Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Ultraviolet Lighting System
2.3. Video Recording Animal Presence and Activity
2.4. Video Processing
2.5. Statistical Analysis
3. Results
3.1. Lighting System Performance
3.2. Response by Bats, Insects, and Birds
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cryan, P.M. Wind turbines as landscape impediments to the migratory connectivity of bats. Environ. Law 2011, 41, 355–370. [Google Scholar]
- Arnett, E.B.; Brown, W.K.; Erickson, W.P.; Fiedler, J.K.; Hamilton, B.L.; Henry, T.H.; Jain, A.; Johnson, G.D.; Kerns, J.; Koford, R.R.; et al. Patterns of Bat Fatalities at Wind Energy Facilities in North America. J. Wildl. Manag. 2008, 72, 61–78. [Google Scholar] [CrossRef]
- Kunz, T.H.; Arnett, E.B.; Erickson, W.P.; Hoar, A.R.; Johnson, G.D.; Larkin, R.P.; Strickland, M.D.; Thresher, R.W.; Tuttle, M.D. Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Front. Ecol. Environ. 2007, 5, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Rydell, J.; Bach, L.; Dubourg-Savage, M.-J.; Green, M.; Rodrigues, L.; Hedenström, A. Bat Mortality at Wind Turbines in Northwestern Europe. Acta Chiropterol. 2010, 12, 261–274. [Google Scholar] [CrossRef]
- Agudelo, M.S.; Mabee, T.J.; Palmer, R.L.; Anderson, R. Post-construction bird and bat fatality monitoring studies at wind energy projects in Latin America: A summary and review. Heliyon 2021, 7, e07251. [Google Scholar] [CrossRef] [PubMed]
- Arnett, E.B.; Baerwald, E.F. Impacts of wind energy development on bats: Implications for conservation. In Bat Evolution, Ecology, and Conservation; Adams, R.A., Pedersen, S.C., Eds.; Springer: New York, NY, USA, 2013; pp. 435–456. [Google Scholar]
- Aronson, J.B.; Thomas, A.J.; Jordaan, S.L. Bat fatality at a wind energy facility in the Western Cape, South Africa. Afr. Bat Conserv. News 2013, 31, 9–12. [Google Scholar]
- Frick, W.F.; Baerwald, E.F.; Pollock, J.F.; Barclay, R.M.R.; Szymanski, J.A.; Weller, T.J.; Russell, A.L.; Loeb, S.C.; Medellin, R.A.; McGuire, L.P. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 2017, 209, 172–177. [Google Scholar] [CrossRef]
- Voigt, C.C.; Lehnert, L.S.; Petersons, G.; Adorf, F.; Bach, L. Wildlife and renewable energy: German politics cross migratory bats. Eur. J. Wildl. Res. 2015, 61, 213–219. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Cryan, P.M.; Hayman, D.T.S.; Plowright, R.K.; Streicker, D.G. Multiple mortality events in bats: A global review. Mammal Rev. 2016, 46, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Pinzari, C.A.; Kang, L.; Michalak, P.; Jermiin, L.S.; Price, D.K.; Bonaccorso, F.J. Analysis of Genomic Sequence Data Reveals the Origin and Evolutionary Separation of Hawaiian Hoary Bat Populations. Genome Biol. Evol. 2020, 12, 1504–1514. [Google Scholar] [CrossRef]
- May, R.; Masden, E.A.; Bennet, F.; Perron, M. Considerations for upscaling individual effects of wind energy development towards population-level impacts on wildlife. J. Environ. Manag. 2019, 230, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Friedenberg, N.A.; Frick, W.F. Assessing fatality minimization for hoary bats amid continued wind energy development. Biol. Conserv. 2021, 262, 109309. [Google Scholar] [CrossRef]
- Erickson, R.A.; Thogmartin, W.E.; Diffendorfer, J.E.; Russell, R.E.; Szymanski, J.A. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat. PeerJ 2016, 4, e2830. [Google Scholar] [CrossRef]
- Bennett, V.J.; Hale, A.M. Resource Availability May Not Be a Useful Predictor of Migratory Bat Fatalities or Activity at Wind Turbines. Diversity 2018, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Lintott, P.R.; Richardson, S.M.; Hosken, D.J.; Fensome, S.A.; Mathews, F. Ecological impact assessments fail to reduce risk of bat casualties at wind farms. Curr. Biol. 2016, 26, R1135–R1136. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.M.; Lintott, P.R.; Hosken, D.J.; Economou, T.; Mathews, F. Peaks in bat activity at turbines and the implications for mitigating the impact of wind energy developments on bats. Sci. Rep. 2021, 11, 1–6. [Google Scholar] [CrossRef]
- Solick, D.; Pham, D.; Nasman, K.; Bay, K. Bat Activity Rates do not Predict Bat Fatality Rates at Wind Energy Facilities. Acta Chiropterologica 2020, 22, 135–146. [Google Scholar] [CrossRef]
- Thompson, M.; Beston, J.A.; Etterson, M.; Diffendorfer, J.E.; Loss, S.R. Factors associated with bat mortality at wind energy facilities in the United States. Biol. Conserv. 2017, 215, 241–245. [Google Scholar] [CrossRef]
- Arnett, E.B.; Huso, M.M.P.; Schirmacher, M.R.; Hayes, J.P. Altering turbine speed reduces bat mortality at wind-energy facilities. Front. Ecol. Environ. 2011, 9, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Baerwald, E.F.; Edworthy, J.; Holder, M.; Barclay, R.M.R. A Large-Scale Mitigation Experiment to Reduce Bat Fatalities at Wind Energy Facilities. J. Wildl. Manag. 2009, 73, 1077–1081. [Google Scholar] [CrossRef]
- Behr, O.; Brinkmann, R.; Hochradel, K.; Mages, J.; Korner-Nievergelt, F.; Niermann, I.; Reich, M.; Simon, R.; Weber, N.; Nagy, M. Mitigating Bat Mortality with Turbine-Specific Curtailment Algorithms: A Model Based Approach. In Wind Energy and Wildlife Interactions; Köppel, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 135–160. [Google Scholar]
- Hayes, M.A.; Hooton, L.A.; Gilland, K.L.; Grandgent, C.; Smith, R.L.; Lindsay, S.R.; Collins, J.D.; Schumacher, S.M.; Rabie, P.A.; Gruver, J.C.; et al. A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities. Ecol. Appl. 2019, 29, e01881. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.M.; Arnett, E.B.; Stevens, R.D.; Wallace, M.C. Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. J. Mammal. 2017, 98, 378–385. [Google Scholar] [CrossRef]
- Arnett, E.B.; Hein, C.D.; Schirmacher, M.R.; Huso, M.M.P.; Szewczak, J.M. Evaluating the Effectiveness of an Ultrasonic Acoustic Deterrent for Reducing Bat Fatalities at Wind Turbines. PLoS ONE 2013, 8, e65794. [Google Scholar] [CrossRef]
- Romano, W.B.; Skalski, J.R.; Townsend, R.L.; Kinzie, K.W.; Coppinger, K.D.; Miller, M.F. Evaluation of an acoustic deterrent to reduce bat mortalities at an Illinois wind farm. Wildl. Soc. Bull. 2019, 43, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.P.; Hein, C.D.; Simpson, T.R.; Evans, J.W.; Castro-Arellano, I. Ultrasonic acoustic deterrents significantly reduce bat fatalities at wind turbines. Glob. Ecol. Conserv. 2020, 24, e01099. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Pandey, A.K.; McHale, L.A.; Harness, R.E. Near-ultraviolet light reduced Sandhill Crane collisions with a power line by 98%. Condor Ornith. Appl. 2019, 121, 1–10. [Google Scholar] [CrossRef]
- Loss, S.R.; Will, T.; Loss, S.S.; Marra, P. Bird–building collisions in the United States: Estimates of annual mortality and species vulnerability. Condor Ornith. Appl. 2014, 116, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, C.; Phillips, G. Bird-Friendly Building Design, 2nd ed.; American Bird Conservancy: The Plains, VA, USA, 2015. [Google Scholar]
- Huzzen, B. Does A Textured Coating Alter Bat Activity and Behavior in Proximity to Wind Turbine Towers. Master’s Thesis, Texas Christian University, Fort Worth, TX, USA, 2019. [Google Scholar]
- Boonman, A.; Bar-On, Y.; Yovel, Y.; Cvikel, N. It’s not black or white—On the range of vision and echolocation in echolocating bats. Front. Physiol. 2013, 4, 248. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.R. Listening in the Dark: The Acoustic Orientation of Bats and Men; Yale University Press: New Haven, CT, USA, 1958; p. 413. [Google Scholar]
- Griffin, D.R. The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim. Behav. 1971, 19, 55–61. [Google Scholar] [CrossRef]
- Suthers, R.A. Vision, olfaction, taste. In Biology of Bats; Wimsatt, W.A., Ed.; Academic Press: New York, NY, USA, 1970; Volume 2, pp. 265–309. [Google Scholar]
- Suthers, R.A.; Wallis, N.E. Optics of the eyes of echolocating bats. Vis. Res. 1970, 10, 1165–1173. [Google Scholar] [CrossRef]
- Tsoar, A.; Nathan, R.; Bartan, Y.; Vyssotski, A.; Dell’Omo, G.; Ulanovsky, N. Large-scale navigational map in a mammal. Proc. Natl. Acad. Sci. USA 2011, 108, E718–E724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, D.R. Migration and homing of bats. In Biology of Bats; Wimsatt, W.A., Ed.; Academic Press: New York, NY, USA, 1970; Volume 1, pp. 233–264. [Google Scholar]
- Cryan, P.M.; Brown, A.C. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol. Conserv. 2007, 139, 1–11. [Google Scholar] [CrossRef]
- Jameson, J.W.; Willis, C.K.R. Activity of tree bats at anthropogenic tall structures: Implications for mortality of bats at wind turbines. Anim. Behav. 2014, 97, 145–152. [Google Scholar] [CrossRef]
- Cryan, P.M. Mating Behavior as a Possible Cause of Bat Fatalities at Wind Turbines. J. Wildl. Manag. 2008, 72, 845–849. [Google Scholar] [CrossRef]
- Cryan, P.M.; Barclay, R.M.R. Causes of Bat Fatalities at Wind Turbines: Hypotheses and Predictions. J. Mammal. 2009, 90, 1330–1340. [Google Scholar] [CrossRef] [Green Version]
- Cryan, P.M.; Gorresen, P.M.; Hein, C.D.; Schirmacher, M.R.; Diehl, R.H.; Huso, M.M.; Hayman, D.T.S.; Fricker, P.D.; Bonaccorso, F.J.; Johnson, D.H.; et al. Behavior of bats at wind turbines. Proc. Natl. Acad. Sci. USA 2014, 111, 15126–15131. [Google Scholar] [CrossRef] [Green Version]
- Cryan, P.M.; Jameson, J.W.; Baerwald, E.F.; Willis, C.K.R.; Barclay, R.M.R.; Snider, E.A.; Crichton, E.G. Evidence of Late-Summer Mating Readiness and Early Sexual Maturation in Migratory Tree-Roosting Bats Found Dead at Wind Turbines. PLoS ONE 2012, 7, e47586. [Google Scholar] [CrossRef] [Green Version]
- Valdez, E.W.; Cryan, P.M. Insect Prey Eaten by Hoary Bats (Lasiurus cinereus) Prior to Fatal Collisions with Wind Turbines. West. N. Am. Nat. 2013, 73, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Ruczynski, I.; Szarlik, A.; Siemers, B.M. Conspicuous Visual Cues can Help Bats to Find Tree Cavities. Acta Chiropterol. 2011, 13, 385–389. [Google Scholar] [CrossRef]
- Eklöf, J. Vision in Echolocating Bats. Ph.D. Thesis, University of Gothenburg, Gothenburg, Sweden, 2003. [Google Scholar]
- Ellins, S.R.; Masterson, F.A. Brightness Discrimination Thresholds in the Bat, Eptesicus fuscus. Brain Behav. Evol. 1974, 9, 248–263. [Google Scholar] [CrossRef]
- Lythgoe, J.N. The Ecology of Vision; Clarendon Press: Oxford, UK, 1979; p. 244. [Google Scholar]
- Martin, G.R. Birds by Night; T & AD Poyster: London, UK, 1990; p. 227. [Google Scholar]
- Martin, G.R. The visual problems of nocturnal migration. In Bird Migration: Physiology and Ecophysiology; Gwinner, E., Ed.; Springer: Berlin, Germany, 1990; pp. 185–197. [Google Scholar]
- Mistry, S.; McCracken, G.F. Behavioural response of the Mexican free-tailed bat, Tadarida brasiliensis mexicana, to visible and infra-red light. Anim. Behav. 1990, 39, 598–599. [Google Scholar] [CrossRef]
- Müller, B.; Glösmann, M.; Peichl, L.; Knop, G.C.; Hagemann, C.; Ammermüller, J. Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors. PLoS ONE 2009, 4, e6390. [Google Scholar] [CrossRef] [PubMed]
- De Gutierrez, E.; Castiglione, G.M.; Morrow, J.M.; Schott, R.K.; Loureiro, L.O.; Lim, B.K.; Chang, B.S.W. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Mol. Biol. Evol. 2018, 35, 2422–2434. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chi, H.; Liu, H.; Xia, Y.; Irwin, D.M.; Zhang, S.; Liu, Y. Retention and losses of ultraviolet-sensitive visual pigments in bats. Sci. Rep. 2018, 8, 11933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seim, I.; Fang, X.; Xiong, Z.; Lobanov, A.V.; Huang, Z.; Ma, S.; Feng, Y.; Turanov, A.A.; Zhu, Y.; Lenz, T.L.; et al. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 2013, 4, 2212. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Oakley, T.; Mower, J.; Shimmin, L.C.; Yim, S.; Honeycutt, R.L.; Tsao, H.; Li, W.-H. Molecular Evolution of Bat Color Vision Genes. Mol. Biol. Evol. 2004, 21, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Xuan, F.; Hu, K.; Zhu, T.; Racey, P.; Wang, X.; Zhang, S.; Sun, Y. Immunohistochemical evidence of cone-based ultraviolet vision in divergent bat species and implications for its evolution. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012, 161, 398–403. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, D.; Zhou, Y.; Flanders, J.; Zhang, S. Evolution of opsin genes reveals a functional role of vision in the echolocating little brown bat (Myotis lucifugus). Biochem. Syst. Ecol. 2009, 37, 154–161. [Google Scholar] [CrossRef]
- Gorresen, P.M.; Cryan, P.M.; Dalton, D.C.; Wolf, S.; Bonaccorso, F.J. Ultraviolet Vision May be Widespread in Bats. Acta Chiropterol. 2015, 17, 193–198. [Google Scholar] [CrossRef]
- Winter, Y.; López, J.; Von Helversen, O. Ultraviolet vision in a bat. Nature 2003, 425, 612–614. [Google Scholar] [CrossRef]
- Xuan, F.; Hu, K.; Zhu, T.; Racey, P.; Wang, X.; Sun, Y. Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologia 2012, 29, 109–114. [Google Scholar]
- Gorresen, P.M.; Cryan, P.M.; Dalton, D.C.; Wolf, S.; Johnson, J.A.; Todd, C.M.; Bonaccorso, F.J. Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus. Endanger. Species Res. 2015, 28, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Meaney, C.; Gerson, J. Bat Acoustical Surveys at the National Renewable Energy Laboratory, National Wind Technology Center: July–November, 2010; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. [Google Scholar]
- Goldenberg, S.Z.; Cryan, P.M.; Gorresen, P.M.; Fingersh, L.J. Behavioral patterns of bats at a wind turbine confirm seasonality of fatality risk. Ecol. Evol. 2021, 11, 4843–4853. [Google Scholar] [CrossRef]
- Withgott, J. Taking a bird’s-eye view. in the UV. Bioscience 2000, 50, 854–859. [Google Scholar] [CrossRef] [Green Version]
- Michiels, B.; Onghena, P. Randomized single-case AB phase designs: Prospects and pitfalls. Behav. Res. Methods 2019, 51, 2454–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolov, R.; Onghena, P. Analyzing data from single-case alternating treatments designs. Psychol. Methods 2018, 23, 480–504. [Google Scholar] [CrossRef] [Green Version]
- Levin, J.R.; Ferron, J.M.; Kratochwill, T.R. Nonparametric statistical tests for single-case systematic and randomized ABAB…AB and alternating treatment intervention designs: New developments, new directions. J. Sch. Psychol. 2012, 50, 599–624. [Google Scholar] [CrossRef]
- Manolov, R. A Simulation Study on Two Analytical Techniques for Alternating Treatments Designs. Behav. Modif. 2019, 43, 544–563. [Google Scholar] [CrossRef]
- Solmi, F.; Onghena, P.; Salmaso, L.; Bulté, I. A Permutation Solution to Test for Treatment Effects in Alternation Design Single-Case Experiments. Commun. Stat. Simul. Comput. 2014, 43, 1094–1111. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R_Core_Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Longcore, T.; Rodríguez, A.; Witherington, B.; Penniman, J.F.; Herf, L.; Herf, M. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zoöl. Part A Ecol. Integr. Physiol. 2018, 329, 511–521. [Google Scholar] [CrossRef]
- Warrant, E.; Dacke, M. Vision and Visual Navigation in Nocturnal Insects. Annu. Rev. EÈntomol. 2011, 56, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Brehm, G. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepidopterol. 2017, 40, 87–108. [Google Scholar] [CrossRef]
- Bolliger, J.; Hennet, T.; Wermelinger, B.; Blum, S.; Haller, J.; Obrist, M.K. Low impact of two LED colors on nocturnal insect abundance and bat activity in a peri-urban environment. J. Insect Conserv. 2020, 24, 625–635. [Google Scholar] [CrossRef]
- Barroso, A.; Haifig, I.; Janei, V.; Da Silva, I.; Dietrich, C.; Costa-Leonardo, A. Effects of flickering light on the attraction of nocturnal insects. Light. Res. Technol. 2017, 49, 100–110. [Google Scholar] [CrossRef]
- Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef] [PubMed]
- Rowse, E.G.; Lewanzik, D.; Stone, E.L.; Harris, S.; Jones, G. Dark Matters: The Effects of Artificial Lighting on Bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 187–213. [Google Scholar]
- Stone, E.L.; Harris, S.; Jones, G. Impacts of artificial lighting on bats: A review of challenges and solutions. Mamm. Biol. 2015, 80, 213–219. [Google Scholar] [CrossRef]
- Barré, K.; Kerbiriou, C.; Ing, R.-K.; Bas, Y.; Azam, C.; Le Viol, I.; Spoelstra, K. Bats seek refuge in cluttered environment when exposed to white and red lights at night. Mov. Ecol. 2021, 9, 1–11. [Google Scholar] [CrossRef]
- Seewagen, C.L.; Adams, A.M. Turning to the dark side: LED light at night alters the activity and species composition of a foraging bat assemblage in the northeastern United States. Ecol. Evol. 2021, 11, 5635–5645. [Google Scholar] [CrossRef]
- Russo, D.; Cistrone, L.; Libralato, N.; Korine, C.; Jones, G.; Ancillotto, L. Adverse effects of artificial illumination on bat drinking activity. Anim. Conserv. 2017, 20, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Voigt, C.C.; Scholl, J.M.; Bauer, J.; Teige, T.; Yovel, Y.; Kramer-Schadt, S.; Gras, P. Movement responses of common noctule bats to the illuminated urban landscape. Landsc. Ecol. 2020, 35, 189–201. [Google Scholar] [CrossRef]
- Lewanzik, D.; Voigt, C.C. Transition from conventional to light-emitting diode street lighting changes activity of urban bats. J. Appl. Ecol. 2016, 54, 264–271. [Google Scholar] [CrossRef]
- Goller, B.; Blackwell, B.F.; DeVault, T.L.; Baumhardt, P.E.; Fernandez-Juricic, E. Assessing bird avoidance of high-contrast lights using a choice test approach: Implications for reducing human-induced avian mortality. PeerJ 2018, 6, e5404. [Google Scholar] [CrossRef]
- Straka, T.M.; Greif, S.; Schultz, S.; Goerlitz, H.R.; Voigt, C.C. The effect of cave illumination on bats. Glob. Ecol. Conserv. 2020, 21, e00808. [Google Scholar] [CrossRef]
- Spoelstra, K.; Van Grunsven, R.H.A.; Ramakers, J.J.C.; Ferguson, K.B.; Raap, T.; Donners, M.; Veenendaal, E.M.; Visser, M.E. Response of bats to light with different spectra: Light-shy and agile bat presence is affected by white and green, but not red light. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170075. [Google Scholar] [CrossRef]
- Fleming, P.A.; Bateman, P.W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 2018, 138, 145–155. [Google Scholar] [CrossRef]
- Voigt, C.C.; Roeleke, M.; Marggraf, L.; Pētersons, G.; Voigt-Heucke, S.L. Migratory bats respond to artificial green light with positive phototaxis. PLoS ONE 2017, 12, e0177748. [Google Scholar] [CrossRef]
- Voigt, C.C.; Rehnig, K.; Lindecke, O.; Pētersons, G. Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants. Ecol. Evol. 2018, 8, 9353–9361. [Google Scholar] [CrossRef]
- Bennett, V.J.; Hale, A.M. Red aviation lights on wind turbines do not increase bat-turbine collisions. Anim. Conserv. 2014, 17, 354–358. [Google Scholar] [CrossRef]
- Davis, W.H.; Barbour, R.W. The Use of Vision in Flight by the Bat Myotis sodalis. Am. Midl. Nat. 1965, 74, 497. [Google Scholar] [CrossRef]
- McGowan, K.A.; Kloepper, L.N. Different as night and day: Wild bats modify echolocation in complex environments when visual cues are present. Anim. Behav. 2020, 168, 1–6. [Google Scholar] [CrossRef]
- Corcoran, A.J.; Weller, T.J. Inconspicuous echolocation in hoary bats (Lasiurus cinereus). Proc. R. Soc. B Biol. Sci. 2018, 285, 20180441. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, A.J.; Weller, T.J.; Hopkins, A.; Yovel, Y. Silence and reduced echolocation during flight are associated with social behaviors in male hoary bats (Lasiurus cinereus). Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Cuthill, I.C.; Partridge, J.C.; Bennett, A.T.D.; Church, S.C.; Hart, N.S.; Hunt, S. UV vision in birds. Adv. Study Behav. 2000, 29, 159–214. [Google Scholar] [CrossRef]
- Jacobs, G.H. Ultraviolet Vision in Vertebrates. Am. Zoöl. 1992, 32, 544–554. [Google Scholar] [CrossRef]
- Koivula, M.; Korpimäki, E.; Viitala, J. Do Tengmalm’s owls see vole scent marks visible in ultraviolet light? Anim. Behav. 1997, 54, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Lind, O.; Mitkus, M.; Olsson, P.; Kelber, A. Ultraviolet vision in birds: The importance of transparent eye media. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132209. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.; Rojas, L.M.; Ramírez, Y.; McNeil, R. The eyes of oilbirds (Steatornis caripensis): Pushing at the limits of sensitivity. Naturwissenschaften 2004, 91, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Ödeen, A.; Håstad, O. Complex Distribution of Avian Color Vision Systems Revealed by Sequencing the SWS1 Opsin from Total DNA. Mol. Biol. Evol. 2003, 20, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Ghim, M.M.; Hodos, W. Spatial contrast sensitivity of birds. J. Comp. Physiol. A 2006, 192, 523–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmening, W.M.; Nikolay, P.; Orlowski, J.; Wagner, H. Spatial contrast sensitivity and grating acuity of barn owls. J. Vis. 2009, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.R. Producing the image. In Vision, Brain, and Behavior in Birds; Zeigler, H.P., Bischof, H.J., Eds.; Massachusetts Institute of Technology: Cambridge, MA, USA, 1993; pp. 5–24. [Google Scholar]
- Cuthill, I.C.; Partridge, J.C.; Bennett, A.T.; Church, S.C.; Hart, N.S.; Hunt, S. Ultraviolet Vision in Birds. In Advances in the Study of Behavior; Academic Press: Cambridge, MA, USA, 2000; Volume 29, pp. 159–214. [Google Scholar]
- May, R.; Åström, J.; Hamre, Ø.; Dahl, E.L. Do birds in flight respond to (ultra)violet lighting? Avian Res. 2017, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Huso, M.M.P. An estimator of wildlife fatality from observed carcasses. Environmetrics 2011, 22, 318–329. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Bell, D.A. Effects of Wind Turbine Curtailment on Bird and Bat Fatalities. J. Wildl. Manag. 2020, 84, 685–696. [Google Scholar] [CrossRef]
- Arnett, E.B. A Preliminary Evaluation on the Use of Dogs to Recover Bat Fatalities at Wind Energy Facilities. Wildl. Soc. Bull. 2006, 34, 1440–1445. [Google Scholar] [CrossRef]
- Korstian, J.M.; Hale, A.M.; Bennett, V.J.; Williams, D.A. Advances in sex determination in bats and its utility in wind-wildlife studies. Mol. Ecol. Resour. 2013, 13, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Bennett, V.J.; Hale, A.M.; Williams, D.A. When the excrement hits the fan: Fecal surveys reveal species-specific bat activity at wind turbines. Mamm. Biol. 2017, 87, 125–129. [Google Scholar] [CrossRef]
- Player, D.; Lausen, C.; Zaitlin, B.; Harrison, J.; Paetkau, D.; Harmston, E. An alternative minimally invasive technique for genetic sampling of bats: Wing swabs yield species identification. Wildl. Soc. Bull. 2017, 41, 590–596. [Google Scholar] [CrossRef]
- Serrao, N.R.; Weckworth, J.K.; McKelvey, K.S.; Dysthe, J.C.; Schwartz, M.K. Molecular genetic analysis of air, water, and soil to detect big brown bats in North America. Biol. Conserv. 2021, 261, 109252. [Google Scholar] [CrossRef]
- Williams, K.E.; Sherwin, R.E.; Vandalen, K.K.; Piaggio, A.J. A Noninvasive Genetic Technique Using Guano for Identification of Corynorhinus townsendii (Townsend’s Big-Eared Bat) Maternity Roosts. West. N. Am. Nat. 2020, 80, 476–482. [Google Scholar] [CrossRef]
- Guan, X.; Britzke, E.R.; Piaggio, A.J.; Bergman, D.L.; Van Pelt, L.; Lance, R.F. Genetic assays for guano-based identification of species and sex in bats of the United States and Canada. J. Mammal. 2020, 101, 970–978. [Google Scholar] [CrossRef]
- Maurer, J.D.; Huso, M.; Dalthorp, D.; Madsen, L.; Fuentes, C. Comparing methods to estimate the proportion of turbine-induced bird and bat mortality in the search area under a road and pad search protocol. Environ. Ecol. Stat. 2020, 27, 769–801. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Bell, D.A.; Standish, S. Dogs Detect Larger Wind Energy Effects on Bats and Birds. J. Wildl. Manag. 2020, 84, 852–864. [Google Scholar] [CrossRef] [Green Version]
- Chipps, A.S.; Hale, A.M.; Weaver, S.P.; Williams, D.A. Genetic Approaches are Necessary to Accurately Understand Bat-Wind Turbine Impacts. Diversity 2020, 12, 236. [Google Scholar] [CrossRef]
- Pinzari, C.A.; Bonaccorso, F.J. A Test of Sex Specific Genetic Markers in the Hawaiian Hoary Bat and Relevance to Population Studies; University of Hawaii at Hilo: Hilo, HI, USA, 2018. [Google Scholar]
- Ahlén, I.; Baagøe, H.J.; Bach, L. Behavior of Scandinavian Bats during Migration and Foraging at Sea. J. Mammal. 2009, 90, 1318–1323. [Google Scholar] [CrossRef] [Green Version]
- Correia, R.; Faneca, C.; Vieira, J.M.N.; Bastos, C.; Mascarenhas, M.; Costa, H.; Bernardino, J.; Fonseca, C.; Pereira, M.J.R. Bat monitoring system for wind farms. In Proceedings of the 12th IFAC Conference on Programmable Devices and Embedded Systems, Velke Karlovice, Czech Republic, 25–27 September 2013. [Google Scholar]
- Horn, J.W.; Arnett, E.B.; Kunz, T.H. Behavioral Responses of Bats to Operating Wind Turbines. J. Wildl. Manag. 2008, 72, 123–132. [Google Scholar] [CrossRef]
- Huzzen, B.E.; Hale, A.M.; Bennett, V.J. An effective survey method for studying volant species activity and behavior at tall structures. PeerJ 2020, 8, e8438. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Bell, D.A. Relating Bat Passage Rates to Wind Turbine Fatalities. Diversity 2020, 12, 84. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, J.K. Assessment of Bat Mortality and Activity at Buffalo Mountain Windfarm, Eastern Tennessee. Master’s Thesis, University of Tennessee—Knoxville, Knoxville, TN, USA, 2004. [Google Scholar]
- Campbell, D.T. Factors relevant to the validity of experiments in social settings. Psychol. Bull. 1957, 54, 297–312. [Google Scholar] [CrossRef]
- Hayes, S.C. Single case experimental design and empirical clinical practice. J. Consult. Clin. Psychol. 1981, 49, 193–211. [Google Scholar] [CrossRef]
Group | Period | UV | Nights | Total | Mean | SD | Median | Min | Max | ALIV Mean Difference | Reduce BH p-Value | Increase BH p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
bats | spring | 0 | 44 | 157 | 3.5 | 3.8 | 2.5 | 0 | 15 | 1.6 | 0.981 | 0.144 |
1 | 44 | 234 | 5.3 | 5.3 | 4.5 | 0 | 22 | |||||
bats | autumn | 0 | 19 | 502 | 26.4 | 18.8 | 25.0 | 1 | 71 | 6.7 | 0.981 | 0.372 |
1 | 19 | 621 | 32.7 | 19.3 | 24.0 | 6 | 79 | |||||
bats—duration | spring | 0 | 44 | 1046 | 23.8 | 32.1 | 14.5 | 0 | 156 | 10.0 | 0.981 | 0.294 |
1 | 44 | 1538 | 35.0 | 42.9 | 24.0 | 0 | 230 | |||||
bats—duration | autumn | 0 | 19 | 5899 | 310.5 | 358.1 | 178.0 | 6 | 1430 | 66.7 | 0.486 | 0.486 |
1 | 19 | 6884 | 362.3 | 343.5 | 229.0 | 39 | 1331 | |||||
bats—high-risk | spring | 0 | 44 | 5 | 0.1 | 0.3 | 0.0 | 0 | 1 | −0.1 | 0.372 | 0.981 |
1 | 44 | 2 | 0.1 | 0.2 | 0.0 | 0 | 1 | |||||
bats—high-risk | autumn | 0 | 19 | 59 | 3.1 | 3.3 | 3.0 | 0 | 13 | 0.4 | 0.981 | 0.567 |
1 | 19 | 67 | 3.5 | 4.9 | 2.0 | 0 | 23 | |||||
insects | spring | 0 | 62 | 17,627 | 284.3 | 456.0 | 44.5 | 0 | 1856 | 143.9 | 0.986 | 0.064 |
1 | 62 | 27,829 | 448.9 | 668.8 | 145.0 | 0 | 2601 | |||||
insects | autumn | 0 | 19 | 12,601 | 663.2 | 621.0 | 568.0 | 0 | 2545 | 76.0 | 0.947 | 0.562 |
1 | 19 | 15,080 | 793.7 | 983.6 | 354.0 | 113 | 3987 | |||||
birds | spring | 0 | 62 | 103 | 1.7 | 3.0 | 0.0 | 0 | 13 | −0.3 | 0.767 | 0.767 |
1 | 62 | 86 | 1.4 | 2.1 | 0.0 | 0 | 10 | |||||
birds | autumn | 0 | 19 | 20 | 1.1 | 1.2 | 1.0 | 0 | 4 | −0.1 | 0.767 | 0.767 |
1 | 19 | 29 | 1.5 | 3.3 | 1.0 | 0 | 15 | |||||
high-flyers | spring | 0 | 62 | 483 | 7.8 | 11.7 | 4.0 | 0 | 76 | 2.5 | 0.895 | 0.712 |
1 | 62 | 634 | 10.2 | 19.0 | 4.0 | 0 | 113 | |||||
high-flyers | autumn | 0 | 19 | 238 | 12.5 | 9.0 | 12.0 | 0 | 29 | −1.2 | 0.767 | 0.767 |
1 | 19 | 212 | 11.2 | 7.7 | 11.0 | 0 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cryan, P.M.; Gorresen, P.M.; Straw, B.R.; Thao, S.; DeGeorge, E. Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light. Animals 2022, 12, 9. https://doi.org/10.3390/ani12010009
Cryan PM, Gorresen PM, Straw BR, Thao S, DeGeorge E. Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light. Animals. 2022; 12(1):9. https://doi.org/10.3390/ani12010009
Chicago/Turabian StyleCryan, Paul M., Paulo M. Gorresen, Bethany R. Straw, Syhoune (Simon) Thao, and Elise DeGeorge. 2022. "Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light" Animals 12, no. 1: 9. https://doi.org/10.3390/ani12010009
APA StyleCryan, P. M., Gorresen, P. M., Straw, B. R., Thao, S., & DeGeorge, E. (2022). Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light. Animals, 12(1), 9. https://doi.org/10.3390/ani12010009