Tracking Devices for Pets: Health Risk Assessment for Exposure to Radiofrequency Electromagnetic Fields †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Tracking Devices for Animals
2.1. Technology
2.2. Overview of Tracking Devices for Pets and Horses
3. Biological Effects of RF-EMFs and Health-Related Limit Values
4. Exposure and Risk Assessment
4.1. Ambient Exposure of Pets
4.2. Exposure by Indoor Devices
4.2.1. WLAN
4.2.2. Bluetooth
4.2.3. DECT
4.2.4. Baby Surveillance Devices
4.3. Exposure by Tracking Devices
4.4. Risk Assessment Regarding RF-EMF Exposure
5. Conclusions and Recommendations
- The exposure from RF-emitting indoor devices can be eliminated or reduced by switching off the power supply or limiting the operating time of technical devices;
- A sufficient distance between RF-emitting indoor devices and animals should be maintained. This should especially be considered with regard to the resting areas of animals;
- A TD should only be applied in those periods in which the pets have outdoor access and may run away;
- For juvenile animals, a higher degree of caution regarding indoor exposure and the use of TDs should be considered because the same exposure to a certain level of field intensity can result in a higher dose rate compared to adult animals;
- The TD should be selected according to the transmission protocols used. This means that newer technologies (3G or 4G) should be preferred because these transfer protocols reduce the overall output power more effectively;
- The TD should offer the possibility of configuring the time interval with which the geographical position is sent, thus reducing exposure by reducing the data transfer. Some TDs adapt the intervals based on animals’ physical activity (moving vs. resting);
- To reduce the exposure to RF-EMFs, a harness can be used instead of a collar to attach the TD. With a harness, the distance between the head (the brain and eyes) and the TD can be increased and thus the dose rate (SAR value) can be considerably reduced. However, the risks of harness use for cats have not been investigated thus far;
- The name of the pet’s register and the pet’s ID number should always be available on the collar/harness of a dog or cat in case the tracking device is out of order (e.g., low power supply, no connection to transmit the position data);
- Animals should be trained via positive reinforcement to tolerate collars/harnesses and mounted objects such as TDs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DECT | digital enhanced cordless telecommunication |
GNSS | global navigation satellite system |
GPS | Global Positioning System |
HHD | handheld device |
IARC | International Agency for Research on Cancer |
ICNIRP | International Commission on Non-Ionising Radiation Protection |
LBS | location-based service |
PD | power density |
RF-EMF | radiofrequency electromagnetic field |
RFID | radiofrequency identification |
SAR | specific absorption rate |
SCENIHR | Scientific Committee on Emerging and Newly Identified Health Risks |
TD | tracking device |
WHO | World Health Organisation |
WLAN | wireless local area network |
References
- Weiss, E.; Slater, M.; Lord, L. Frequency of lost dogs and cats in the United States and the methods used to locate them. Animals 2012, 2, 301–315. [Google Scholar] [CrossRef] [PubMed]
- McGreevy, P.; Masters, S.; Richards, L.; Soares Magalhaes, R.J.; Peaston, A.; Combs, M.; Irwin, P.J.; Lloyd, J.; Croton, C.; Wylie, C.; et al. Identification of microchip implantation events for dogs and cats in the vetcompass Australia database. Animals 2019, 9, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, R.; Heizmann, V.; Troxler, J. Welfare aspects of identification and marking methods for domestic cats. Wien. Tierarztl. Monatsschr. 2016, 103, 80–90. [Google Scholar]
- Lord, L.K.; Ingwersen, W.; Gray, J.L.; Wintz, D.J. Characterization of animals with microchips entering animal shelters. J. Am. Vet. Med. Assoc. 2009, 235, 160–167. [Google Scholar] [CrossRef]
- Arhant, C.; Binder, R.; Kadlik, S.; Wogritsch, R.; Konicek, C.; Troxler, J. Beurteilung von Tierheimen in Österreich; Institute for Animal Husbandry and Animal Welfare: Vienna, Austria, 2011; p. 195. [Google Scholar]
- AAFP. Identification of Cats. Available online: https://catvets.com/public/PDFs/PositionStatements/Identification-of-Cats.pdf (accessed on 25 February 2021).
- Yalvac, S.; Berber, M. Galileo satellite data contribution to GNSS solutions for short and long baselines. Measurement 2018, 124, 173–178. [Google Scholar] [CrossRef]
- So-In, C.; Phaudphut, C.; Tesana, S.; Weeramongkonlert, N.; Wijitsopon, K.; KoKaew, U.; Waikham, B.; Saiyod, S. Mobile animal tracking systems using light sensor for efficient power and cost saving motion detection. In Proceedings of the 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, Poland, 18–20 July 2012. [Google Scholar]
- Kays, R.; Dunn, R.R.; Parsons, A.W.; Mcdonald, B.; Perkins, T.; Powers, S.A.; Shell, L.; McDonald, J.L.; Cole, H.; Kikillus, H.; et al. The small home ranges and large local ecological impacts of pet cats. Anim. Conserv. 2020, 23, 516–523. [Google Scholar] [CrossRef]
- Hall, C.M.; Bryant, K.A.; Haskard, K.; Major, T.; Bruce, S.; Calver, M.C. Factors determining the home ranges of pet cats: A meta-analysis. Biol. Conserv. 2016, 203, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, C.E.; van Heezik, Y. Weighed down by science: Do collar-mounted devices affect domestic cat behaviour and movement? Wildl. Res. 2015, 41, 606–614. [Google Scholar] [CrossRef]
- Paci, P.; Mancini, C.; Price, B.A. Understanding the interaction between animals and wearables: The wearer experience of cats. In Proceedings of the DIS 2020—2020 ACM Designing Interactive Systems Conference, Eindhoven, The Netherlands, 6–10 July 2020; pp. 1701–1712. [Google Scholar]
- Kim, J.H.; Lee, J.K.; Kim, H.G.; Kim, K.B.; Kim, H.R. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol. Ther. 2019, 27, 265–275. [Google Scholar] [CrossRef]
- ICNIRP. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz) (International Commission on Non-Ionizing Radiation Protection). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Liorni, I.; Capstick, M.; van Wel, L.; Wiart, J.; Joseph, W.; Cardis, E.; Guxens, M.; Vermeulen, R.; Thielens, A. Evaluation of specific absorption rate in the far-field, near-to-far field and near-field regions for integrative radiofrequency exposure assessment. Radiat. Prot. Dosim. 2020, 190, 459–472. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2006 WHO Research Agenda for Static Fields; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Hyland, G.J. Physics and biology of mobile telephony. Lancet 2000, 356, 1833–1836. [Google Scholar] [CrossRef]
- Molla-Djafari, H.; Schmid, G.; Kundi, M.; Knasmüller, S.; Mosgöller, W. ATHEM-2: Untersuchung Athermischer Wirkungen Elektromagnetischer Felder im Mobilfunkbereich; Allgemeine Unfallversicherungsanstalt (AUVA): Wien, Austria, 2016. [Google Scholar]
- Yakymenko, I.; Tsybulin, O.; Sidorik, E.; Henshel, D.; Kyrylenko, O.; Kyrylenko, S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn. Biol. Med. 2016, 35, 186–202. [Google Scholar] [CrossRef] [PubMed]
- Kesari, K.K.; Behari, J.; Kumar, S. Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int. J. Radiat. Biol. 2010, 86, 334–343. [Google Scholar] [CrossRef]
- Kesari, K.K.; Kumar, S.; Nirala, J.; Siddiqui, M.H.; Behari, J. Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochem. Biophys. 2013, 65, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Campisi, A.; Gulino, M.; Acquaviva, R.; Bellia, P.; Raciti, G.; Grasso, R.; Musumeci, F.; Vanella, A.; Triglia, A. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci. Lett. 2010, 473, 52–55. [Google Scholar] [CrossRef]
- Franzellitti, S.; Valbonesi, P.; Ciancaglini, N.; Biondi, C.; Contin, A.; Bersani, F.; Fabbri, E. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat. Res. 2010, 683, 35–42. [Google Scholar] [CrossRef]
- Van Wel, L.; Liorni, I.; Huss, A.; Thielens, A.; Wiart, J.; Joseph, W.; Röösli, M.; Foerster, M.; Massardier-Pilonchery, A.; Capstick, M.; et al. Radio-frequency electromagnetic field exposure and contribution of sources in the general population: An organ-specific integrative exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2021. [Google Scholar] [CrossRef]
- IARC. Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields; Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer: Lyon, France, 2013; p. 460. [Google Scholar]
- Zeleke, B.M.; Brzozek, C.; Bhatt, C.R.; Abramson, M.J.; Croft, R.J.; Freudenstein, F.; Wiedemann, P.; Benke, G. Personal Exposure to Radio Frequency Electromagnetic Fields among Australian Adults. Int. J. Environ. Res. Public Health 2018, 15, 2234. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; De Giudici, P.; Genier, J.-C.; Cassagne, E.; Doré, J.-F.; Ducimetière, P.; Evrard, A.-S.; Letertre, T.; Ségala, C. Health disturbances and exposure to radiofrequency electromagnetic fields from mobile-phone base stations in French urban areas. Environ. Res. 2021, 193, 110583. [Google Scholar] [CrossRef]
- De Giudici, P.; Genier, J.-C.; Martin, S.; Doré, J.-F.; Ducimetière, P.; Evrard, A.-S.; Letertre, T.; Ségala, C. Radiofrequency exposure of people living near mobile-phone base stations in France. Environ. Res. 2021, 194, 110500. [Google Scholar] [CrossRef] [PubMed]
- Jalilian, H.; Eeftens, M.; Ziaei, M.; Röösli, M. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. Environ. Res. 2019, 176, 108517. [Google Scholar] [CrossRef]
- Gajšek, P.; Ravazzani, P.; Wiart, J.; Grellier, J.; Samaras, T.; Thuróczy, G. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz). J. Expo. Sci. Environ. Epidemiol. 2015, 25, 37–44. [Google Scholar] [CrossRef]
- Röösli, M.; Struchen, B.; Eeftens, M.; Roser, K. Persönliche Messungen von Hochfrequenten Elektromagnetischen Feldern Bei Einer Bevölkerungsstichprobe im Kanton Zürich; Schweizerisches Tropen-und Public Health Institut, Departement für Epidemiologie und Public Health: Basel, Switzerland, 2016. [Google Scholar]
- Joseph, W.; Verloock, L.; Goeminne, F.; Vermeeren, G.; Martens, L. Assessment of RF exposures from emerging wireless communication technologies in different environments. Health Phys. 2012, 102, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Vazquez, R.; Gonzalez-Rubio, J.; Arribas, E.; Najera, A. Personal RF-EMF exposure from mobile phone base stations during temporary events. Environ. Res. 2019, 175, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Vermeeren, G.; Joseph, W.; Martens, L. Radiofrequency exposure assessment of baby surveillance devices in the frequency range 400 MHz–2.45 GHz. Bioelectromagnetics 2018, 39, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Popović, M.; Koprivica, M.; Milinković, J.; Nešković, A. Experimental analysis of individual EMF exposure for GSM/UMTS/WLAN user devices. Ann. Telecommun. 2019, 74, 79–91. [Google Scholar] [CrossRef]
- Iyare, R.N.; Volskiy, V.; Vandenbosch, G.A.E. Comparison of peak electromagnetic exposures from mobile phones operational in either data mode or voice mode. Environ. Res. 2021, 197, 110902. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Lott, U.; Kramer, A.; Kuster, N. Assessment methods for demonstrating compliance with safety limits of wireless devices used in home and office environments. IEEE Trans. Electromagn. Compat. 2007, 49, 519–525. [Google Scholar] [CrossRef]
- Joshi, P.; Ghasemifard, F.; Colombi, D.; Törnevik, C. Actual Output Power Levels of User Equipment in 5G Commercial Networks and Implications on Realistic RF EMF Exposure Assessment. IEEE Access 2020, 8, 204068–204075. [Google Scholar] [CrossRef]
- SCENIHR. Potential Health Effects of Exposure to Electromagnetic Fields (EMF); Scientific Committee on Emerging Newly Identified Health Risks: Luxembourg, 2015. [Google Scholar]
- Schmid, G.; Lager, D.; Preiner, P.; Überbacher, R.; Cecil, S. Exposure caused by wireless technologies used for short-range indoor communication in homes and offices. Radiat. Prot. Dosim. 2007, 124, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Lönn, S.; Forssen, U.; Vecchia, P.; Ahlbom, A.; Feychting, M. Output power levels from mobile phones in different geographical areas; implications for exposure assessment. Occup. Environ. Med. 2004, 61, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Persson, T.; Törnevik, C.; Larsson, L.E.; Lovén, J. Output power distributions of terminals in a 3G mobile communication network. Bioelectromagnetics 2012, 33, 320–325. [Google Scholar] [CrossRef]
- Vrijheid, M.; Mann, S.; Vecchia, P.; Wiart, J.; Taki, M.; Ardoino, L.; Armstrong, B.; Auvinen, A.; Bédard, D.; Berg-Beckhoff, G. Determinants of mobile phone output power in a multinational study: Implications for exposure assessment. Occup. Environ. Med. 2009, 66, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Colombi, D.; Thors, B.; Larsson, L.-E.; Törnevik, C. Output power levels of 4G user equipment and implications on realistic RF EMF exposure assessments. IEEE Access 2017, 5, 4545–4550. [Google Scholar] [CrossRef]
- Joshi, P.; Agrawal, M.; Thors, B.; Colombi, D.; Kumar, A.; Törnevik, C. Power level distributions of radio base station equipment and user devices in a 3G mobile communication network in India and the impact on assessments of realistic RF EMF exposure. IEEE Access 2015, 3, 1051–1059. [Google Scholar] [CrossRef]
- Maurya, R.; Nambiar, K.A.; Babbe, P.; Kalokhe, J.P.; Ingle, Y.; Shaikh, N. Application of Restful APIs in IOT: A Review. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9. [Google Scholar] [CrossRef]
- AlShahwan, F.; Moessner, K.; Carrez, F. Evaluation of Distributed SOAP and RESTful MobileWeb Services. Int. J. Adv. Netw. Serv. 2010, 3, 447–461. [Google Scholar]
- Van Wel, L. Challenges and Advancements in Radiofrequency Electromagnetic Fields Exposure Assessment for Environmental Epidemiology; Utrecht University: Utrecht, The Netherlands, 2020. [Google Scholar]
- Cucurachi, W.L.M.T.S.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Bolte, J.F.B.; de Snoo, G.R. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ. Int. 2013, 51, 116–140. [Google Scholar] [CrossRef]
- Chang, B.K.; Huang, A.T.; Joines, W.T.; Kramer, R.S. The effect of microwave radiation (1.0 GHz) on the blood-brain barrier in dogs. Radio Sci. 1982, 17, 1656–1685. [Google Scholar] [CrossRef]
- Seaman, R.L.; Lebovitz, R.M. Thresholds of cat cochlear nucleus neurons to microwave pulses. Bioelectromagnetics 1988, 10, 147–160. [Google Scholar] [CrossRef]
- Christ, A.; Gosselin, M.-C.; Christopoulou, M.; Kühn, S.; Kuster, N. Age-dependent tissue-specific exposure of cell phone users. Phys. Med. Biol. 2010, 55, 1767. [Google Scholar] [CrossRef]
- Arhant, C.; Heizmann, V.; Schauberger, G.; Windschnurer, I. Risks and benefits of collar use in cats (Felis catus); a literature review. J. Vet. Behav. 2021. submitted. [Google Scholar]
- Calver, M.; Adams, G.; Clark, W.; Pollock, K. Assessing the safety of collars used to attach predation deterrent devices and ID tags to pet cats. Anim. Welf. 2013, 22, 95–105. [Google Scholar] [CrossRef]
- Lord, L.K.; Griffin, B.; Slater, M.R.; Levy, J.K. Evaluation of collars and microchips for visual and permanent identification of pet cats. J. Am. Vet. Med. Assoc. 2010, 237, 387–394. [Google Scholar] [CrossRef]
- Bengsen, A.J.; Butler, J.A.; Masters, P. Applying home-range and landscape-use data to design effective feral-cat control programs. Wildl. Res. 2012, 39, 258–265. [Google Scholar] [CrossRef]
- Moseby, K.E.; Neilly, H.; Read, J.L.; Crisp, H.A. Interactions between a top order predator and exotic mesopredators in the Australian rangelands. Int. J. Ecol. 2012, 2012, 250352. [Google Scholar] [CrossRef] [Green Version]
- Horn, J.A.; Mateus-Pinilla, N.; Warner, R.E.; Heske, E.J. Home range, habitat use, and activity patterns of free-roaming domestic cats. J. Wildl. Manag. 2011, 75, 1177–1185. [Google Scholar] [CrossRef]
- Thomas, R.L.; Baker, P.J.; Fellowes, M.D. Ranging characteristics of the domestic cat (Felis catus) in an urban environment. Urban Ecosyst. 2014, 17, 911–921. [Google Scholar] [CrossRef]
- Kitts-Morgan, S.E.; Caires, K.C.; Bohannon, L.A.; Parsons, E.I.; Hilburn, K.A. Free-ranging farm cats: Home range size and predation on a livestock unit in Northwest Georgia. PLoS ONE 2015, 10, e0120513. [Google Scholar]
- Subacz, K. Impact Assessment of a Trap-Neuter-Return Program on Selected Features of Auburn, Alabama Feral Cat Colonies; Auburn University: Auburn, AL, USA, 2008. [Google Scholar]
- Hall, C.M.; Fontaine, J.B.; Bryant, K.A.; Calver, M.C. Assessing the effectiveness of the Birdsbesafe® anti-predation collar cover in reducing predation on wildlife by pet cats in Western Australia. Appl. Anim. Behav. Sci. 2015, 173, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Calver, M.; Thomas, S.; Bradley, S.; McCutcheon, H. Reducing the rate of predation on wildlife by pet cats: The efficacy and practicability of collar-mounted pounce protectors. Biol. Conserv. 2007, 137, 341–348. [Google Scholar] [CrossRef]
Company | Species | Tracking Technology | Dimensions (mm3) | Mass (g) | Communication Technology (Far Field) | Communication Technology (Near Field) | Power Supply |
---|---|---|---|---|---|---|---|
PAJ GPS; Pet Finder PAJ GPS; ALLROUND Tracker | Dogs, cats Horses | GPS GPS | 57 × 32 × 16 106 × 63 × 22 | 28 140 | 2G 2G | - | 3.7 V 500 mAh Li-ion; standby: 2–3 d; everyday tracking: 1–2 d standby: 20–60 d |
Simmotrade; TKSTAR 911 | Cats, dogs | GPS, LBS | 62 × 30 × 18 | 33 | 2G | - | 3.7 V 500 mAh Li-ion; standby: 8 d |
Simmotrade; TK909 | Dogs | GPS, LBS | 70 × 37 × 20 | 44 | 2G | - | 3.7 V 600 mAh Li-ion, standby: 12.5 d |
Kippy; Kippy Vita S Black Guardian | Cats, dogs | GPS | 61 × 44 × 27 | 48 | 2G | - | Up to 7 d |
Tracker ID; NX-4440-919 | Dogs, other pets | GPS, LBS | 52 × 39 × 17 | 33 | 2G | - | 420 mAh LiPo |
Pawtrack; Pawtrack GPS Cat Collar | Cats | GPS, GALILEO | Collars in three different sizes | 35 | 2G | WLAN | 2 d 2 h to recharge |
FI; FI Series 2 | Dogs | GPS | Collars for circumferences of the neck >29 cm | - | 4G | Bluetooth, WLAN | 3 m to 3 w and 2 d in lost-dog mode |
Pawfit; Pawfit 2 | Cats, dogs | GPS, LBS | 50 × 35 × 15 | 30 | 2G | WLAN | Up to 6 d |
Tractive; GPS Dog 4 | Dogs | GPS | 71 × 28 × 17 | 35 | 2G | - | Up to 5 d |
Tractive; GPS Cat Tracker | Cats | GPS | 72 × 29 × 16 | 28 | 2G | - | 2–5 d |
Tail It; Tail It pet | Cats, dogs | GPS, LBS | 41 × 29 × 12 | 23 | 2G | WLAN | 520 mAh lithium, 14 d in standby |
FirBark; FitBark GPS | Dogs | GPS, LBS | NA | 17 | 4G | Bluetooth, WLAN | 10–20 d |
Whistle; Whistle Go Explore | Dogs, other pets >3.6 kg | GPS, LBS | 36 × 46 × 18 | 28 | 4G | WLAN | Up to 20 d |
Petfon; Pet GPS-Tracker | Dogs | GPS, GLONASS | 42 × 42 × 18 | 24 | No SIM card 916 MHz+ PetFon Mash <10 km | 916 MHz (<5 km) | Polymer lithium; up to 8 h |
Findster; Findster Duo+ | Cats, dogs | GPS | 50 × 50 × 13 | 21 | - | 900 MHz (4.8 km) | 12 h to 7 d |
HoofStep | Horses | GPS | 96 × 47 × 45 | 149 | - | 2400 MHz (1 km) | 21 d (3 h charging) |
Cat-Control; Cat-Control Katzenpeilsender | Cats | - | 30 (diameter) × 5 | 5 | - | Transmitter + loop antenna 2400 MHz (120 m) | Up to 5 m |
Pet Tracer; PetTracer Set EU | Cats | GPS | Collars for neck circumferences >21.5 cm | 34 | - | Transmitter + loop antenna 433 MHz (1.6 km) | Up to 30 d |
Garmin; Atemos 50/K5 System | Dogs | GPS, GLONASS | 89 × 44 × 47 collars for neck circumferences >24 cm | 188 | No SIM card 170 MHz <10 km | - | Lithium ion 20–40 h |
Telekom, Alcatel Combi Protect | Dogs | GPS, GLONASS | 42 × 42 × 16.3 | 33 | 2G | - | 460 mAh Li-ion Up to 4 d |
Parameters for the Exposure Assessment | Equation | |
---|---|---|
Emission | Output power P (W) or output power level PL (dBm), related to P0 = 1 mW | PL = 10 log P/P0 |
Field intensity | Electric field strength E (V/m) and power density PD (W/m2) | PD = E²/377 Ω |
Dose rate | Specific absorption rate SAR (W/kg) | SAR = γ E2/ρ |
Designation | Frequency (Mhz) | Application |
---|---|---|
Long-wave | 0.146–0.284 | AM radio |
Medium-wave | 0.527–1.607 | AM radio |
Short-wave | 3.9–26 | International radio |
UHF | 470–854 | Analogue and digital TV |
VHF (band II) | 88–108 | FM radio |
VHF (band III) | 174–226 | DAB and analogue/digital TV |
Parameters | WLAN | DECT | Baby Surveillance | Bluetooth | Ref. |
---|---|---|---|---|---|
Frequency | 2400 | 1800 | 400/2450 | 2400 | |
Peak output power (mW/dBm) | 100/20 | 250/24 | 500/27 | 100/20 | [34] |
Effective output power level (dBm) | Mean 19.6 Rural areas: 90-p: 33 10-p: 5 | Mean 18 to 24 | 27 (400 MHz) −7 (1900 MHz) −6 to 4.2 (2400 MHz) | [35] | |
SAR (µW/kg) | 60–810 | 13 to 27 | 10 to 77 | 466 | [36] |
105–136 | [37,38] | ||||
40 to −370 | [35] |
Power Density PD (µW/m2) and the Distance from the Source (m) | Frequency (MHz) | Safety Distance (m) | Source and Reference | |
---|---|---|---|---|
192,000 (0.2 m) | 27,000 (1 m) | 863 | 21 | Baby surveillance [36] |
350,000 (0.2 m) | 22,300 (1 m) | 1900 | 20 | |
3151 (1 m) | 446 (3 m) | 446 | 7 | Baby surveillance [34] |
537 (1 m) | 52 (3 m) | 864 | 2 | |
424 (1 m) | 32 (3 m) | 2450 | 2 | |
34,570 (1 m) | 4436 (3 m) | 1900 | 21 | DECT [34] |
4079 (1 m) | 514 (3 m) | 7 | ||
19,190 (1 m) | 5968 (3 m) | 35 | ||
9880 (1 m) | 1573 (3 m) | 13 |
Frequency (Mhz) | ICNIRP Limit Values | Duty Factor (%) | Electric Field Strength E (mV/m) and Power Density PD (µW/m2) | SAR |
---|---|---|---|---|
Power Density PD (W/m2) | (W/kg) | |||
446 | 2.23 | 100 | 550/1500 | 0.04 to 0.37 |
864 | 4.32 | 100 | 802/6000 | |
1900 | 9.55 | 4 | 550/880 | 0.03 to 0.15 |
802/2100 | ||||
2400 | 10 | 5–53 | 220/1600 | 0.09 to 0.21 |
128/6800 |
2G GSM900 | 2G GSM1800 | 3G GPRS | 3G UMTS/WCDMA | 4G LTE | 5G | Comment/ Reference | |
---|---|---|---|---|---|---|---|
Frequency | 900 | 1800 | 900–1900 | 1900–2100 | 800–2600 | 700–3800 | |
Peak output power (mW/dBm) | 2000/33 | 1000/30 | 250/24 | 250/24 | 200/23 | 200/23 | [41,42,43] |
Mean output power level (dBm) | Mean: 19.6 Rural— 90-p: 33 dBm 10-p: 5 dBm | Mean: 18–24 | Median: 4.0 | Median: −14 90-p: −1.5 Suburban— Median: −17 90-p: −4.0 Voice/rural— Median: −9.0 95-p: 11.9 Data/rural— Median: −2.6 95-p: 17.4 | Rural— Median: −6.3 95-p: 6.4 Suburban— Median −9.9 95-p: 1.2 | Median: 3.0 95-p: 12 | [43,44,45,46,47,48] |
Electric field strength E (V/m) | 18.5–209 | 18.5–209 | 0.98–68.5 | 3.03–69.3 | 4 MB and 30 s [42] | ||
Maximum and mean contributions of the field strength to the total field strength Emax/Emean (%) | 100/53 | 87/15 | 90/6 | 23/0.4 | [34] | ||
SAR (µW/kg) | 90–2400 | 15–550 | [38] |
Quality of the Connection | 2G (900 MHz) | 3G (2100 MHz) | Reference |
---|---|---|---|
Mean Output Power (mW) | |||
High | 69 | 1.8 | [38] |
Low | 1800 | 170 | |
SAR(mW/kg) | |||
High | 0.091 | 0.015 | [45] |
Medium | 1.978 | 0.88 | |
Low | 2.399 | 0.548 |
Tracking Devices | Customisable | Default Intervals | Emergency-Mode |
---|---|---|---|
Paj GPS | NA | NA | NA |
Simmotrade | 30 s to 24 h | ||
Kippy | Update by request | 3 s | |
Tracker ID | >1 min | ||
Pawtrack | 6 min | ||
FI | 2–3 min | 1 min | |
Pawfit | 5 s to 4 h 2–4 h resting 1–2 min walking | 5 s | |
Tractive | 60 min resting 10 min moving | 2–3 s | |
Tail It Pet | Update by request | 5 s | |
FitBark | 1 min | 1 min | |
Whistle | 3 or 6 min | 15 s | |
PetFon | 10, 20, or 60 s | ||
Findster | Update by request | 10 s | |
Hoofstep | 5 min resting 5 s moving | ||
Cat-Control | NA | NA | NA |
PetTracer | 1, 3, or 15 min | 15 s | |
Garmin | >5 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klune, J.; Arhant, C.; Windschnurer, I.; Heizmann, V.; Schauberger, G. Tracking Devices for Pets: Health Risk Assessment for Exposure to Radiofrequency Electromagnetic Fields. Animals 2021, 11, 2721. https://doi.org/10.3390/ani11092721
Klune J, Arhant C, Windschnurer I, Heizmann V, Schauberger G. Tracking Devices for Pets: Health Risk Assessment for Exposure to Radiofrequency Electromagnetic Fields. Animals. 2021; 11(9):2721. https://doi.org/10.3390/ani11092721
Chicago/Turabian StyleKlune, Judith, Christine Arhant, Ines Windschnurer, Veronika Heizmann, and Günther Schauberger. 2021. "Tracking Devices for Pets: Health Risk Assessment for Exposure to Radiofrequency Electromagnetic Fields" Animals 11, no. 9: 2721. https://doi.org/10.3390/ani11092721
APA StyleKlune, J., Arhant, C., Windschnurer, I., Heizmann, V., & Schauberger, G. (2021). Tracking Devices for Pets: Health Risk Assessment for Exposure to Radiofrequency Electromagnetic Fields. Animals, 11(9), 2721. https://doi.org/10.3390/ani11092721