Marine Macroalgae in Rabbit Nutrition—A Valuable Feed in Sustainable Farming
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Post-Weaning Period Is Critical in Rabbit Production
3. Key Point: To Improve Gut Health
4. Seaweed and Gut Health
5. Seaweed and Meat Quality
6. Seaweed and Sustainable Animal Farming
7. Conclusions and Future Trends
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petracci, M.; Soglia, F.; Leroy, F. Rabbit Meat in Need of a Hat-Trick: From Tradition to Innovation (and Back). Meat Sci. 2018, 146, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Dalle Zotte, A. Rabbit Meat Production and Consumption: State of Knowledge and Future Perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Trocino, A.; Cotozzolo, E.; Zomeño, C.; Petracci, M.; Xiccato, G.; Castellini, C. Rabbit Production and Science: The World and Italian Scenarios from 1998 to 2018. Ital. J. Anim. Sci. 2019, 18, 1361–1371. [Google Scholar] [CrossRef]
- Licois, D.; Wyers, M.; Coudert, P. Epizootic Rabbit Enteropathy: Experimental Transmission and Clinical Characterization. Vet. Res. 2004, 36, 601–613. [Google Scholar] [CrossRef]
- Badiola, I.; Perez De Rozas, A.; Gonzalez, J.; Aloy, N.; García, J.; Carabaño, R. Recent Advances in ERE in Growing Rabbits (Invited Paper). In Proceedings of the 11th World Rabbit Congress, Qingdao, China, 15–18 June 2016; pp. 491–502. [Google Scholar]
- Solans, L.; Arnal, J.L.; Sanz, C.; Benito, A.; Chacón, G.; Alzuguren, O.; Fernández, A.B. Rabbit Enteropathies on Commercial Farms in the Iberian Peninsula: Etiological Agents Identified in 2018–2019. Animals 2019, 9, 1142. [Google Scholar] [CrossRef]
- Attia, Y.A.; Hamed, R.S.; Abd El-Hamid, A.E.; Al-Harthi, M.A.; Shahba, H.A.; Bovera, F. Performance, blood profile, carcass and meat traits and tissue morphology in growing rabbits fed mannanoligosaccharides and zinc-bacitracin continuously or intermittently. Anim. Sci. Pap. Rep. 2015, 33, 85–101. [Google Scholar]
- Cesari, V.; Zucali, M.; Bava, L.; Gislon, G.; Tamburini, A.; Toschi, I. Environmental Impact of Rabbit Meat: The Effect of Production Efficiency. Meat Sci. 2018, 145, 447–454. [Google Scholar] [CrossRef]
- Rossi, R.; Vizzarri, F.; Chiapparini, S.; Ratti, S.; Casamassima, D.; Palazzo, M.; Corino, C. Effects of Dietary Levels of Brown Seaweeds and Plant Polyphenols on Growth and Meat Quality Parameters in Growing Rabbit. Meat Sci. 2020, 161, 107987. [Google Scholar] [CrossRef]
- Rossi, R.; Vizzarri, F.; Ratti, S.; Palazzo, M.; Casamassima, D.; Corino, C. Effects of Long-Term Supplementation with Brown Seaweeds and Polyphenols in Rabbit on Meat Quality Parameters. Animals 2020, 10, 2443. [Google Scholar] [CrossRef]
- Moroney, N.C.; O’Grady, M.N.; O’Doherty, J.V.; Kerry, J.P. Addition of Seaweed (Laminaria digitata) Extracts Containing Laminarin and Fucoidan to Porcine Diets: Influence on the Quality and Shelf-Life of Fresh Pork. Meat Sci. 2012, 92, 423–429. [Google Scholar] [CrossRef]
- Moroney, N.C.; O’Grady, M.N.; Robertson, R.C.; Stanton, C.; O’Doherty, J.V.; Kerry, J.P. Influence of Level and Duration of Feeding Polysaccharide (Laminarin and Fucoidan) Extracts from Brown Seaweed (Laminaria digitata) on Quality Indices of Fresh Pork. Meat Sci. 2015, 99, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Fortun-Lamothe, L.; Boullier, S. A Review on the Interactions between Gut Microflora and Digestive Mucosal Immunity. Possible Ways to Improve the Health of Rabbits. Livest. Sci. 2007, 107, 1–18. [Google Scholar] [CrossRef]
- Gidenne, T.; Fortun-Lamothe, L. Feeding Strategy for Young Rabbits around Weaning: A Review of Digestive Capacity and Nutritional Needs. Anim. Sci. 2002, 75, 169–184. [Google Scholar] [CrossRef]
- Combes, S.; Michelland, R.J.; Monteils, V.; Cauquil, L.; Soulié, V.; Tran, N.U.; Gidenne, T.; Fortun-Lamothe, L. Postnatal Development of the Rabbit Caecal Microbiota Composition and Activity. FEMS Microbiol. Ecol. 2011, 77, 680–689. [Google Scholar] [CrossRef]
- Rees Davies, R.; Rees Davies, J.A.E. Rabbit Gastrointestinal Physiology. Vet. Clin. N. Am. Exot. Anim. Pract. 2003, 6, 139–153. [Google Scholar] [CrossRef]
- Carabaño, R.; Piquer, J.; Menoyo, D.; Badiola, I. The digestive system of the rabbit. In Nutrition of the Rabbit, 3rd ed.; De Blas, C., Wiseman, J., Eds.; CABI Publishing CAB International: Wallingford, UK, 2020; pp. 1–20. [Google Scholar]
- Lesbouyries, M.M.; Berthelon, M. Entero-Toxemie Du Lapin. Bull. Acad. 1936, 9, 74–82. [Google Scholar]
- Marlier, D.; Dewrée, R.; Lassence, C.; Licois, D.; Mainil, J.; Coudert, P.; Meulemans, L.; Ducatelle, R.; Vindevogel, H. Infectious Agents Associated with Epizootic Rabbit Enteropathy: Isolation and Attempts to Reproduce the Syndrome. Vet. J. 2006, 172, 493–500. [Google Scholar] [CrossRef]
- Rosell, J.M.; De La Fuente, L.F.; Badiola, J.I.; De Fernandez, L.D.; Casal, J.; Saco, M. Study of Urgent Visits to Commercial Rabbit Farms in Spain and Portugal during 1997-2007. World Rabbit Sci. 2009, 17, 127–136. [Google Scholar] [CrossRef]
- Licois, D.; Coudert, P.; Marlier, D. Epizootic rabbit enteropathy. In Recent Advances inRabbit Sciences; Maertens, L., Coudert, P., Eds.; ILVO: Merenbeke, Belgium, 2006; pp. 163–170. [Google Scholar]
- Puón-Peláez, X.-H.; McEwan, N.; Olvera-Ramírez, A. Epizootic Rabbit Enteropathy (ERE): A Review of Current Knowledge. Eur. Sci. J. ESJ 2018, 14, 137–149. [Google Scholar] [CrossRef]
- Gidenne, T.; Kerdiles, V.; Jehl, N.; Arveux, P.; Eckenfelder, B.; Briens, C.; Stephan, S.; Fortune, H.; Montessuy, S.; Muraz, G. Protein Replacement by Digestible Fibre in the Diet of Growing Rabbits: 2-Impact on Performances, Digestive Health and Nitrogen Output. Anim. Feed Sci. Technol. 2013, 183, 142–150. [Google Scholar] [CrossRef]
- Saettone, V.; Biasato, I.; Radice, E.; Schiavone, A.; Bergero, D.; Meineri, G. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals 2020, 10, 2199. [Google Scholar] [CrossRef] [PubMed]
- European Commission. A European One Health Action Plan against Antimicrobial Resistance (AMR); European Commission: Brussels, Belgium, 2017; p. 24. [Google Scholar]
- Carabaño, R.; Badiola, I.; Chamorro, S.; García, J. New Trends in Rabbit Feeding: Influence of Nutrition. Span. J. Agric. Res. 2008, 6, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Paredes, E.; Nicodemus, N.; Pascual, J.J.; García, J. Challenges in Rabbit Doe Feeding, Including the Young Doe. World Rabbit Sci. 2022, 30, 13–24. [Google Scholar] [CrossRef]
- Nicodemus, N.; Carabaño, R.; García, J.; Méndez, J.; De Blas, C. Performance Response of Lactating and Growing Rabbits to Dietary Lignin Content. Anim. Feed. Sci. Technol. 1999, 80, 43–54. [Google Scholar] [CrossRef]
- Gutiérrez, I.; Espinosa, A.; García, J.; Carabaño, R.; De Blas, J.C. Effect of Levels of Starch, Fiber, and Lactose on Digestion and Growth Performance of Early-Weaned Rabbits. J. Anim. Sci. 2002, 80, 1029–1037. [Google Scholar] [CrossRef]
- Nicodemus, N.; García, J.; Carabaño, R.; De Blas, J.C. Effect of a Reduction of Dietary Particle Size by Substituting a Mixture of Fibrous By-Products for Lucerne Hay on Performance and Digestion of Growing Rabbits and Lactating Does. Livest. Sci. 2006, 100, 242–250. [Google Scholar] [CrossRef]
- Farias, C.; Feijoo, D.; Gratta, F.; Brambillasca, S.; Ocasio-Vega, C.; Nicodemus, N.; Carabaño, R.; García, J. Efecto Del Nivel de Fibra Insoluble y Soluble Sobre La Cantidad de Fibra Fermentada a Nivel Ileal, Cecal y Fecal En Gazapos En Crecimiento. In Proceedings of the XVIII Jornadas Sobre Produccion Animal AIDA, Zaragoza, Spain, 7–8 May 2019; pp. 89–91. [Google Scholar]
- Gómez-Conde, M.S.; de Rozas, A.P.; Badiola, I.; Pérez-Alba, L.; de Blas, C.; Carabaño, R.; García, J. Effect of Neutral Detergent Soluble Fibre on Digestion, Intestinal Microbiota and Performance in Twenty Five Day Old Weaned Rabbits. Livest. Sci. 2009, 125, 192–198. [Google Scholar] [CrossRef]
- Trocino, A.; Fragkiadakis, M.; Majolini, D.; Tazzoli, M.; Radaelli, G.; Xiccato, G. Soluble Fibre, Starch and Protein Level in Diets for Growing Rabbits: Effects on Digestive Efficiency and Productive Traits. Anim. Feed Sci. Technol. 2013, 180, 73–82. [Google Scholar] [CrossRef]
- Trocino, A.; Garcia, J.; Carabaño, R.; Xiccato, G. A Meta-Analysis on the Role of Soluble Fibre in Diets for Growing Rabbits. World Rabbit Sci. 2013, 21, 1–15. [Google Scholar] [CrossRef]
- Gutiérrez, I.; Espinosa, A.; García, J.; Carabaño, R.; De Blas, J.C. Effects of Starch and Protein Sources, Heat Processing, and Exogenous Enzymes in Starter Diets for Early Weaned Rabbits. Anim. Feed Sci. Technol. 2002, 98, 175–186. [Google Scholar] [CrossRef]
- Gutierrez, I.; Espinosa, A.; Carabaño, R.; Rebollar, P.G.; De Blas, J.C. Effect of Protein Source on Digestion and Growth Performance of Early-Weaned Rabbits. Anim. Res. 2003, 52, 461–471. [Google Scholar] [CrossRef]
- García-Ruiz, A.I.; García-Palomares, J.; García-Rebollar, P.; Chamorro, S.; Carabaño, R.; De Blas, C. Effect of Protein Source and Enzyme Supplementation on Ileal Protein Digestibility and Fattening Performance in Rabbits. Span. J. Agric. Res. 2006, 4, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, S.; Gómez-Conde, M.S.; Pérez De Rozas, A.M.; Badiola, I.; Carabaño, R.; De Blas, J.C. Effect on Digestion and Performance of Dietary Protein Content and of Increased Substitution of Lucerne Hay with Soya-Bean Protein Concentrate in Starter Diets for Young Rabbits. Animal 2007, 1, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; de Blas, C.; Grant, G.; Badiola, I.; Menoyo, D.; Carabaño, R. Effect of Dietary Supplementation with Glutamine and a Combination of Glutamine-Arginine on Intestinal Health in Twenty-Five-Day-Old Weaned Rabbits. J. Anim. Sci. 2010, 88, 170–180. [Google Scholar] [CrossRef]
- García-Palomares, J.; Carabaño, R.; García-Rebollar, P.; De Blas, J.C.; Corujo, A.; García-Ruiz, A.I. Effects of a Dietary Protein Reduction and Enzyme Supplementation on Growth Performance in the Fattening Period. World Rabbit Sci. 2006, 14, 231–236. [Google Scholar] [CrossRef]
- Martínez-Vallespín, B.; Martínez-Paredes, E.; Ródenas, L.; Cervera, C.; Pascual, J.J.; Blas, E. Combined Feeding of Rabbit Female and Young: Partial Replacement of Starch with Acid Detergent Fibre or/and Neutral Detergent Soluble Fibre at Two Protein Levels. Livest. Sci. 2011, 141, 155–165. [Google Scholar] [CrossRef]
- Xiccato, G.; Trocino, A.; Majolini, D.; Fragkiadakis, M.; Tazzoli, M. Effect of Decreasing Dietary Protein Level and Replacing Starch with Soluble Fibre on Digestive Physiology and Performance of Growing Rabbits. Animal 2011, 5, 1179–1187. [Google Scholar] [CrossRef]
- Delgado, R.; Menoyo, D.; Abad-Guamán, R.; Nicodemus, N.; Carabaño, R.; García, J. Effect of Dietary Soluble Fibre Level and N-6/n-3 Fatty Acid Ratio on Digestion and Health in Growing Rabbits. Anim. Feed Sci. Technol. 2019, 255, 114222. [Google Scholar] [CrossRef]
- De la Cruz, P. Efecto Del Nivel de Calcio Sobre Los Rendimientos Productivos de Gazapos. Bachelor´s Thesis, Grado En Ciencias Agrarias y Bioeconomía, ETSI Agronómica, Alimentaria y de Biosistemas. Universidad Politécnica de Madrid, Madrid, Spain, 2022. [Google Scholar]
- Ocasio-Vega, C.; Delgado, R.; Abad-Guamán, R.; Carabaño, R.; Carro, M.D.; Menoyo, D.; García, J. The Effect of Cellobiose on the Health Status of Growing Rabbits Depends on the Dietary Level of Soluble Fiber. J. Anim. Sci. 2018, 96, 1806–1817. [Google Scholar] [CrossRef]
- Ocasio-Vega, C.; Delgado, R.; Abad-Guamán, R.; Carabaño, R.; Carro, M.D.; García, J. Effect of Cellobiose Supplementation on Growth Performance and Health in Rabbits. Livest. Sci. 2019, 221, 163–171. [Google Scholar] [CrossRef]
- Gomez-Conde, M.S.; Garcia, J.; Chamorro, S.; Eiras, P.; Rebollar, P.G.; Pérez De Rozas, A.; Badiola, I.; De Blas, C.; Carabaño, R. Neutral Detergent-Soluble Fiber Improves Gut Barrier Function in Twenty-Five-Day-Old Weaned Rabbits. J. Anim. Sci. 2007, 85, 3313–3321. [Google Scholar] [CrossRef] [PubMed]
- El Abed, N.; Delgado, R.; Abad, R.; Romero, C.; Villamide, M.; Menoyo, D.; Carabaño, R.; García, J. Soluble and Insoluble Fibre from Sugar Beet Pulp Enhance Intestinal Mucosa Morphology in Young Rabbits. In Proceedings of the 62nd Annual Meeting of the European Federation of Animal Science, Stavanger, Norway, 29 August–2 September 2011; Book of Abstracts. Wageningen Academic Publisher: Wageningen, The Netherlands, 2011; p. 159. [Google Scholar]
- Abad-Guamán, R.; Carabaño, R.; Gómez-Conde, M.S.; García, J. Effect of Type of Fiber, Site of Fermentation, and Method of Analysis on Digestibility of Soluble and Insoluble Fiber in Rabbits. J. Anim. Sci. 2015, 93, 2860–2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisot, P.; Licois, D.; Gidenne, T. Feed restriction reduces the sanitary impact of an experimental reproduction of Epizootic Rabbit Enteropathy syndrome (ERE), in the growing rabbit. In 10e’me Journees de Recherches Cu-nicoles Francaises; Bolet, G., Ed.; ITAVI Publishing: Paris, France, 2003; pp. 267–270. [Google Scholar]
- Romero, C.; Cuesta, S.; Astillero, J.R.; Nicodemus, N.; De Blas, C. Effect of Early Feed Restriction on Performance and Health Status in Growing Rabbits Slaughtered at 2 Kg Live-Weight. World Rabbit Sci. 2010, 18, 211–218. [Google Scholar] [CrossRef]
- Gidenne, T.; Combes, S.; Fortun-Lamothe, L. Feed Intake Limitation Strategies for the Growing Rabbit: Effect on Feeding Behaviour, Welfare, Performance, Digestive Physiology and Health: A Review. Animal 2012, 6, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Birolo, M.; Trocino, A.; Zuffellato, A.; Xiccato, G. Effect of Feed Restriction Programs and Slaughter Age on Digestive Efficiency, Growth Performance and Body Composition of Growing Rabbits. Anim. Feed Sci. Technol. 2016, 222, 194–203. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary Prebiotics: Current Status and New Definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Updating the Concept of Prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef]
- Falcão-e-Cunha, L.; Castro-Solla, L.; Maertens, L.; Marounek, M.; Pinheiro, V.; Freire, J.; Mourão, J.L. Alternatives to Antibiotic Growth Promoters in Rabbit Feeding: A Review. World Rabbit Sci. 2007, 15, 127–140. [Google Scholar] [CrossRef]
- López-Gálvez, G.; López-Alonso, M.; Pechova, A.; Mayo, B.; Dierick, N.; Gropp, J. Alternatives to Antibiotics and Trace Elements (Copper and Zinc) to Improve Gut Health and Zootechnical Parameters in Piglets: A Review. Anim. Feed Sci. Technol. 2021, 271, 114727. [Google Scholar] [CrossRef]
- Corino, C.; Di Giancamillo, A.; Modina, S.C.; Rossi, R. Prebiotic Effects of Seaweed Polysaccharides in Pigs. Animals 2021, 11, 1573. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for Livestock Diets: A Review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine Macroalgae as Sources of Protein and Bioactive Compounds in Feed for Monogastric Animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef]
- Pardilhó, S.; Cotas, J.; Pereira, L.; Oliveira, M.B.; Dias, J.M. Marine Macroalgae in a Circular Economy Context: A Comprehensive Analysis Focused on Residual Biomass. Biotechnol. Adv. 2022, 60, 107987. [Google Scholar] [CrossRef]
- Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in Pig Nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. The Current Trends and Future Perspectives of Prebiotics Research: A Review. 3 Biotech 2012, 2, 115–125. [Google Scholar] [CrossRef]
- Sweeney, T.; O’Doherty, J.V. Marine Macroalgal Extracts to Maintain Gut Homeostasis in the Weaning Piglet. Domest. Anim. Endocrinol. 2016, 56, S84–S89. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [CrossRef]
- De Jesus Raposo, M.F.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar. Drugs 2016, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; Mcsorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar. Drugs 2019, 17, 327. [Google Scholar] [CrossRef]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Maghin, F. Biological Functions and Health Promoting Effects of Brown Seaweeds in Swine Nutrition. J. Dairy Vet. Anim. Res. 2014, 1, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Abu Hafsa, S.H.; Khalel, M.S.; El-Gindy, Y.M.; Hassan, A.A. Nutritional Potential of Marine and Freshwater Algae as Dietary Supplements for Growing Rabbits. Ital. J. Anim. Sci. 2021, 20, 784–793. [Google Scholar] [CrossRef]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Pereira, L. Biological and Therapeutic Properties of the Seaweed Polysaccharides. Int. Biol. Rev. 2018, 2, 1–50. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-rad, J.; Seca, A.M.L.; Pinto, D.C.G.A. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- de Borba Gurpilhares, D.; Cinelli, L.P.; Simas, N.K.; Pessoa, A.; Sette, L.D. Marine Prebiotics: Polysaccharides and Oligosaccharides Obtained by Using Microbial Enzymes. Food Chem. 2019, 280, 175–186. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Miranda, J.M.; Del Carmen Mondragon, A.; Lamas, A.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Potential Use of Marine Seaweeds as Prebiotics: A Review. Molecules 2020, 25, 1004. [Google Scholar] [CrossRef]
- Evans, F.D.; Critchley, A.T. Seaweeds for Animal Production Use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- El-banna, S.G.; Hassan, A.A.; Okab, A.B.; Koriem, A.A.; Ayoub, M.A. Effect of Feeding Diets Supplemented with Seaweed on Growth Performance and Some Blood Hematological and Biochemical Characteristics of Male Baladi Rabbits. In Proceedings of the 4th International Conference on Rabbit Production in Hot Climate, Sharm Elsheikh, Egypt, 24–27 February 2005; Volume 382, pp. 373–382. [Google Scholar]
- Euler, A.C.C.; Ferreira, W.M.; De Teixeira, E.; Lana, Â.M.Q.; Guedes, R.M.C.; Avelar, A.C. Desempenho, Digestibilidade e Morfometria Da Vilosidade Ileal de Coelhos Alimentados Com Níveis de Inclusão de “Lithothamnium”. Rev. Bras. Saúde Prod. An. 2010, 11, 91–103. [Google Scholar]
- Vizzarri, F.; Chiapparini, S.; Corino, C.; Casamassima, D.; Palazzo, M.; Parkanyi, V.; Ondruska, L.; Rossi, R. Dietary Supplementation with Natural Extracts Mixture: Effects on Reproductive Performances, Blood Biochemical and Antioxidant Parameters in Rabbit Does. Ann. Anim. Sci. 2020, 20, 565–578. [Google Scholar] [CrossRef]
- Vizzarri, F.; Massányi, M.; Knížatová, N.; Corino, C.; Rossi, R.; Ondruška, Ľ.; Tirpák, F.; Halo, M.; Massányi, P. Effects of Dietary Plant Polyphenols and Seaweed Extract Mixture on Male-Rabbit Semen: Quality Traits and Antioxidant Markers. Saudi J. Biol. Sci. 2021, 28, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, P.; Luise, D.; Correa, F.; Messori, S.; Mazzoni, M.; Lallès, J.P.; Bosi, P. Maternal Antibiotic Treatment Affects Offspring Gastric Sensing for Umami Taste and Ghrelin Regulation in the Pig. J. Anim. Sci. Biotechnol. 2021, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Reilly, P.; O’Doherty, J.V.; Pierce, K.M.; Callan, J.J.; O’Sullivan, J.T.; Sweeney, T. The Effects of Seaweed Extract Inclusion on Gut Morphology, Selected Intestinal Microbiota, Nutrient Digestibility, Volatile Fatty Acid Concentrations and the Immune Status of the Weaned Pig. Animal 2008, 2, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of Feeding Intact Brown Seaweed Ascophyllum Nodosum on Some Digestive Parameters and on Iodine Content in Edible Tissues in Pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- McDonnell, P.; Figat, S.; Odoherty, J.V. The Effect of Dietary Laminarin and Fucoidan in the Diet of the Weanling Piglet on Performance, Selected Faecal Microbial Populations and Volatile Fatty Acid Concentrations. Animal 2010, 4, 579–585. [Google Scholar] [CrossRef]
- O’Doherty, J.V.; McDonnell, P.; Figat, S. The Effect of Dietary Laminarin and Fucoidan in the Diet of the Weanling Piglet on Performance and Selected Faecal Microbial Populations. Livest. Sci. 2010, 134, 208–210. [Google Scholar] [CrossRef]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; Lynch, B.P.; O’Doherty, J.V. Effects of Dietary Seaweed Extract Supplementation in Sows and Post-Weaned Pigs on Performance, Intestinal Morphology, Intestinal Microflora and Immune Status. Br. J. Nutr. 2011, 106, 688–699. [Google Scholar] [CrossRef]
- McAlpine, P.; O’Shea, C.J.; Varley, P.F.; Flynn, B.; O’Doherty, J.V. The Effect of Seaweed Extract as an Alternative to Zinc Oxide Diets on Growth Performance, Nutrient Digestibility, and Fecal Score of Weaned Piglets. J. Anim. Sci. 2012, 90, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of Supplementing Varying Inclusion Levels of Laminarin and Fucoidan on Growth Performance, Digestibility of Diet Components, Selected Faecal Microbial Populations and Volatile Fatty Acid Concentrations in Weaned Pigs. Anim. Feed Sci. Technol. 2013, 183, 151–159. [Google Scholar] [CrossRef]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of Dietary Laminarin and Fucoidan on Selected Microbiota, Intestinal Morphology and Immune Status of the Newly Weaned Pig. Br. J. Nutr. 2013, 110, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Heim, G.; Walsh, A.M.; Sweeney, T.; Doyle, D.N.; O’Shea, C.J.; Ryan, M.T.; O’Doherty, J.V. Effect of Seaweed-Derived Laminarin and Fucoidan and Zinc Oxide on Gut Morphology, Nutrient Transporters, Nutrient Digestibility, Growth Performance and Selected Microbial Populations in Weaned Pigs. Br. J. Nutr. 2014, 111, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, C.J.; McAlpine, P.; Sweeney, T.; Varley, P.F.; O’Doherty, J.V. Effect of the Interaction of Seaweed Extracts Containing Laminarin and Fucoidan with Zinc Oxide on the Growth Performance, Digestibility and Faecal Characteristics of Growing Piglets. Br. J. Nutr. 2014, 111, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Hosseindoust, A.; Goel, A.; Lee, S.; Jha, P.K.; Kwon, I.K.; Chae, B.J. Effects of Ecklonia Cava as Fucoidan-Rich Algae on Growth Performance, Nutrient Digestibility, Intestinal Morphology and Caecal Microflora in Weanling Pigs. Asian-Australasian J. Anim. Sci. 2017, 30, 64–70. [Google Scholar] [CrossRef]
- Ruiz, Á.R.; Gadicke, P.; Andrades, S.M.; Cubillos, R. Supplementing Nursery Pig Feed with Seaweed Extracts Increases Final Body Weight of Pigs. Austral J. Vet. Sci. 2018, 50, 83–87. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, J.; Chen, D.; Yu, B.; He, J. Effects of Alginate Oligosaccharide on the Growth Performance, Antioxidant Capacity and Intestinal Digestion-Absorption Function in Weaned Pigs. Anim. Feed Sci. Technol. 2017, 234, 118–127. [Google Scholar] [CrossRef]
- Sardari, R.R.R.; Nordberg Karlsson, E. Marine Poly- and Oligosaccharides as Prebiotics. J. Agric. Food Chem. 2018, 66, 11544–11549. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Szendro, Z. The Role of Rabbit Meat as Functional Food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Dalle Zotte, A. Perception of Rabbit Meat Quality and Major Factors Influencing the Rabbit Carcass and Meat Quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Costa, M.; Cardoso, C.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Current Knowledge and Future Perspectives of the Use of Seaweeds for Livestock Production and Meat Quality: A Systematic Review. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1075–1102. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.M.; Martins, C.F.; Costa, M.; Coelho, D.; Pestana, J.; Alfaia, C.; Lordelo, M.; de Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds. Foods 2021, 10, 2961. [Google Scholar] [CrossRef] [PubMed]
- Rajauria, G.; Draper, J.; McDonnell, M.; O’Doherty, J.V. Effect of Dietary Seaweed Extracts, Galactooligosaccharide and Vitamin E Supplementation on Meat Quality Parameters in Finisher Pigs. Innov. Food Sci. Emerg. Technol. 2016, 37, 269–275. [Google Scholar] [CrossRef]
- Jerez-Timaure, N.; Sánchez-Hidalgo, M.; Pulido, R.; Mendoza, J. Effect of Dietary Brown Seaweed (Macrocystis Pyrifera) Additive on Meat Quality and Nutrient Composition of Fattening Pigs. Foods 2021, 10, 1720. [Google Scholar] [CrossRef]
- Montgomery, J.L.; Allen, V.G.; Pond, K.R.; Miller, M.F.; Wester, D.B.; Brown, C.P.; Evans, R.; Bagley, C.P.; Ivy, R.L.; Fontenot, J.P. Tasco-Forage: IV. Influence of a Seaweed Extract Applied to Tall Fescue Pastures on Sensory Characteristics, Shelf-Life, and Vitamin E Status in Feedlot-Finished Steers 1. J. Anim. Sci. 2001, 79, 884–894. [Google Scholar] [CrossRef]
- Braden, K.W.; Blanton, J.R.; Montgomery, J.L.; Van Santen, E.; Allen, V.G.; Miller, M.F. Tasco Supplementation: Effects on Carcass Characteristics, Sensory Attributes, and Retail Display Shelf-Life. J. Anim. Sci. 2007, 85, 754–768. [Google Scholar] [CrossRef]
- Zhu, W.; Li, D.; Wang, J.; Wu, H.; Xia, X.; Bi, W.; Guan, H.; Zhang, L. Effects of Polymannuronate on Performance, Antioxidant Capacity, Immune Status, Cecal Microflora, and Volatile Fatty Acids in Broiler Chickens. Poult. Sci. 2015, 94, 345–352. [Google Scholar] [CrossRef]
- Islam, M.M.; Ahmed, S.T.; Kim, Y.J.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Effect of Sea Tangle (Laminaria japonica) and Charcoal Supplementation as Alternatives to Antibiotics on Growth Performance and Meat Quality of Ducks. Asian-Australas. J. Anim. Sci. 2014, 27, 217–224. [Google Scholar] [CrossRef]
- Fike, J.H.; Saker, K.E.; O’Keefe, S.F.; Marriott, N.G.; Ward, D.L.; Fontenot, J.P.; Veit, H.P. Effects of Tasco (a Seaweed Extract) and Heat Stress on N Metabolism and Meat Fatty Acids in Wether Lambs Fed Hays Containing Endophyte-Infected Fescue. Small Rumin. Res. 2005, 60, 237–245. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.S.; Samara, E.M.; Abdoun, K.A.; Al-Haidary, A.A. Nutritional Value of Green Seaweed (Ulva lactuca) for Broiler Chickens. Ital. J. Anim. Sci. 2013, 12, 177–181. [Google Scholar] [CrossRef]
- Jagtap, A.S.; Meena, S.N. Seaweed Farming: A Perspective of Sustainable Agriculture and Socio-Economic Development. In Natural Resources Conservation and Advances for Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 493–501. [Google Scholar]
- Ferdouse, F.; Løvstad Holdt, S.; Smith, R.; Murúa, P.; Yang, Z. The Global Status of Seaweed Production, Trade and Utilization; FAO Globefish Research Programme; FAO: Rome, Italy, 2018; Volume 124, p. 120. [Google Scholar]
- Van Den Burg, S.W.K.; Dagevos, H.; Helmes, R.J.K. Towards Sustainable European Seaweed Value Chains: A Triple P Perspective. ICES J. Mar. Sci. 2021, 78, 443–450. [Google Scholar] [CrossRef]
- Biris-Dorhoi, E.S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Hasselström, L.; Thomas, J.B.; Nordström, J.; Cervin, G.; Nylund, G.M.; Pavia, H.; Gröndahl, F. Socioeconomic Prospects of a Seaweed Bioeconomy in Sweden. Sci. Rep. 2020, 10, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Mosquera, M.E.; Fernández-Lema, E.; Villares, R.; Corral, R.; Alonso, B.; Blanco, C. Composting Fish Waste and Seaweed to Produce a Fertilizer for Use in Organic Agriculture. Procedia Environ. Sci. 2011, 9, 113–117. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Ke, J.; Show, P.L.; Ge, Y.; Liu, Y.; Guo, R.; Chen, J. Antibiotics: An Overview on the Environmental Occurrence, Toxicity, Degradation, and Removal Methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Georgia Ștefan, M.; Loghin, F. Antibiotics in the Environment: Causes and Consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.E.; Lee, Y.B. Veterinary Antibiotics (VAs) Contamination as a Global Agro-Ecological Issue: A Critical View. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Jayalakshmi, K.; Paramasivam, M.; Sasikala, M.; Sumithra, A. Review on Antibiotic Residues in Animal Products and Its Impact on Environments and Human Health. J. Entomol. Zool. Stud. 2017, 5, 1446–1451. [Google Scholar]
- Maertens, L. Possibilities to Reduce the Feed Conversion in Rabbit Production. In Proceedings of the Giornate di Coniglicoltura ASIC, Forlì, Italy, 2–3 April 2009; pp. 57–59. [Google Scholar]
- Austin, K.F. Soybean Exports and Deforestation from a World-Systems Perspective: A Cross-National Investigation of Comparative Disadvantage. Sociol. Q. 2010, 51, 511–536. [Google Scholar] [CrossRef]
- Van Krimpen, M.M.; Bikker, P.; Van Der Meer, I.M.; van der Peet-Schwering, C.M.C.; Vereijken, J.M. Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products; Wageningen UR Livestock Research: Lelystad, Netherlands, 2013; p. 48. [Google Scholar]
- Maertens, L.; Cavani, C.; Petracci, M. Nitrogen and Phosphorus Excretion on Commercial Rabbit Farms: Calculations Based on the Input-Output Balance. World Rabbit Sci. 2005, 13, 3–16. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Cardelle-Cobas, A.; del Carmen Mondragon, A.; Sinisterra-Loaiza, L.; Miranda, J.M.; Cepeda, A. Evaluation of the Potential Prebiotic Effect of Himanthalia Elongata, an Atlantic Brown Seaweed, in an in Vitro Model of the Human Distal Colon. Food Res. Int. 2022, 156, 111156. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Huo, Y.; Hu, M.; Wei, Z.; He, P. Eutrophication Assessment and Bioremediation Strategy Using Seaweeds Co-Cultured with Aquatic Animals in an Enclosed Bay in China. Mar. Pollut. Bull. 2015, 95, 342–349. [Google Scholar] [CrossRef]
- Nardelli, A.E.; Chiozzini, V.G.; Braga, E.S.; Chow, F. Integrated Multi-Trophic Farming System between the Green Seaweed Ulva lactuca, Mussel, and Fish: A Production and Bioremediation Solution. J. Appl. Phycol. 2019, 31, 847–856. [Google Scholar] [CrossRef]
- Znad, H.; Awual, M.R.; Martini, S. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules 2022, 27, 1275. [Google Scholar] [CrossRef] [PubMed]
- Fraga-Corral, M.; Ronza, P.; Garcia-Oliveira, P.; Pereira, A.G.; Losada, A.P.; Prieto, M.A.; Quiroga, M.I.; Simal-Gandara, J. Aquaculture as a Circular Bio-Economy Model with Galicia as a Study Case: How to Transform Waste into Revalorized by-Products. Trends Food Sci. Technol. 2022, 119, 23–35. [Google Scholar] [CrossRef]
- Marinho, G.S.; Holdt, S.L.; Birkeland, M.J.; Angelidaki, I. Commercial Cultivation and Bioremediation Potential of Sugar Kelp, Saccharina Latissima, in Danish Waters. J. Appl. Phycol. 2015, 27, 1963–1973. [Google Scholar] [CrossRef]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Kleitou, P.; Kletou, D.; David, J. Is Europe Ready for Integrated Multi-Trophic Aquaculture? A Survey on the Perspectives of European Farmers and Scientists with IMTA Experience. Aquaculture 2018, 490, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, S.; and Creamades, J. Integrated Multi-Trophic Aquaculture (IMTA): A Sustainable, Pioneering Alternative for Marine Cultures in Galicia; Xunta de Galicia: Pontevedra, Spain, 2012. [Google Scholar]
Polysaccharide | Chemical Structure | Biological Properties |
---|---|---|
Ulvan | L-rhamnose, D-xylose, D-glucose and D-glucuronic acid. | Antioxidant, anticoagulant, anti-inflammatory, immune-stimulatory, antibacterial, antihyperlipidemic. |
Fucoidan | 1,3-α-fucopyranoside backbone with branching of α-1,2-fucopyranoside | Antioxidant, anticoagulant, anti-inflammatory, antiviral, immune-modulatory. |
Laminarin | 1,3-β-D-glucan with β-1,6-linkages. | Antioxidant, anticoagulant, anti-inflammatory, antiviral, immune-modulatory, prebiotic. |
Alginate | 1,4-β-D-mannuronic acid and α-L-guluronic acid residues. | Antioxidant, anti-inflammatory, antitumor. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Soufi, S.; García, J.; Muíños, A.; López-Alonso, M. Marine Macroalgae in Rabbit Nutrition—A Valuable Feed in Sustainable Farming. Animals 2022, 12, 2346. https://doi.org/10.3390/ani12182346
Al-Soufi S, García J, Muíños A, López-Alonso M. Marine Macroalgae in Rabbit Nutrition—A Valuable Feed in Sustainable Farming. Animals. 2022; 12(18):2346. https://doi.org/10.3390/ani12182346
Chicago/Turabian StyleAl-Soufi, Sabela, Javier García, Antonio Muíños, and Marta López-Alonso. 2022. "Marine Macroalgae in Rabbit Nutrition—A Valuable Feed in Sustainable Farming" Animals 12, no. 18: 2346. https://doi.org/10.3390/ani12182346
APA StyleAl-Soufi, S., García, J., Muíños, A., & López-Alonso, M. (2022). Marine Macroalgae in Rabbit Nutrition—A Valuable Feed in Sustainable Farming. Animals, 12(18), 2346. https://doi.org/10.3390/ani12182346