Effects of High Concentration Nitrogen Gas Stunning of Pigs on the Quality Traits of Meat and Small Intestine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials Methods
2.1. Experimental Design and Facilities
2.2. Slaughtering and Sample Collection
2.3. pH Measurement
2.4. Color Values
2.5. Proximate Components
2.6. Cooking Loss (CL) and Warner-Bratzler Shear Force (WBSF)
2.7. Water-Holding Capacity (WHC)
2.8. Thickness of Small Intestine
2.9. Statistical Analysis
3. Results
3.1. pH-24 h and Color Value of Stunned Pigs Meat and Small Intestine
3.2. Proximate Components of Stunned Pigs Meat
3.3. Water-Holding Capacity (WHC), Cooking Loss (CL), and Warner-Bratzler Shear Force (WBSF) of Stunned Pigs Meat
3.4. Thickness and WBSF of Stunned Pigs Small Intestine (Both Fresh and Cooked)
4. Discussion
4.1. pH-24 h and Color Value of Stunned Pigs Meat and Small Intestine
4.2. Proximate Components of Stunned Pigs Meat
4.3. Water-Holding Capacity (WHC), Cooking Loss (CL), and Warner-Bratzler Shear Force (WBSF) of Stunned Pigs Meat
4.4. Thickness and WBSF of Stunned Pigs Small Intestine (Both Fresh and Cooked)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llonch, P.; Rodrı´guez, P.; Gispert, M.; Dalmau, A.; Manteca, X.; Velarde, A. Stunning pigs with nitrogen and carbon dioxide mixtures: Effects on animal welfare and meat quality. Animal 2012, 6, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, M.T.W.; Gerritzen, M.A.; Hellebrekers, L.J.; Kemp, B. Indicators used in livestock to assess unconsciousness after stunning: A review. Animal 2015, 9, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Velarde, A.; Gispert, M.; Faucitano, L.; Manteca, X.; Diestre, A. The effect of stunning method on the incidence of PSE meat and haemorrhages in pork carcasses. Meat Sci. 2000, 55, 309–314. [Google Scholar] [CrossRef]
- Velarde, A.; Gispert, M.; Faucitano, L.; Alonso, P.; Manteca, X.; Diestre, A. Effects of the stunning procedure and the halothane genotype on meat quality and incidence of haemorrhages in pigs. Meat Sci. 2001, 58, 313–319. [Google Scholar] [PubMed]
- Channon, H.A.; Payne, A.M.; Warner, R.D. Effect of stun duration and current level applied during head to back and head only electrical stunning of pigs on pork quality compared with pigs stunned with CO2. Meat Sci. 2003, 65, 1325–1333. [Google Scholar] [CrossRef]
- Marcon, A.V.; Caldara, F.R.; de Oliveira, G.F.; Goncalves, L.M.P.; Garcia, R.G.; Paz, I.C.L.A.; Crone, C.; Marcon, A. Pork quality after electrical or carbon dioxide stunning at slaughter. Meat Sci. 2019, 156, 93–97. [Google Scholar] [CrossRef]
- Gregory, N.G. Stunning and slaughter of pigs. Pig News Inform. 1985, 6, 407–413. [Google Scholar]
- Channon, H.A.P.; Payne, A.M.; Warner, R.D. Comparison of CO2 stunning with manual electrical stunning (50Hz) of pigs on carcass and meat quality. Meat Sci. 2002, 60, 63–68. [Google Scholar] [CrossRef]
- Van der Wal, P.G. Chemical and physiological aspects of pig stunning in relation to meat quality—A review. Meat Sci. 1978, 2, 19–30. [Google Scholar]
- Raj, A.B.M.; Gregory, N.G. Welfare implications of the gas stunning of pigs. 1. Determination of aversion to the initial inhalation of carbon dioxide or argon. Anim. Welf. 1995, 4, 273–280. [Google Scholar]
- Raj, A.B.M.; Johnson, S.P.; Wotton, S.B.; McInstry, J.L. Welfare implications of gas stunning of pigs 3. The time to loss of somatosensory evoked potentials and spontaneous electrocorticogram of pigs during exposure to gases. Vet Jour. 1997, 153, 329–340. [Google Scholar] [CrossRef]
- Rodríguez, P.; Dalmau, A.; Ruiz-de-la-Torre, J.L.; Manteca, X.; Jensen, E.W.; Rodríguez, B.; Litvan, H.; Velarde, A. Assessment of unconsciousness during carbon dioxide stunning in pigs. Anim. Welf. 2008, 17, 341–349. [Google Scholar]
- Velarde, A.; Cruz, J.; Gispert, M.; Carrión, D.; Ruiz-de-la-Torre, J.L.; Diestre, A.; Manteca, X. Aversion to carbon dioxide stunning in pigs: Effect of the carbon dioxide concentration and the halothane genotype. Anim. Welf. 2007, 16, 513–522. [Google Scholar]
- Gregory, N.G.; Raj, A.B.M.; Audsley, A.R.S.; Daly, C.C. Effects of carbon dioxide on man. Fleischwirtschaft 1990, 70, 1173–1174. [Google Scholar]
- Dalmau, A.; Rodrı guez, P.; Llonch, P.; Velarde, A. Stunning pigs with different gas mixtures. Part 2: Aversion in pigs. Anim. Welf. 2010, 19, 324–333. [Google Scholar]
- Llonch, P.; Dalmau, A.; Rodrı´guez, P.; Manteca, X.; Velarde, A. Aversion to nitrogen and CO2 mixtures for stunning pigs. Anim. Welf. 2012, 21, 33–39. [Google Scholar] [CrossRef]
- Bager, F.; Braggins, T.J.; Devine, C.E.; Graafhuis, A.E.; Mellor, D.J.; Tavener, A.; Upsdell, M.P. Onset of insensibility at slaughter in calves: Effects of electroplectic seizure and exsanguination on spontaneous electrocortical activity and indices of cerebral metabolism. Res. Vet. Sci. 1992, 52, 162–173. [Google Scholar] [CrossRef]
- Llonch, P.; Andaluz, A.; Rodriguez, P.; Dalmau, A.; Jensen, E.; Manteca, X.; Velarde, A. Assessment of consciousness during propofol anaesthesia in pigs. Vet. Rec. 2011, 169, 496a. [Google Scholar] [CrossRef]
- Dalmau, A.; Llonch, P.; Rodrı´guez, P.; Ruı´z-de-la-Torre, J.L.; Manteca, X.; Velarde, A. Stunning pigs with different gas mixtures. Part 1: Gas stability. Anim. Welf. 2010, 19, 315–323. [Google Scholar]
- Nowak, B.; Mueffling, T.V.; Hartung, J. Effect of different carbon dioxide concentrations and exposure times in stunning of slaughter pigs: Impact on animal welfare and meat quality. Meat Sci. 2007, 75, 290–298. [Google Scholar] [CrossRef]
- Gerritzen, M.A.; Kluivers-Poodt, M.; Reimert, H.G.M.; Hindle, V.; Lambooij, E. Castration of piglets under CO2-gas anaesthesia. Animal 2008, 2, 1666–1673. [Google Scholar] [CrossRef]
- Becerril-Herrera, M.; Alonso-Spilsbury, M.; Lemus-Flores, C.; Guerrero-Legarreta, I.; Ramírez-Necoechea, R.; Mota-Rojas, D. CO2 stunning may compromise swine welfare compared with electrical stunning. Meat Sci. 2009, 81, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.N.; Engle, T.E.; Correa, J.A.; Paradis, M.A.; Grandin, T.; Anderson, D.B. The relationship between exsanguination blood lactate concentration and carcass quality in slaughter pigs. Meat Sci. 2010, 85, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Grandin, T. The effect of stress on livestock and meat quality prior to and during slaughter. Int. J. Study Anim. Probl. 1980, 1, 313–337. [Google Scholar]
- Claudia, T.E.M.; Véronique, D.; Thierry, A. Comparing Gas and Electrical Stunning: Effects on Meat Quality of Pigs When Pre-Stunning Physical Activity Is Minimal. Foods 2021, 10, 319. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Hur, S.J.; Yang, H.S.; Moon, S.H.; Hwang, Y.H.; Park, G.B.; Joo, S.T. Discoloration characteristics of 3 major muscles from cattle during cold storage. J. Food Sci. 2009, 74, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Renerre, M. Review: Factors involved in the discoloration of beef meat. Int. J. Food Sci. Technol. 1990, 25, 613–630. [Google Scholar] [CrossRef]
- Brewer, M.S.; Zhu, L.G.; Bidner, B.; Meisinger, D.J.; McKeith, F.K. Measuring pork color: Effects of bloom time, muscle, pH and relationship to instrumental parameters. Meat Sci. 2001, 57, 169–176. [Google Scholar] [CrossRef]
- Waritthitham, A.; Lambertz, C.; Langholz, H.J.; Wicke, M.; Gauly, M. Assessment of beef production from Brahman × Thai native and Charolais × Thai native crossbred bulls slaughtered at different weights. II: Meat quality. Meat Sci. 2010, 85, 196–200. [Google Scholar] [CrossRef]
- Gap, D.K.; Jin, Y.J.; Sun, J.H.; Han, S.Y.; Jin, T.J.; Seon, T.J. The Relationship between Meat Color (CIE L* and a*), Myoglobin Content, and their Influence on Muscle Fiber Characteristics and Pork Quality. Korean J. Food Sci. Anim. Resour. 2010, 30, 626–633. [Google Scholar]
- Bispo, E.; Monserrat, L.; González, L.; Franco, D.; Moreno, T. Effect of weaning status on animal performance and meat quality of Rubia Gallega calves. Meat Sci. 2010, 86, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Díaz, O.; Rodríguez, L.; Torres, A.; Cobos, A. Chemical composition and physicochemical properties of meat from capons as affected by breed and age. Span. J. Agri. Res. 2010, 8, 91–99. [Google Scholar] [CrossRef]
- Yuan, H.; Brad-Kim, A.D.E.; Robyn, D.; Warner, B.; Rosenvold, K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim. Prod. Sci. 2014, 54, 375–395. [Google Scholar] [CrossRef]
- Banović, M.; Grunert, K.G.; Barreira, M.M.; Fontes, M.A. Beef quality perception at the point of purchase: A study from Portugal. Food Qual. Pref. 2009, 20, 335–342. [Google Scholar] [CrossRef]
- Grunert, K.G.; Bredahl, L.; Brunsø, K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004, 66, 259–272. [Google Scholar] [CrossRef]
- Gye, W.K.; Hack, Y.K. Physicochemical properties of M. longissimus dorsi of Korean native pigs. J. Anim. Sci. Tech. 2018, 60, 17. [Google Scholar] [CrossRef]
- Doty, D.M.; Pierce, J.C. Beef Muscle Characteristics as Related to Carcass Grade, Carcass Weight, and Degree of Aging, No. 1231; US Department of Agriculture, American Meat Institute Foundation: Chicago, IL, USA, 1961. [Google Scholar]
- Hafiz, A.; Hassan, Z.; Nazmi, M.; Manap, A. Effect of Slaughtering Methods on Meat Quality Indicators, Chemical Changes and Microbiological Quality of Broiler Chicken Meat during Refrigerated Storage. J. Agri. Vet. Sci. (IOSR-JAVS) 2015, 8, 12–17. [Google Scholar] [CrossRef]
- El Rammouz, R.; Berri, C.; Le Bihan-Duval, E.; Babilé, R.F.X. Biochemical determinism of ultimate pH in breast muscle of broiler chicken. In Proceedings of the 16th European Symposium on the Quality of Poultry Meat & Xth European Symposium on the Quality of Eggs and Egg Products, Saint-Brieuc, France, 23–26 September 2003; pp. 60–65. [Google Scholar]
- Forrest, J.C.; Aberle, E.D.; Hedrick, H.B.; Judge, M.D.; Merkel, R.A. Principles of Meat Science; W.H. Freeman and Co.: Reading, UK, 1975. [Google Scholar]
- Lawrie, R.A. Meat Science, 4th ed.; Pergamon Press: Oxford, UK; Paris, France, 1985. [Google Scholar]
- Onenc, A.; Kaya, A. The effects of electrical stunning and percussive captive bolt stunning on meat quality of cattle processed by Turkish slaughter procedures. Meat Sci. 2004, 66, 809–815. [Google Scholar] [CrossRef]
- Lokman, N.S.; Sabow, A.B.; Abubakar, A.A.; Adeyemi, K.D.; Sazili, A.Q. Comparison of carcass and meat quality in goats subjected to preslaughter head-only electrical stunning or slaughtered without stunning. CYTA J. Food 2017, 15, 99–104. [Google Scholar] [CrossRef]
- Allah, B.; Ishamri, I.; Young, H.H.; Jung, G.L.; Seon, T.J. Comparison of Blood Loss and Meat Quality Characteristics in Korean Black Goat Subjected to Head-Only Electrical Stunning or without Stunning. Korean J. Food Sci. Anim. Resour. 2018, 38, 1286–1293. [Google Scholar] [CrossRef] [Green Version]
- Sindelar, J.J.; Prochaska, F.; Britt, J.; Smith, G.L.; Miller, R.T.; Osburn, W.N. Strategies to eliminate a typical flavors and aroma in sow loins. I. Optimization of sodium tripolyphosphate, sodium bicarbonate, and injection level. Meat Sci. 2003, 65, 1211–1222. [Google Scholar] [CrossRef]
- Gregory, N.G. Animal Welfare and Meat Science; CABI Publishing: New York, NY, USA, 2003. [Google Scholar]
- Van der Wal, P.G.; Engel, B.; Reimert, H.G.M. The effect of stress, applied immediately before stunning on pork quality. Meat Sci. 1999, 53, 101–106. [Google Scholar] [CrossRef]
- Bond, J.J.; Can, L.A.; Warner, R.D. The effect of exercise stress, adrenaline injection and electrical stimulation on changes in quality attributes and proteins in semi-membranous muscle of lamb. Meat Sci. 2004, 68, 469–477. [Google Scholar] [CrossRef]
- Bórnez, R.; Linares, M.B.; Vergara, H. Effects of stunning with different carbon dioxide concentrations and exposure times on suckling lamb meat quality. Meat Sci. 2009, 81, 493–498. [Google Scholar] [CrossRef]
- Linares, M.B.; Bornez, R.; Vergara, H. Effect of stunning systems on meat quality of Manchego suckling lamb packed under modified atmospheres. Meat Sci. 2008, 78, 279–287. [Google Scholar] [CrossRef]
- Moore, J.V.; Gill, C.O. The pH and display life of chilled lamb after prolonged storage under vacuum or under CO2. N. Z. J. Agric. Res. 1987, 30, 449–452. [Google Scholar] [CrossRef]
- Vergara, H.; Gallego, L. Effect of electrical stunning on meat quality of lamb. Meat Sci. 2000, 56, 345–349. [Google Scholar] [CrossRef]
- Sabow, A.B.; Adeyemi, K.D.; Idrus, Z.; Meng, G.Y.; Ab Kadir, M.Z.A.; Kaka, U. Carcase characteristics and meat quality assessments in goats subjected to slaughter without stunning and slaughter following different methods of electrical stunning. Ital. J. Anim. Sci. 2017, 16, 416–430. [Google Scholar] [CrossRef]
- Linares, M.; Bórnez, R.; Vergara, H. Effect of different stunning systems on meat quality of light lamb. Meat Sci. 2007, 76, 675–681. [Google Scholar] [CrossRef]
- Lyon, C.; Buhr, R. Biochemical basis of meat texture. In RI Richardson; Mead, G.C., Ed.; Poultry Meat Science, Centre for Agriculture and Biosciences (CAB) International: New York, NY, USA, 1999; pp. 99–126. [Google Scholar]
- Allen, C.D.; Fletcher, D.L.; Northcutt, J.K.; Russell, S.M. The relationship of broiler breast color to meat quality and shelf-life. Poult. Sci. 1998, 77, 361–366. [Google Scholar] [CrossRef]
- Mckee, S.R.; Hargis, B.M.; Sams, A.R. Pale, soft and exudative meat in turkeys treated with succinylcholine. Poult. Sci. 1998, 7, 356–360. [Google Scholar] [CrossRef]
- Hildrum, K.I.; Rødbottez, R.; Høy, M.; Berg, J.; Narum, B.; Wold, J.P. Classification of different bovine muscles according to sensory characteristics and Warner Bratzler shear force. Meat Sci. 2009, 83, 302–307. [Google Scholar] [CrossRef]
- Koch, R.M.; Cundiff, L.V.; Gregory, K.E. Heritabilities and genetic, environmental and phenotypic correlations of carcass traits in a population of diverse biological types and their implications in selection programs. J. Anim. Sci. 1982, 55, 1319–1329. [Google Scholar] [CrossRef]
- Monsón, F.; Sañudo, C.; Sierra, I. Influence of cattle breed and ageing time on textural meat quality. Meat Sci. 2004, 68, 595–602. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Mullins, O.E.; Stika, J.F.; Blanchard, S.P.; Moody, W.G. Tenderness and oxidative stability of post-mortem muscles from mature cows of various ages. Meat Sci. 2007, 77, 105–113. [Google Scholar] [CrossRef]
- Cho, S.; Seong, P.; Kang, G.; Choi, S.; Chang, S.; Kang, S.M.; Park, K.M.; Kim, Y.; Hong, S.; Park, B.Y. Effect of age on chemical composition and meat quality for loin and top round of Hanwoo cow beef. Korean J. Food Sci. Anim. Resour. 2012, 32, 810–819. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Mao, Y.; Cornforth, D.; Dong, P.; Wang, R.; Zhu, H.; Luo, X. Effect of very fast chilling and aging time on ultra-structure and meat quality characteristics of Chinese Yellow cattle M. Longissimus lumborum. Meat Sci. 2012, 92, 795–804. [Google Scholar] [CrossRef]
- Sazili, A.; Norbaiyah, B.; Zulkifli, I.; Goh, Y.; Lotfi, M.; Small, A. Quality assessment of longissimus and semitendinosus muscles from beef cattle subjected to non-penetrative and penetrative percussive stunning methods. Asian-Australas J. Anim. Sci. 2013, 26, 723. [Google Scholar] [CrossRef]
- Dransfeld, E. Modelling post-mortem tenderisation—V: Inactivation of calpains. Meat Sci. 1994, 37, 391–409. [Google Scholar] [CrossRef]
- Murachi, T. Calpain and calpastatin. Trends Biochem. Sci. 1983, 8, 167–169. [Google Scholar] [CrossRef]
- Gill, C.O. Controlled atmosphere packaging of chilled meat. Food Control 1990, 1, 74–78. [Google Scholar] [CrossRef]
- Veeramuthu, G.J.; Sams, A.R. The effects of carbon dioxide and electrical stunning on rigor mortis and toughness development in early-harvested broiler breast fillets. Poult. Sci. 1993, 1, 147. [Google Scholar]
- Vergara, H.; Linares, M.B.; Berruga, M.I.; Gallego, L. Meat quality in suckling lambs: Effect of pre-slaughter handling. Meat Sci. 2005, 69, 473–478. [Google Scholar] [CrossRef]
- Biviano, A.B.; Rio, C.M.D.; Phillips, D.L. Ontogenesis of intestine morphology and intestinal disaccharidases in chickens (Gallus gallus) fed contrasting purified diets. J. Comp. Physiol. B–Bioche. Sys. Environ. Physiol. 1993, 163, 508–518. [Google Scholar]
- Offer, G.; Restall, D.; Trinick, J. Water-holding in meat. Res. Adv. Chem. Meat 1984, 5, 71–86. [Google Scholar]
- Bruce, H.L.; Wolfe, F.H.; Jones, S.D.M.; Price, M.A. Porosity in cooked beef from controlled atmosphere packaging is caused by rapid CO2 gas evolution. Food Res. Int. 1996, 29, 189–193. [Google Scholar] [CrossRef]
Items | Stunning Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
pH-24h | |||||
Meat | 5.61 a | 5.45 c | 5.56 b | 0.018 | <0.001 |
Small intestine (Fresh) | 6.73 a | 6.49 c | 6.63 c | 0.023 | <0.001 |
Color value | |||||
Meat | |||||
L* (Lightness) | 57.04 a | 53.30 b | 55.10 ab | 0.625 | 0.041 |
a* (Redness) | 5.08 b | 7.15 a | 5.91 b | 0.267 | 0.002 |
b* (Yellowness) | 4.17 a | 2.61 b | 3.42 ab | 0.208 | 0.004 |
Small Intestine (Fresh) | |||||
L* (Lightness) | 64.86 a | 50.73 c | 58.86 b | 1.373 | <0.001 |
a* (Redness) | 10.28 c | 16.56 a | 13.12 b | 0.589 | <0.001 |
b* (Yellowness) | 8.87 a | 2.28 c | 3.76 b | 0.569 | <0.001 |
Small Intestine (Cooked) | |||||
L* (Lightness) | 73.09 a | 61.68 c | 68.32 b | 1.082 | <0.001 |
a* (Redness) | 6.26 c | 15.52 a | 10.44 b | 0.873 | <0.001 |
b* (Yellowness) | 11.06 a | 8.50 b | 8.81 b | 0.235 | <0.001 |
Items | Stunning Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Moisture (%) | 74.57 a | 72.80 b | 72.67 b | 0.292 | 0.105 |
Protein (%) | 23.24 | 23.14 | 22.90 | 0.132 | 0.625 |
Fat (%) | 2.17 | 3.79 | 4.02 | 0.328 | 0.216 |
Ash (%) | 1.50 | 1.50 | 1.53 | 0.025 | 0.849 |
Collagen (%) | 0.88 | 0.83 | 1.00 | 0.063 | 0.483 |
Items | Stunning Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
WHC (%) | 66.91 a | 63.08 b | 64.98 ab | 0.699 | 0.075 |
Cooking loss (%) | 25.71 | 23.49 | 23.91 | 0.601 | 0.291 |
WBSF (kg/cm2) | 3.99 a | 3.06 b | 3.15 b | 0.159 | 0.021 |
Items | Stunning Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Thickness (mm) | |||||
Fresh small intestine | 1.85 a | 1.12 c | 1.36 b | 0.060 | <0.001 |
Cooked small intestine | 2.58 a | 1.75 c | 2.36 b | 0.087 | <0.001 |
WBSF (kg/cm2) | |||||
Fresh small intestine | 13.09 a | 11.11 b | 11.74 b | 0.207 | 0.002 |
Cooked small intestine | 7.07 a | 6.26 b | 6.79 a | 0.109 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.S.; Song, D.-H.; Lee, J.-A.; Hoa, V.-B.; Hwang, I.; Kim, H.-W.; Kang, S.-M.; Cho, S.-H.; Seol, K.-H. Effects of High Concentration Nitrogen Gas Stunning of Pigs on the Quality Traits of Meat and Small Intestine. Animals 2022, 12, 2249. https://doi.org/10.3390/ani12172249
Alam MS, Song D-H, Lee J-A, Hoa V-B, Hwang I, Kim H-W, Kang S-M, Cho S-H, Seol K-H. Effects of High Concentration Nitrogen Gas Stunning of Pigs on the Quality Traits of Meat and Small Intestine. Animals. 2022; 12(17):2249. https://doi.org/10.3390/ani12172249
Chicago/Turabian StyleAlam, Muhammad Shahbubul, Dong-Heon Song, Jeong-Ah Lee, Van-Ba Hoa, Inho Hwang, Hyoun-Wook Kim, Sun-Moon Kang, Soo-Hyun Cho, and Kuk-Hwan Seol. 2022. "Effects of High Concentration Nitrogen Gas Stunning of Pigs on the Quality Traits of Meat and Small Intestine" Animals 12, no. 17: 2249. https://doi.org/10.3390/ani12172249
APA StyleAlam, M. S., Song, D.-H., Lee, J.-A., Hoa, V.-B., Hwang, I., Kim, H.-W., Kang, S.-M., Cho, S.-H., & Seol, K.-H. (2022). Effects of High Concentration Nitrogen Gas Stunning of Pigs on the Quality Traits of Meat and Small Intestine. Animals, 12(17), 2249. https://doi.org/10.3390/ani12172249