An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of A. argyi Leaves Extract
2.2. Animals
2.3. Experimental Designs
2.4. Growth Indexes of Mice
2.4.1. Average Body Weight of Mice
2.4.2. Average Growth Rate of Mice
2.4.3. Feed Conversion Rate of Mice
2.5. Development Indexes of Mice
2.6. Blood Indexes of Mice
2.7. 16s rDNA Sequencing and Bioinformatics Analysis
2.7.1. Collection of Feces Samples from Mice
2.7.2. DNA Extraction and HiSeq Platform Sequencing
2.7.3. Data Filtering
2.7.4. Tags Connection
2.7.5. Operational Taxonomic Unit (OTU) Cluster Analysis
2.7.6. α-Diversity Analysis
2.7.7. LDA Effect Size (LEfSe) Analysis
2.8. Statistical Analyses
3. Results
3.1. Effects of ALE on Growth of Mice
3.1.1. Changes in Body Weight
3.1.2. Changes in Feed Coversion Rate
3.2. Effects of ALE on Development in Mice
3.3. Effects of ALE on Blood Indexes in Mice
3.3.1. Effects of ALE on Blood Routine in Mice
3.3.2. Effects of ALE on Serum Biochemical Indices in Mice
3.4. Effects of ALE on Intestinal Flora
3.4.1. OTU Statistics
3.4.2. Analysis of α Diversity of Intestinal Flora
3.4.3. Metastats Analysis of Intestinal Microflora in Mice
3.4.4. LEfSe Analysis of Intestinal Flora in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amezcua, R.; Friendship, R.M.; Dewey, C.E.; Gyles, C.; Fairbrother, J.M. Presentation of postweaning Escherichia coli diarrhea in southern Ontario, prevalence of hemolytic E-coli serogroups involved, and their antimicrobial resistance patterns. Can. J. Vet. Res. 2002, 66, 73–78. [Google Scholar] [PubMed]
- Ademola, S.G.; Farinu, G.O.; Babatunde, G.M. Serum lipid, growth and haematological parameters of broilers fed garlic, ginger and their mixtures. World J. Agric. Sci. 2009, 5, 99–104. [Google Scholar]
- Afdal, M.; Darlis, D.; Adriani, A. Digestibility, milk yields, and milk quality of ettawa crossbred goats fed Coleus amboinicus L. leaf extract. Trop. Anim. Sci. J. 2021, 44, 441–450. [Google Scholar] [CrossRef]
- Song, X.W.; Wen, X.; He, J.W.; Zhao, H.; Li, S.M.; Wang, M.Y. Phytochemical components and biological activities of Artemisia argyi. J. Funct. Foods 2019, 52, 648–662. [Google Scholar] [CrossRef]
- Huang, H.C.; Wang, H.F.; Yih, K.H.; Chang, L.Z.; Chang, T.M. Dual bioactivities of essential oil extracted from the leaves of Artemisia argyi as an antimelanogenic versus antioxidant agent and chemical composition analysis by GC/MS. Int. J. Mol. Sci. 2012, 13, 14679–14697. [Google Scholar] [CrossRef] [Green Version]
- Xiang, F.; Bai, J.H.; Tan, X.B.; Chen, T.; Yang, W.; He, F. Antimicrobial activities and mechanism of the essential oil from Artemisia argyi Levl. et Van. var. argyi cv. Qiai. Ind. Crop. Prod. 2018, 125, 582–587. [Google Scholar] [CrossRef]
- Ge, Y.B.; Wang, Z.G.; Xiong, Y.; Huang, X.J.; Mei, Z.N.; Hong, Z.G. Anti-inflammatory and blood stasis activities of essential oil extracted from Artemisia argyi leaf in animals. J. Nat. Med. Tokyo 2016, 70, 531–538. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, W.S.; Li, F.C. Dietary addition of Artemisia argyi reduces diarrhea and modulates the gut immune function without affecting growth performances of rabbits after weaning. J. Anim. Sci. 2019, 97, 1693–1700. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, B.L.; Sun, D.S.; Chen, H.Y.; Tong, M.M.; Zhang, P.F.; Guo, X.Y.; Yan, S.M. Effects of dietary supplementation of Artemisia argyi aqueous extract on antioxidant indexes of small intestine in broilers. Anim. Nutr. 2016, 2, 198–203. [Google Scholar] [CrossRef]
- Schuijt, T.J.; van der Poll, T.; de Vos, W.M.; Wiersinga, W.J. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol. 2013, 21, 221–229. [Google Scholar] [CrossRef]
- Li, X.L.; Shi, W.H.; Xiong, Q.H.; Hu, Y.G.; Qin, X.; Wan, G.Q.; Zeng, Q. Leptin improves intestinal flora dysfunction in mice with high-fat diet-induced obesity. J. Int. Med. Res. 2020, 48, 0300060520920062. [Google Scholar] [CrossRef] [PubMed]
- Markandey, M.; Bajaj, A.; Ilott, N.E.; Kedia, S.; Travis, S.; Powrie, F.; Ahuja, V. Gut microbiota: Sculptors of the intestinal stem cell niche in health and inflammatory bowel disease. Gut Microbes 2021, 13, 1990827. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liang, S.S.; Guo, F.S.; Ren, Z.Z.; Yang, X.J.; Long, F.Y. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poultry Sci. 2020, 99, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Zhen, H.D.; Qian, X.; Fu, X.X.; Chen, Z.; Zhang, A.Q.; Shi, L. Regulation of Shaoyao Ruangan mixture on intestinal flora in mice with primary liver cancer. Integr. Cancer Ther. 2019, 18. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X.; Schwabe, R.F. The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat. Rev. Gastro Hepat. 2017, 14, 527–539. [Google Scholar] [CrossRef]
- Ma, Q.B.; Gong, X.X.; Wei, Y.H.; Zhan, K.; Zhao, G.Q. Artemisia argyi leaves extract inhibits bovine mammary epithelial cells against LPS-induced inflammation via suppressing NF-κB and MAPK pathway. Vet. Med. Sci. 2022. Under Review. [Google Scholar]
- Davila-Ramirez, J.L.; Munguia-Acosta, L.L.; Morales-Coronado, J.G.; Garcia-Salinas, A.D.; Gonzalez-Rios, H.; Celaya-Michel, H.; Sosa-Castaneda, J.; Sanchez-Villalba, E.; Anaya-Islas, J.; Barrera-Silva, M.A. Addition of a mixture of plant extracts to diets for growing-finishing pigs on growth performance, blood metabolites, carcass traits, organ weight as a percentage of live weight, quality and sensorial analysis of meat. Animals 2020, 10, 1229. [Google Scholar] [CrossRef]
- Cheng, L.; Lei, Y.; Kim, I.H. Dietary Astragalus membranaceus and Codonopsis pilosula extracts mixture supplementation increases the growth performance and foot-and mouth disease antibody titers in growing-finishing pigs. Livest Sci. 2020, 240, 104134. [Google Scholar] [CrossRef]
- Zhao, J.B.; Zhang, G.; Zhou, X.J.; Dong, W.X.; Wang, Q.Y.; Xiao, C.M.; Zhang, S. Effect of Dandelion root extract on growth performance, immune function and bacterial community in weaned pigs. Food Agric. Immunol. 2019, 30, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.W.; Huang, H.J.; Hu, Y.P.; Liu, Y.T.; Zeng, X.; Zhuang, Y.; Yang, H.S.; Wang, L.; Chen, S.; Yin, L.M.; et al. Effects of dietary supplementation with herbal extract mixture on growth performance, organ weight and intestinal morphology in weaning piglets. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1462–1470. [Google Scholar] [CrossRef]
- Ding, H.X.; Cao, A.Z.; Li, H.Y.; Zhao, Y.; Feng, J. Effects of Eucommia ulmoides leaf extracts on growth performance, antioxidant capacity and intestinal function in weaned piglets. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1169–1177. [Google Scholar] [CrossRef]
- Beaupre, V.; Boucher, N.; Desgagne-Penix, I. Thykamine extracts from Spinach reduce acute inflammation in vivo and downregulate phlogogenic functions of human blood neutrophils in vitro. Biomedicines 2020, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjani, R.; Leela, N.K.; Tejpal, C.S.; Zachariah, J. Dietary supplementation of Cinnamomum verum J. Presl and Curcuma longa L. extract on growth performance, antioxidant and metabolic enzymes activities in experimental rats. Indian J. Exp. Biol. 2020, 58, 242–248. [Google Scholar]
- Macedo-Junior, S.J.; Luiz-Cerutti, M.; Nascimento, D.B.; Farina, M.; Soares Santos, A.R.; de Azevedo Maia, A.H. Methylmercury exposure for 14 days (short-term) produces behavioral and biochemical changes in mouse cerebellum, liver, and serum. J. Toxicol. Environ. Health A 2017, 80, 1145–1155. [Google Scholar] [CrossRef]
- Gao, X.Y.; Xie, Q.H.; Kong, P.; Liu, L.; Sun, S.; Xiong, B.Y.; Huang, B.J.; Yan, L.; Sheng, J.; Xiang, H.Y. Polyphenol- and caffeine-rich postfermented Pu-er tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infect. Immun. 2018, 86, e00601-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anhe, F.F.; Roy, D.; Pilon, G.; Dudonne, S.; Matamoros, S.; Varin, T.V.; Garofalo, C.; Moine, Q.; Desjardins, Y.; Levy, E.; et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015, 64, 872–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.Y.; Shan, X.; Tu, Q.B.; Wang, J.; Chen, J.; Yang, Y.W. Ginkgolide B treatment regulated intestinal flora to improve high-fat diet induced atherosclerosis in ApoE−/− mice. Biomed. Pharmacother 2021, 134, 111100. [Google Scholar] [CrossRef]
- Ge, X.D.; Chang, C.E.; Chen, H.L.; Liu, T.T.; Chen, L.G.; Huang, Y.; Zeng, F.; Liu, B. Luteolin cooperated with metformin hydrochloride alleviates lipid metabolism disorders and optimizes intestinal flora compositions of high-fat diet mice. Food Funct. 2020, 11, 10033–10046. [Google Scholar] [CrossRef]
- Kallus, S.J.; Brandt, L.J. The intestinal microbiota and obesity. J. Clin. Gastroenterol. 2012, 46, 16–24. [Google Scholar] [CrossRef]
- Boulange, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Gkolfakis, P.; Dimitriadis, G.; Triantafyllou, K. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 2015, 14, 572–581. [Google Scholar] [CrossRef]
- Axling, U.; Olsson, C.; Xu, J.; Fernandez, C.; Larsson, S.; Strom, K.; Ahrne, S.; Holm, C.; Molin, G.; Berger, K. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr. Metab. 2012, 9, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemperman, R.A.; Gross, G.; Mondot, S.; Possemiers, S.; Marzorati, M.; Van de Wiele, T.; Dore, J.; Vaughan, E.E. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res. Int. 2013, 53, 659–669. [Google Scholar] [CrossRef]
- Bo, T.B.; Wen, J.; Zhao, Y.C.; Tian, S.J.; Zhang, X.Y.; Wang, D.H. Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. J. Steroid Biochem. Mol. Biol. 2020, 198, 105602. [Google Scholar] [CrossRef] [PubMed]
Peak | TR (min) | [M − H]− | [M + H]+/[M + Na]+ | Standard Molecular | Molecular Formula | Proposed Compound |
---|---|---|---|---|---|---|
1 | 7.64 | 353.0868 | -/377.0839 | 354.31 | C16H18O9 | 5-Caffeoylquinic acid |
2 | 10.30 | 353.0867 | -/377.0841 | 354.31 | C16H18O9 | 3-Caffeoylquinic acid |
3 | 10.80 | 353.0865 | -/377.1787 | 354.31 | C16H18O9 | 1-Caffeoylquinic acid |
4 | 13.71 | 563.1399 | 565.1542/- | 564.14 | C26H28O14 | Apigenin-C-hexaose-C-pentoside |
5 | 18.67 | 515.1189 | -/539.1150 | 516.12 | C25H24O12 | 3,4-Dicaffeoylquinic acid |
6 | 19.18 | 515.1191 | 517.1334/539.1151 | 516.12 | C25H24O12 | 3,5-Dicaffeoylquinic acid |
7 | 20.37 | 515.1191 | 517.1335/539.1152 | 516.12 | C25H24O12 | 4,5-Dicaffeoylquinic acid |
8 | 23.87 | 345.0600 | 347.0761/- | 346.06 | C17H14O8 | Tetrahydroxy-Dimethoxy flavone |
9 | 26.31 | 359.0756 | 361.0921/- | 360.08 | C18H16O8 | Centaureidin |
10 | 26.53 | 329.0649 | 331.0814/- | 330.07 | C17H14O7 | Jaceosidin |
11 | 29.53 | 343.0807 | 345.0969/- | 344.08 | C18H16O7 | Eupatilin |
Items | Content |
---|---|
Moisture (g/kg) | ≤100 |
Crude protein (g/kg) | ≥180 |
Crude fat (g/kg) | ≥40 |
Crude fiber (g/kg) | ≤50 |
Crude ash (g/kg) | ≤80 |
Ca (g/kg) | 10–18 |
P (g/kg) | 6–12 |
Ca:P | 1.2:1–1.7:1 |
Ratio of energy supplied | |
Protein (%) | 20.6 |
Fat (%) | 12.0 |
Carbohydrate (%) | 67.4 |
Total energy (kcal/kg) | 3530 |
Items | Group | SEM | p | |||
---|---|---|---|---|---|---|
CK | H | M | L | |||
Average weight (g) | 18.48 | 17.77 | 19.17 | 18.22 | 0.241 | 0.227 |
Heart weight (g) | 0.097 bc | 0.098 bc | 0.119 a | 0.106 b | 0.003 | 0.007 |
Liver weight (g) | 0.743 | 0.713 | 0.760 | 0.734 | 0.095 | 0.391 |
Spleen weight (g) | 0.062 | 0.061 | 0.070 | 0.069 | 0.016 | 0.075 |
H/W (%) | 0.525 b | 0.551 b | 0.623 a | 0.582 ab | 0.126 | 0.022 |
L/W (%) | 4.03 | 4.01 | 3.97 | 4.03 | 0.409 | 0.949 |
S/W (%) | 0.33 | 0.34 | 0.37 | 0.38 | 0.080 | 0.177 |
Items | Group | SEM | p | |||
---|---|---|---|---|---|---|
CON | H | M | L | |||
WBC (109/L) | 2.53 b | 2.93 a | 2.40 b | 2.46 b | 0.67 | 0.001 |
LYM (109/L) | 2.23 | 2.56 | 2.13 | 2.33 | 0.66 | 0.089 |
MON (109/L) | 0.10 a | 0.00 b | 0.00 b | 0.03 b | 0.14 | 0.009 |
GRAN (109/L) | 0.5 b | 0.73 a | 0.33 c | 0.5 b | 0.47 | 0.002 |
RBC (1012/L) | 10.62 | 10.36 | 10.64 | 10.72 | 0.18 | 0.934 |
HGB (g/L) | 143.67 | 145.67 | 144.33 | 144.58 | 1.88 | 0.990 |
HCT (%) | 37.77 | 37.33 | 37.43 | 37.70 | 0.34 | 0.974 |
PLT (109/L) | 351.00 | 353.33 | 356.33 | 351.67 | 5.90 | 0.992 |
Items | Group | SEM | p | |||
---|---|---|---|---|---|---|
CON | H | M | L | |||
ALT (IU/L) | 26.17 b | 45.17 a | 27.67 b | 26.30 b | 2.82 | 0.011 |
AST (IU/L) | 102.53 b | 239.80 a | 113.80 b | 109.63 b | 18.40 | 0.001 |
AST/ALT | 3.96 b | 5.33 a | 4.11 b | 4.18 b | 0.18 | 0.001 |
TP (g/L) | 68.60 | 70.47 | 69.20 | 66.07 | 0.80 | 0.276 |
ALB (g/L) | 36.97 | 37.73 | 37.37 | 35.63 | 0.43 | 0.363 |
GLOB (g/L) | 31.53 | 32.73 | 31.83 | 30.43 | 0.53 | 0.555 |
A/G | 1.17 | 1.16 | 1.19 | 1.16 | 0.02 | 0.955 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Tan, D.; Gong, X.; Ji, H.; Wang, K.; Lei, Q.; Zhao, G. An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora. Animals 2022, 12, 1519. https://doi.org/10.3390/ani12121519
Ma Q, Tan D, Gong X, Ji H, Wang K, Lei Q, Zhao G. An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora. Animals. 2022; 12(12):1519. https://doi.org/10.3390/ani12121519
Chicago/Turabian StyleMa, Qianbo, Dejin Tan, Xiaoxiao Gong, Huiming Ji, Kexin Wang, Qian Lei, and Guoqi Zhao. 2022. "An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora" Animals 12, no. 12: 1519. https://doi.org/10.3390/ani12121519
APA StyleMa, Q., Tan, D., Gong, X., Ji, H., Wang, K., Lei, Q., & Zhao, G. (2022). An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora. Animals, 12(12), 1519. https://doi.org/10.3390/ani12121519