeds | Location | Number |
---|---|---|
Angus cattle | Western countries | 6 |
Charolais | Western countries | 10 |
Chinese Holstein cows | Everywhere in China | 7 |
Indian zebu | India | 10 |
Jinnan cattle | Middle area in China | 10 |
Luxi cattle | Northern China | 10 |
Mongolian cattle | Northern China | 10 |
Qinchuan cattle | Middle area in China | 10 |
Simmental | Western countries | 4 |
Yanbian | Northern China | 10 |
Yunnan yellow cattle | Southern China | 7 |
Total | - | 94 |
N | HG1 | HG2 | p-Value | |
---|---|---|---|---|
Antral follicle count | 115 | 1.55 a ± 0.15 (n = 29) | 1.16 b ± 0.04 (n = 86) | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhai, J.; Wu, H.; Wang, J.; Zhang, S.; Li, J.; Niu, Z.; Shen, C.; Zhang, K.; Liu, Z.; et al. Diversity of Mitochondrial DNA Haplogroups and Their Association with Bovine Antral Follicle Count. Animals 2022, 12, 2350. https://doi.org/10.3390/ani12182350
Liu H, Zhai J, Wu H, Wang J, Zhang S, Li J, Niu Z, Shen C, Zhang K, Liu Z, et al. Diversity of Mitochondrial DNA Haplogroups and Their Association with Bovine Antral Follicle Count. Animals. 2022; 12(18):2350. https://doi.org/10.3390/ani12182350
Chicago/Turabian StyleLiu, Hongfei, Junjun Zhai, Hui Wu, Jingyi Wang, Shaowei Zhang, Jie Li, Zhihan Niu, Chenglong Shen, Kaijuan Zhang, Zhengqing Liu, and et al. 2022. "Diversity of Mitochondrial DNA Haplogroups and Their Association with Bovine Antral Follicle Count" Animals 12, no. 18: 2350. https://doi.org/10.3390/ani12182350
APA StyleLiu, H., Zhai, J., Wu, H., Wang, J., Zhang, S., Li, J., Niu, Z., Shen, C., Zhang, K., Liu, Z., Jiang, F., Song, E., Sun, X., Wang, Y., & Lan, X. (2022). Diversity of Mitochondrial DNA Haplogroups and Their Association with Bovine Antral Follicle Count. Animals, 12(18), 2350. https://doi.org/10.3390/ani12182350