Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Phenotype Determination
2.2. Tissue DNA Extraction and Sequencing
2.3. CNV Detection, Genotyping, and Genomic Association Analysis
2.4. RNA Data Acquisition
2.5. Validation of the CNVs and PELP1 RNA Sequencing Results Using qPCR
2.6. Annotation of CNVRs
2.7. Protein Alignment and Structure Prediction
3. Results
3.1. Phenotypic Distribution of Pig IMF Content
3.2. Porcine Genome Copy Number Variation Segmentation
3.3. CNV Association Analysis
3.4. Quality Assessment of CNVs Using Quantitative Real-Time PCR (qPCR)
3.5. Annotation and QTLs’ Co-Location with CNVRs
3.6. Significantly Related CNV Internal RNA-Seq
3.7. Functional Analysis of CNV150
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergman, B.C.; Perreault, L.; Hunerdosse, D.M.; Koehler, M.C.; Samek, A.M.; Eckel, R.H. Intramuscular lipid metabolism in the insulin resistance of smoking. Diabetes 2009, 58, 2220–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeira, M.; Costa, P.; Alfaia, C.; Lopes, P.; Bessa, R.; Lemos, J.C.; Prates, J. The increased intramuscular fat promoted by dietary lysine restriction in lean but not in fatty pig genotypes improves pork sensory attributes. J. Anim. Sci. 2013, 91, 3177–3187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valsta, L.M.; Tapanainen, H.; Mannisto, S. Meat fats in nutrition. Meat Sci. 2005, 70, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Gao, N.; Li, S.; Kuang, W.; Zhu, L.; Jiang, W.; Yu, W.; Guo, J.; Li, Z.; Yang, C.; et al. Genome-Wide Association Study of Meat Quality Traits in a Three-Way Crossbred Commercial Pig Population. Front. Genet. 2021, 12, 614087. [Google Scholar] [CrossRef]
- Suzuki, K.; Irie, M.; Kadowaki, H.; Shibata, T.; Kumagai, M.; Nishida, A. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J. Anim. Sci. 2005, 83, 2058–2065. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019, 47, D701–D710. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Qin, J.; Rao, L.; Tang, X.; Cui, D.; Chen, L.; Xu, W.; Xiao, S.; Zhang, Z.; Huang, L. Accurate prediction and genome-wide association analysis of digital intramuscular fat content in longissimus muscle of pigs. Anim. Genet. 2021, 52, 633–644. [Google Scholar] [CrossRef]
- Zhuang, Z.; Ding, R.; Qiu, Y.; Wu, J.; Zhou, S.; Quan, J.; Zheng, E.; Li, Z.; Wu, Z.; Yang, J. A large-scale genome-wide association analysis reveals QTL and candidate genes for intramuscular fat content in Duroc pigs. Anim. Genet. 2021, 52, 518–522. [Google Scholar] [CrossRef]
- Rubin, C.J.; Megens, H.J.; Martinez Barrio, A.; Maqbool, K.; Sayyab, S.; Schwochow, D.; Wang, C.; Carlborg, O.; Jern, P.; Jorgensen, C.B.; et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 2012, 109, 19529–19536. [Google Scholar] [CrossRef] [Green Version]
- Fowler, K.E.; Pong-Wong, R.; Bauer, J.; Clemente, E.J.; Reitter, C.P.; Affara, N.A.; Waite, S.; Walling, G.A.; Griffin, D.K. Genome wide analysis reveals single nucleotide polymorphisms associated with fatness and putative novel copy number variants in three pig breeds. BMC Genom. 2013, 14, 784. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liu, C.; Xiong, X.; Fang, S.; Yang, H.; Zhang, Z.; Ren, J.; Guo, Y.; Huang, L. Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p. Genet. Sel. Evol. 2018, 50, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, L.; Stillfried, M.; Prinz, C.; Schröder, V.; Neubert, L.K.; Denner, J. Copy number and prevalence of porcine endogenous retroviruses (PERVs) in German wild boars. Viruses 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revilla, M.; Puig-Oliveras, A.; Castello, A.; Crespo-Piazuelo, D.; Paludo, E.; Fernandez, A.I.; Ballester, M.; Folch, J.M. A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits. PLoS ONE 2017, 12, e0177014. [Google Scholar] [CrossRef] [PubMed]
- Stafuzza, N.B.; Silva, R.M.O.; Fragomeni, B.O.; Masuda, Y.; Huang, Y.; Gray, K.; Lourenco, D.A.L. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genom. 2019, 20, 321. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, L.; Liu, X.; Zhang, T.; Li, N.; Hay El, H.; Zhang, Y.; Yan, H.; Zhao, K.; Liu, G.E.; et al. Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in Swine. Sci. Rep. 2015, 5, 12535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zheng, Z.; Cai, Y.; Chen, T.; Li, C.; Fu, W.; Jiang, Y. CNVcaller: Highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience 2017, 6, gix115. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated tool for Genome-Wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.Y.; Zhang, T.; Zhang, L.; Hou, X.; Yan, H.; Wang, L. IRLnc: A novel functional noncoding RNA contributes to intramuscular fat deposition. BMC Genom. 2021, 22, 95. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Quinlan, A.R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinform. 2014, 47, 11–12. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Youkharibache, P.; Zhang, D.; Lanczycki, C.J.; Geer, R.C.; Madej, T.; Phan, L.; Ward, M.; Lu, S.; Marchler, G.H.; et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics 2020, 36, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Lande, R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 1981, 99, 541–553. [Google Scholar] [CrossRef]
- Slatkin, M.; Lande, R. Segregation variance after hybridization of isolated populations. Genet. Res. 1994, 64, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Li, J.; Jia, B.; Sang, H. CNV-MEANN: A Neural Network and Mind Evolutionary Algorithm-Based Detection of Copy Number Variations From Next-Generation Sequencing Data. Front. Genet. 2021, 12, 700874. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, P.; Yang, K.; Ning, C.; Wang, H.; Zhou, L.; Liu, J. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. J. Anim. Sci. Biotechnol. 2020, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhou, Y.; Wang, Y.; Zhang, Y.; Shen, Y.; Su, Q.; Gao, G.; Xu, H.; Zhou, X.; Liu, B. Whole-genome sequencing reveals breed-differential CNVs between Tongcheng and Large White pigs. Anim. Genet. 2020, 51, 940–944. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuang, Z.W.; Yang, M.; Ding, R.R.; Quan, J.P.; Zhou, S.P.; Gu, T.; Xu, Z.; Zheng, E.Q.; Cai, G.Y.; et al. Genome-Wide Detection of Genetic Loci and Candidate Genes for Body Conformation Traits in Duroc x Landrace x Yorkshire Crossbred Pigs. Front. Genet. 2021, 12, 664343. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Z.; Zhao, W.; Li, M.; Li, C. Transcriptome Analysis Reveals Long Intergenic Non-Coding RNAs Contributed to Intramuscular Fat Content Differences between Yorkshire and Wei Pigs. Int. J. Mol. Sci. 2020, 21, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, A.; Avena, P.; Sirianni, R.; Chimento, A.; Fallo, F.; Pilon, C.; Casaburi, I.; Pezzi, V. Role of Scaffold Protein Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 (PELP1) in the Modulation of Adrenocortical Cancer Cell Growth. Cells 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Gao, N.; Li, X.; El-Ashram, S.; Wang, Z.; Zhu, L.; Jiang, W.; Peng, X.; Zhang, C.; Chen, Y.; et al. Identifying candidate genes associated with sperm morphology abnormalities using weighted single-step GWAS in a Duroc boar population. Theriogenology 2020, 141, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Sudmant, P.H.; Huddleston, J.; Catacchio, C.R.; Malig, M.; Hillier, L.W.; Baker, C.; Mohajeri, K.; Kondova, I.; Bontrop, R.E.; Persengiev, S.; et al. Evolution and diversity of copy number variation in the great ape lineage. Genome Res. 2013, 23, 1373–1382. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Li, Y.; Murtaza, G.; Zhou, J.; Jiao, Y.; Gong, C.; Hu, C.; Han, Q.; Zhang, H.; Zhang, Y.; et al. Whole-exome sequencing of consanguineous families with infertile men and women identifies homologous mutations in SPATA22 and MEIOB. Hum. Reprod. 2021, 36, 2793–2804. [Google Scholar] [CrossRef]
- Kim, Y.M.; Stone, M.; Hwang, T.H.; Kim, Y.G.; Dunlevy, J.R.; Griffin, T.J.; Kim, D.H. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol. Cell 2012, 46, 833–846. [Google Scholar] [CrossRef] [Green Version]
- Sheu, W.H.; Kuo, J.Z.; Lee, I.T.; Hung, Y.J.; Lee, W.J.; Tsai, H.Y.; Wang, J.S.; Goodarzi, M.O.; Klein, R.; Klein, B.E.; et al. Genome-wide association study in a Chinese population with diabetic retinopathy. Hum. Mol. Genet. 2013, 22, 3165–3173. [Google Scholar] [CrossRef] [Green Version]
- Latomanski, E.A.; Newton, P.; Khoo, C.A.; Newton, H.J. The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii. PLoS Pathog. 2016, 12, e1006101. [Google Scholar] [CrossRef]
- de Lemos, M.V.A.; Peripolli, E.; Berton, M.P.; Feitosa, F.L.B.; Olivieri, B.F.; Stafuzza, N.B.; Tonussi, R.L.; Kluska, S.; Chiaia, H.L.J.; Mueller, L.; et al. Association study between copy number variation and beef fatty acid profile of Nellore cattle. J. Appl. Genet. 2018, 59, 203–223. [Google Scholar] [CrossRef] [Green Version]
- Ying, F.; Gu, H.; Xiong, Y.; Zuo, B. Analysis of Differentially Expressed Genes in Gastrocnemius Muscle between DGAT1 Transgenic Mice and Wild-Type Mice. Biomed. Res. Int. 2017, 2017, 5404682. [Google Scholar] [CrossRef]
- Soleimanzad, H.; Montaner, M.; Ternier, G.; Lemitre, M.; Silvestre, J.S.; Kassis, N.; Giacobini, P.; Magnan, C.; Pain, F.; Gurden, H. Obesity in Midlife Hampers Resting and Sensory-Evoked Cerebral Blood Flow in Mice. Obesity 2021, 29, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Poessel, M.; Freiherr, J.; Wiencke, K.; Villringer, A.; Horstmann, A. Insulin Resistance Is Associated with Reduced Food Odor Sensitivity across a Wide Range of Body Weights. Nutrients 2020, 12, 2201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Xu, J.; Liu, X.; Zhang, Z.; Zhong, J.; Wen, Y.; Yao, Z.; Yang, P.; Wang, E.; Chen, F.; et al. The copy number variation of DMBT1 gene effects body traits in two Chinese cattle breeds. 3 Biotech. 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Huang, C.; Wu, X.; Ma, X.; Chu, M.; Bao, P.; Pei, J.; Guo, X.; Yan, P.; Liang, C. Copy number variation (CNV) of the AHR gene in the Ashidan yak and its association with growth traits. Gene 2022, 826, 146454. [Google Scholar] [CrossRef]
- Park, H.B.; Han, S.H.; Yoo, C.K.; Lee, J.B.; Kim, J.H.; Baek, K.S.; Son, J.K.; Shin, S.M.; Lim, H.T.; Cho, I.C. Genome scan linkage analysis identifies a major quantitative trait loci for fatty acid composition in longissimus dorsi muscle in an F-2 intercross between Landrace and Korean native pigs. Asian Austral. J. Anim. 2017, 30, 1061–1065. [Google Scholar] [CrossRef] [Green Version]
- Estelle, J.; Gil, F.; Vazquez, J.M.; Latorre, R.; Ramirez, G.; Barragan, M.C.; Folch, J.M.; Noguera, J.L.; Toro, M.A.; Perez-Enciso, M. A quantitative trait locus genome scan for porcine muscle fiber traits reveals overdominance and epistasis. J. Anim. Sci. 2008, 86, 3290–3299. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.C.; Yoo, C.K.; Lee, J.B.; Jung, E.J.; Han, S.H.; Lee, S.S.; Ko, M.S.; Lim, H.T.; Park, H.B. Genome-wide QTL analysis of meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Genet. Sel. Evol. 2015, 47, 7. [Google Scholar] [CrossRef] [Green Version]
- Jenks, M.Z.; Fairfield, H.E.; Johnson, E.C.; Morrison, R.F.; Muday, G.K. Sex Steroid Hormones Regulate Leptin Transcript Accumulation and Protein Secretion in 3T3-L1 Cells. Sci. Rep. 2017, 7, 8232. [Google Scholar] [CrossRef]
- Puig-Oliveras, A.; Revilla, M.; Castelló, A.; Fernández, A.I.; Folch, J.M.; Ballester, M. Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Sci. Rep. 2016, 6, 31803. [Google Scholar] [CrossRef]
- Müssig, K.; Machicao, F.; Machann, J.; Schick, F.; Claussen, C.D.; Stefan, N.; Fritsche, A.; Häring, H.U.; Staiger, H. No association between variation in the NR4A1 gene locus and metabolic traits in white subjects at increased risk for type 2 diabetes. BMC Med. Genet. 2010, 11, 84. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.; Lee, S.H.; Kim, N.K.; Cho, Y.M.; Chai, H.H.; Seong, H.H.; Kim, H. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle. Asian Australas. J. Anim. Sci. 2013, 26, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Kim, T.H.; Franklin, D.A.; Zhang, Y. Protection against High-Fat-Diet-Induced Obesity in MDM2(C305F) Mice Due to Reduced p53 Activity and Enhanced Energy Expenditure. Cell Rep. 2017, 18, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Tada, A.; Islam, M.A.; Kober, A.H.; Fukuyama, K.; Takagi, M.; Igata, M.; Albarracin, L.; Ikeda-Ohtsubo, W.; Miyazawa, K.; Yoda, K.; et al. Transcriptome Modifications in the Porcine Intramuscular Adipocytes during Differentiation and Exogenous Stimulation with TNF-α and Serotonin. Int. J. Mol. Sci. 2020, 21, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, B.J.; Daniel, A.R.; Lange, C.A.; Ostrander, J.H. PELP1: A review of PELP1 interactions, signaling, and biology. Mol. Cell Endocrinol. 2014, 382, 642–651. [Google Scholar] [CrossRef] [Green Version]
CNVRs | Chromosome | Start | End | Effect | p Value | Type | Overlapped Gene |
---|---|---|---|---|---|---|---|
CNV150 | 12 | 52,194,501 | 52,220,000 | −0.4987 | 9.47 × 10−6 | Dup | PELP1 |
CNV11 | 1 | 43,146,501 | 43,151,500 | −0.5285 | 1.85 × 10−26 | Del | - |
CNV150 | 12 | 52,194,501 | 52,220,000 | −0.4553 | 7.08 × 10−25 | Dup | PELP1 |
CNV657 | 7 | 79,216,001 | 79,273,500 | 0.6623 | 1.29 × 10−24 | Dup | ENSSSCG00000035754 |
CNV223 | 14 | 2,0385,001 | 20,388,500 | 0.7767 | 2.35 × 10−24 | Dup | - |
CNV466 | 3 | 25,786,001 | 25,790,000 | 0.6017 | 1.32 × 10−23 | Dup | - |
CNV698 | 8 | 91,666,001 | 91,675,500 | 0.3071 | 1.30 × 10−21 | Del | - |
CNV846 | X | 75,184,001 | 75,198,000 | 0.3922 | 3.61 × 10−20 | Dup | ENSSSCG00000046526 |
CNV149 | 12 | 49,461,001 | 49,498,500 | −0.2625 | 2.53 × 10−17 | Dup | SPATA22 |
CNV385 | 2 | 17,955,001 | 17,967,500 | 0.3497 | 9.45 × 10−16 | Dup | - |
CNV653 | 7 | 78,876,501 | 78,952,500 | −0.3832 | 2.58 × 10−15 | Dup | SH3BP4, LOC100524322, LOC100524156, ENSSSCG00000044162, R-SSC-381753 |
CNV771 | X | 8,710,001 | 88,350,00 | 0.4339 | 8.49 × 10−13 | Dup | - |
CNV49 | 1 | 236,168,001 | 236,172,000 | −0.2828 | 5.89 × 10−12 | Del | ENSSSCG00000049310 |
CNV35 | 1 | 174,451,501 | 174,455,500 | −0.3230 | 7.50 × 10−12 | Del | - |
CNV450 | 2 | 142,722,001 | 142,725,000 | 0.2647 | 8.33 × 10−9 | Del | - |
CNV422 | 2 | 82,146,001 | 82,150,000 | −0.3249 | 3.70 × 10−8 | Dup | FCHO2 |
CNV148 | 12 | 49,181,501 | 49,205,000 | 0.2101 | 3.19 × 10−7 | Del | ENSSSCG0000034084 |
CNV901 | Y | 5,446,501 | 5,449,000 | −0.2768 | 1.54 × 10−6 | Dup | - |
CNV160 | 13 | 25,532,501 | 25,537,500 | −0.1775 | 2.77 × 10−6 | Del | ULK4 |
CNV508 | 4 | 44,804,501 | 44,809,500 | −0.2026 | 3.61 × 10−6 | Dup | - |
Individual | ENSSSCT00000075280 Reads Count | ENSSSCT00000019507 Reads Count | Copy Numbers |
---|---|---|---|
H1 | 2090 | 12 | Normal |
H2 | 1986 | 240 | Normal |
H3 | 2121 | 58 | Normal |
L1 | 2501 | 858 | Duplicated |
L2 | 2298 | 436 | Duplicated |
L3 | 1984 | 867 | Duplicated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Shu, Z.; Wang, L.; Zhang, T.; Zhang, L.; Hou, X.; Yan, H.; Wang, L. Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs. Animals 2022, 12, 1382. https://doi.org/10.3390/ani12111382
Wei X, Shu Z, Wang L, Zhang T, Zhang L, Hou X, Yan H, Wang L. Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs. Animals. 2022; 12(11):1382. https://doi.org/10.3390/ani12111382
Chicago/Turabian StyleWei, Xia, Ze Shu, Ligang Wang, Tian Zhang, Longchao Zhang, Xinhua Hou, Hua Yan, and Lixian Wang. 2022. "Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs" Animals 12, no. 11: 1382. https://doi.org/10.3390/ani12111382
APA StyleWei, X., Shu, Z., Wang, L., Zhang, T., Zhang, L., Hou, X., Yan, H., & Wang, L. (2022). Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs. Animals, 12(11), 1382. https://doi.org/10.3390/ani12111382