Genome-Wide Association Analysis and Genetic Parameters for Feed Efficiency and Related Traits in Yorkshire and Duroc Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phenotypes and Genotypes
2.2. Statistical Model
2.3. Candidate Genes and Functional Analysis
3. Results and Discussion
3.1. Phenotypes and Estimated Heritabilities
3.2. Genetic Correlations of FE and FE-Related Traits with Growth Traits
3.3. Genome-Wide Association Study
3.4. Candidate Genes and Functional Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Rocadembosch, J.; Amador, J.; Bernaus, J.; Font, J.; Fraile, L.J. Production parameters and pig production cost: Temporal evolution 2010–2014. Porc. Health Manag. 2016, 2, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davoudi, P.; Do, D.N.; Colombo, S.M.; Rathgeber, B.; Miar, Y. Application of Genetic, Genomic and Biological Pathways in Improvement of Swine Feed Efficiency. Front. Genet. 2022, 13, 903733. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Caceres, W.; Ragab, M.; Sanchez, J.P. Indirect genetic effects on the relationships between production and feeding behaviour traits in growing Duroc pigs. Animal 2020, 14, 233–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, D.N.; Strathe, A.B.; Jensen, J.; Mark, T.; Kadarmideen, H.N. Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds. J. Anim. Sci. 2013, 91, 4069–4079. [Google Scholar] [CrossRef]
- Renaudeau, D.; Gilbert, H.; Noblet, J. Effect of climatic environment on feed efficiency in swine. In Feed Efficiency in Swine; Patience, J.F., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 183–210. [Google Scholar]
- Soleimani, T.; Hermesch, S.; Gilbert, H. Economic and environmental assessments of combined genetics and nutrition optimization strategies to improve the efficiency of sustainable pork production. J. Anim. Sci. 2021, 99, skab051. [Google Scholar] [CrossRef]
- Ramayo-Caldas, Y.; Marmol-Sanchez, E.; Ballester, M.; Pablo Sanchez, J.; Gonzalez-Prendes, R.; Amills, M.; Quintanilla, R. Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs. Genet. Sel. Evol. 2019, 51, 48. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Wang, K.; Zhou, J.; Chen, D.; Jiang, A.; Jiang, Y.; Zhu, L.; Qiu, X.; Li, X.; Tang, G. A combined GWAS approach reveals key loci for socially-affected traits in Yorkshire pigs. Commun. Biol. 2021, 4, 891. [Google Scholar] [CrossRef]
- Fu, L.; Jiang, Y.; Wang, C.; Mei, M.; Zhou, Z.; Jiang, Y.; Song, H.; Ding, X. A Genome-Wide Association Study on Feed Efficiency Related Traits in Landrace Pigs. Front. Genet. 2020, 11, 692. [Google Scholar] [CrossRef]
- Kim, K.S.; Larsen, N.; Short, T.; Plastow, G.; Rothschild, M.F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome 2000, 11, 131–135. [Google Scholar] [CrossRef]
- Silva, É.F.; Lopes, M.S.; Lopes, P.S.; Gasparino, E. A genome-wide association study for feed efficiency-related traits in a crossbred pig population. Animal 2019, 13, 2447–2456. [Google Scholar] [CrossRef]
- Thuy, H.T.; Nhan, G.T.T.; Mai, P.T.P.; Thuy, T.T.T.; Nam, L.Q.; Thuy, D.P.; Van Hung, N.; Manh, T.X.; Van Soan, D.; Lan, P.D. Associations of some candidate gene polymorphisms with growth traits in Duroc pigs. Livest. Res. Rural Dev. 2019, 31, 158. [Google Scholar]
- Davoli, R.; Braglia, S.; Valastro, V.; Annaratone, C.; Comella, M.; Zambonelli, P.; Nisi, I.; Gallo, M.; Buttazzoni, L.; Russo, V. Analysis of MC4R polymorphism in Italian Large White and Italian Duroc pigs: Association with carcass traits. Meat Sci. 2012, 90, 887–892. [Google Scholar] [CrossRef]
- Duy, N.D.; Ostersen, T.; Strathe, A.B.; Mark, T.; Jensen, J.; Kadarmideen, H.N. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. BMC Genet. 2014, 15, 27. [Google Scholar] [CrossRef] [Green Version]
- Reyer, H.; Shirali, M.; Ponsuksili, S.; Murani, E.; Varley, P.F.; Jensen, J.; Wimmers, K. Exploring the genetics of feed efficiency and feeding behaviour traits in a pig line highly selected for performance characteristics. Mol. Genet. Genom. 2017, 292, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Horodyska, J.; Hamill, R.M.; Varley, P.F.; Reyer, H.; Wimmers, K. Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs. PLoS ONE 2017, 12, e173482. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Yang, M.; Wang, X.; Quan, J.; Zhuang, Z.; Zhou, S.; Li, S.; Xu, Z.; Zheng, E.; Cai, G.; et al. Genetic Architecture of Feeding Behavior and Feed Efficiency in a Duroc Pig Population. Front. Genet. 2018, 9, 220. [Google Scholar] [CrossRef]
- Homma, C.; Hirose, K.; Ito, T.; Kamikawa, M.; Toma, S.; Nikaido, S.; Satoh, M.; Uemoto, Y. Estimation of genetic parameter for feed efficiency and resilience traits in three pig breeds. Animal 2021, 15, 100384. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- Christensen, O.F.; Lund, M.S. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 2010, 42, 2. [Google Scholar] [CrossRef] [Green Version]
- Forni, S.; Aguilar, I.; Misztal, I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet. Sel. Evol. 2011, 43, 1. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrick, D.J.; Taylor, J.F.; Fernando, R.L. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet. Sel. Evol. 2009, 41, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, Q.; Fu, C.; Li, J.; Zhao, S.; Xiang, T. blupADC: An R package and shiny toolkit for comprehensive genetic data analysis in animal and plant breeding. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Pawitan, Y. A Reminder of the Fallibility of the Wald Statistic: Likelihood Explanation. Am. Stat. 2000, 54, 54–56. [Google Scholar] [CrossRef]
- Buse, A. The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note. Am. Stat. 1982, 36, 153–157. [Google Scholar] [CrossRef]
- Lander, E.; Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 1995, 11, 241–247. [Google Scholar] [CrossRef]
- Hu, Z.L.; Dracheva, S.; Jang, W.H.; Maglott, D.; Bastiaansen, J.; Rothschild, M.F.; Reecy, J.M. A QTL resource and comparison tool for pigs: PigQTLDB. Mamm. Genome 2005, 16, 792–800. [Google Scholar] [CrossRef] [Green Version]
- Delpuech, E.; Aliakbari, A.; Labrune, Y.; Feve, K.; Billon, Y.; Gilbert, H.; Riquet, J. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Genet. Sel. Evol. 2021, 53, 49. [Google Scholar] [CrossRef]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, r30. [Google Scholar] [CrossRef]
- Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Stein, T.I.; Dahary, D.; Fishilevich, S.; Lancet, D. The GeneCards Suite. In Practical Guide to Life Science Databases; Abugessaisa, I., Kasukawa, T., Eds.; Springer: Singapore, 2021; pp. 27–56. [Google Scholar]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010, 38, D355–D360. [Google Scholar] [CrossRef] [Green Version]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef]
- Choy, Y.H.; Mahboob, A.; Cho, C.I.; Choi, J.G.; Choi, I.S.; Choi, T.J.; Cho, K.H.; Park, B.H. Genetic parameters of pre-adjusted body weight growth and ultrasound measures of body tissue development in three seedstock pig breed populations in Korea. Asian Austral. J. Anim. 2015, 28, 1696. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.K.; Cho, K.H.; Kim, Y.S.; Chung, H.J.; Baek, S.Y.; Cho, E.S.; Sa, S.J. Genetic relationship between purebred and synthetic pigs for growth performance using single step method. Anim. Biosci. 2021, 34, 967–974. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Gozalo-Marcilla, M.; Buntjer, J.; Johnsson, M.; Batista, L.; Diez, F.; Werner, C.R.; Chen, C.; Gorjanc, G.; Mellanby, R.J.; Hickey, J.M.; et al. Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds. Genet. Sel. Evol. 2021, 53, 76. [Google Scholar] [CrossRef]
- Borowska, A.; Reyer, H.; Wimmers, K.; Varley, P.F.; Szwaczkowski, T. Detection of pig genome regions determining production traits using an information theory approach. Livest. Sci. 2017, 205, 31–35. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, P.; Zheng, X.; Zhou, L.; Wang, C.; Liu, J. Genome-Wide Detection of Selection Signatures in Duroc Revealed Candidate Genes Relating to Growth and Meat Quality. G3 Genes Genomes Genet. 2020, 10, 3765–3773. [Google Scholar] [CrossRef]
- Gondret, F.; Vincent, A.; Houée-Bigot, M.; Siegel, A.; Lagarrigue, S.; Causeur, D.; Gilbert, H.; Louveau, I. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs. BMC Genom. 2017, 18, 244. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fang, L.; Null, D.J.; Hutchison, J.L.; Connor, E.E.; VanRaden, P.M.; VandeHaar, M.J.; Tempelman, R.J.; Weigel, K.A.; Cole, J.B. High-density genome-wide association study for residual feed intake in Holstein dairy cattle. J. Dairy Sci. 2019, 102, 11067–11080. [Google Scholar] [CrossRef]
- Ramayo-Caldas, Y.; Ballester, M.; Sánchez, J.P.; González-Rodríguez, O.; Revilla, M.; Reyer, H.; Wimmers, K.; Torrallardona, D.; Quintanilla, R. Integrative approach using liver and duodenum RNA-Seq data identifies candidate genes and pathways associated with feed efficiency in pigs. Sci. Rep. 2018, 8, 558. [Google Scholar] [CrossRef]
- Cai, W.; Casey, D.S.; Dekkers, J.C.M. Selection response and genetic parameters for residual feed intake in Yorkshire swine1. J. Anim. Sci. 2008, 86, 287–298. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, R.M.; Haussler, D.; Kent, W.J. The UCSC genome browser and associated tools. Brief. Bioinform. 2013, 14, 144–161. [Google Scholar] [CrossRef] [Green Version]
Traits | Unit | YY | DD | ||||
---|---|---|---|---|---|---|---|
N | Means ± SD 1 | h2 ± SE | N | Means ± SD | h2 ± SE | ||
ADFI | kg/d | 3656 | 2.38 ± 0.35 a | 0.24 ± 0.04 | 2156 | 2.76 ± 0.35 b | 0.36 ± 0.08 |
ADG | kg/d | 3555 | 0.83 ± 0.08 a | 0.16 ± 0.04 | 2156 | 0.84 ± 0.08 b | 0.13 ± 0.06 |
FCR | kg/kg | 3629 | 2.56 ± 0.24 a | 0.17 ± 0.04 | 2148 | 2.70 ± 0.25 b | 0.31 ± 0.07 |
RFI | kg | 3556 | −0.07 ± 0.17 a | 0.14 ± 0.03 | 2154 | 0.03 ± 0.19 b | 0.32 ± 0.07 |
BF | mm | 3557 | 12.23 ± 2.46 a | 0.48 ± 0.05 | 2157 | 11.75 ± 2.06 b | 0.36 ± 0.07 |
AGE | d | 3548 | 159.88 ± 13.1 a | 0.38 ± 0.06 | 2148 | 149.32 ± 9.7 b | 0.19 ± 0.06 |
Traits | ADFI | ADG | FCR | RFI | BF | AGE |
---|---|---|---|---|---|---|
ADFI | 0.62(0.11)** | 0.41(0.14) ** | 0.80(0.06) ** | 0.44(0.10) ** | −0.25(0.19) | |
ADG | 0.45(0.17) ** | −0.44(0.13) ** | 0.04(0.18) | 0.13(0.13) | −0.69(0.10) ** | |
FCR | 0.56(0.14) ** | −0.44(0.19) * | 0.48(0.12) ** | 0.52(0.11) ** | 0.38(0.18) * | |
RFI | 0.93(0.04) ** | 0.18(0.24) | 0.77(0.08) ** | −0.14(0.19) | 0.32(0.13) * | |
BF | 0.34(0.14) * | −0.13(0.24) | 0.23(0.16) | 0.07(0.17) | −0.18(0.11) | |
AGE | −0.36(0.21) | −0.56(0.28) * | 0.27(0.23) | −0.11(0.22) | 0.15(0.21) |
Breeds | Traits | Chr | Location(bp) | SNP Name | Alleles 1 | MAF 2 | p-Value |
---|---|---|---|---|---|---|---|
DD | ADG | 13 | 80,501,143 | seq-rs710999761 | T/G | 0.468 | 2.27 × 10−7 |
13 | 98,302,557 | seq-rs334871208 | T/C | 0.295 | 8.75 × 10−7 | ||
14 | 64,144,092 | seq-rs80921027 | A/G | 0.282 | 1.77 × 10−6 | ||
FCR | 15 | 16,281,234 | seq-rs329844461 | C/T | 0.419 | 7.36 × 10−7 | |
YY | ADG | 1 | 115,356,348 | seq-rs344383954 | C/A | 0.050 | 1.32 × 10−6 |
3 | 83,351,277 | seq-rs334252973 | C/T | 0.294 | 5.46 × 10−7 | ||
4 | 69,687,124 | seq-rs322234522 | T/C | 0.053 | 1.58 × 10−9 | ||
6 | 105,104,215 | seq-rs320347867 | A/G | 0.053 | 1.29 × 10−9 | ||
8 | 53,757,344 | seq-rs339132738 | T/C | 0.056 | 2.92 × 10−8 | ||
13 | 38,267,479 | seq-rs705817794 | A/G | 0.052 | 1.60 × 10−9 | ||
13 | 44,606,060 | seq-rs793013452 | C/A | 0.050 | 2.03 × 10−9 | ||
13 | 147,609,391 | seq-rs705621029 | A/C | 0.056 | 6.61 × 10−8 | ||
13 | 158,150,159 | seq-rs338850979 | T/C | 0.052 | 2.56 × 10−8 | ||
14 | 66,511,894 | seq-rs80790167 | T/G | 0.056 | 9.32 × 10−8 | ||
15 | 57,776,636 | seq-rs699198332 | A/G | 0.063 | 8.52 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, Z.; Luo, S.; Wu, J.; Zhou, L.; Liu, J. Genome-Wide Association Analysis and Genetic Parameters for Feed Efficiency and Related Traits in Yorkshire and Duroc Pigs. Animals 2022, 12, 1902. https://doi.org/10.3390/ani12151902
Li W, Wang Z, Luo S, Wu J, Zhou L, Liu J. Genome-Wide Association Analysis and Genetic Parameters for Feed Efficiency and Related Traits in Yorkshire and Duroc Pigs. Animals. 2022; 12(15):1902. https://doi.org/10.3390/ani12151902
Chicago/Turabian StyleLi, Weining, Zhaojun Wang, Shenghao Luo, Jianliang Wu, Lei Zhou, and Jianfeng Liu. 2022. "Genome-Wide Association Analysis and Genetic Parameters for Feed Efficiency and Related Traits in Yorkshire and Duroc Pigs" Animals 12, no. 15: 1902. https://doi.org/10.3390/ani12151902
APA StyleLi, W., Wang, Z., Luo, S., Wu, J., Zhou, L., & Liu, J. (2022). Genome-Wide Association Analysis and Genetic Parameters for Feed Efficiency and Related Traits in Yorkshire and Duroc Pigs. Animals, 12(15), 1902. https://doi.org/10.3390/ani12151902