Influence of Horse Age, Marinating Substances, and Frozen Storage on Horse Meat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Analytical Methods
2.3. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kołodziejczyk, D.; Socik, M.; Socha, S. Importance of breeding and management of cold-blooded horses in terms of their meat utilization. Acta Sci. Zootech. 2019, 18, 63–72. [Google Scholar] [CrossRef]
- Makała, H. The use of horsemeat in Poland and in the world. Gospod. Mięsna 2007, 11, 16–18. (In Polish) [Google Scholar]
- GUS. Statistical Yearbook of Agriculture; Główny Urząd Statystyczny: Warszawa, Poland, 2020. (In Polish) [Google Scholar]
- Palo, P.D.; Maggiolino, A.; Centoducati, P.; Tateo, A. Color changes in meat of foals as affected by slaughtering age and post-thawing time. Asian-Australas. J. Anim. Sci. 2012, 25, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Rodríguez, E.; Purriňos, L.; Crecente, S.; Bermúdez, R.; Lorenzo, J.M. Meat quality of “Galician Mountain” foals breed. Effect of sex, slaughter age and livestock production system. Meat Sci. 2011, 88, 292–298. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M. Influence of type of muscles on nutritional value of foal meat. Meat Sci. 2013, 93, 630–638. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Franco, D. Influence of muscle type on physicochemical and sensory properties of foal meat. Meat Sci. 2013, 94, 77–83. [Google Scholar] [CrossRef]
- Tonial, I.B.; Aguiar, A.C.; Oliveira, C.C.; Bonnafé, E.G.; Visentainer, J.V. Fatty acid and cholesterol content, chemical composition and sensory evaluation of horsemeat. S. Afr. J. Anim. Sci. 2009, 39, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Sarries, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Bastianello Campagnol, P.C.; Zhu, Z.; Alpas, H.; Barba, F.J.; Tomasevic, I. Technological aspects of horse meat products—A review. Food Res. Int. 2017, 102, 176–183. [Google Scholar] [CrossRef]
- Litwińczuk, A.; Florek, M.; Skałecki, P.; Litwińczuk, Z. Chemical composition and physicochemical properties of horsemeat from the longissimus lumborum and semitendinosus muscle. J. Muscle Foods 2008, 19, 223–236. [Google Scholar] [CrossRef]
- Dobranić, V.; Njari, B.; Mioković, B.; Cvrtila Fleck, Ž.; Kadivc, M. Chemical composition of horse meat. Meso 2009, XI, 62–67. [Google Scholar]
- Kondratowicz, J.; Kowałko, P. Changes of mass and sensory quality of meat horse's freezing at use liquid dioxide of carbon and traditional ventilation method of freezing during 6-monthly shelf life cooling. Chłodnictwo 2001, XXXVI, 43–46. (In Polish) [Google Scholar]
- Seong, P.N.; Park, K.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Chae, H.S.; Ba, H.V. The differences in chemical composition, physical quality traits and nutritional values of horse meat as affected by various retail cut types. Asian-Australas. J. Anim. Sci. 2016, 29, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lušnic Polak, M.; Mervič, U.; Demšar, L. Nutritional value of horse meat and products on the slovenian market. Meso 2017, XIX, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Jastrzębska, E.; Daszkiewicz, T.; Górecka-Bruzda, A.; Feliś, D. Current situation and prospects for the horse meat market in Poland and the world. Med. Weter 2019, 75, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Stanisławczyk, R.; Znamirowska, A. Changes in physico-chemical properties of horsemeat during frozen storage. Acta Sci. Pol. Technol. Aliment. 2005, 4, 89–96. [Google Scholar]
- Arcos-Garcia, G.; Totosaus, A.; Guerrero, I.; Perez-Chabela, M.L. Physicochemical, sensory, functional and microbial characterization of horse meat. Rev. Bras. Agrociência 2002, 8, 43–46. [Google Scholar]
- Stanisławczyk, R.; Rudy, M. Changes in physico-chemical properties of cooled and frozen horse meat depending on horse age. Chłodnictwo 2010, 12, 36–39. (In Polish) [Google Scholar]
- Stanisławczyk, R. Course of glycolytic changes in horse meat after cold and frozen storage depending on age of animals. Żywn. Nauka Technol. Jakość 2012, 6, 118–126. (In Polish) [Google Scholar] [CrossRef]
- Stanisławczyk, R. Influence of the maturation process on changes in the physico-chemical properties of horse meat during refrigerated storage. Chłodnictwo 2012, XLVII, 38–41. (In Polish) [Google Scholar]
- Jo, Y.J.; Jang, M.Y.; Jung, Y.K.; Kim, J.H.; Sim, J.B.; Chun, J.Y.; Yoo, S.M.; Han, G.J.; Min, S.G. Effect of novel quick freezing techniques combined with different thawing processes on beef quality. Korean J. Food Sci. Anim. Resour. 2014, 34, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, Q.T. Advances in food freezing/thawing/freeze concentration modelling and techniques. Jpn. J. Food Eng. 2008, 9, 21–32. [Google Scholar] [CrossRef]
- Domaradzki, P.; Skałecki, P.; Florek, M.; Litwińczuk, A. Effect of freezing storage on physicochemical properties of vacuum-packed beef. Żywn. Nauka Technol. Jakość 2011, 4, 117–126. (In Polish) [Google Scholar] [CrossRef]
- Migdał, W.; Wojtysiak, D.; Palka, K.; Natonek-Wiśniewska, M.; Duda, I.; Nowocień, A. Chemical composition and texture parameters of some selected muscles of the polish landrace fatteners slaughtered at different age. Żywn. Nauka Technol. Jakość 2007, 6, 277–284. (In Polish) [Google Scholar]
- Gamage, H.G.C.L.; Mutucumarana, R.K.; Andrew, M.S. Effect of marination method and holding time on physicochemical and sensory characteristics of broiler meat. J. Agric. Sci. 2017, 12, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, C.; McKee, S. Marination to improve functional properties and safety of poultry meat. J. Appl. Poult. Res. 2007, 16, 113–120. [Google Scholar] [CrossRef]
- Chmiel, M.; Dasiewicz, K.; Słowiński, M. Effect of types of phosphate preparations used on the quality of emulsion-type sausages. Żywn. Nauka Technol. Jakość 2015, 5, 121–131. [Google Scholar]
- Mudalal, S.; Petracci, M.; Tappi, S.; Rocculi, P.; Cavani, C. Comparison between the quality traits of phosphate and bicarbonate-marinated chicken breast fillets cooked under different heat treatments. Food Nutr. Sci. 2014, 5, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Long, N.H.B.S.; Gál, R.; Buňka, F. Use of phosphates in meat products. Afr. J. Biotechnol. 2011, 10, 19874–19882. [Google Scholar]
- Komoltri, P.; Pakdeechanuan, P. Effects of marinating ingredients on physicochemical, microstructural and sensory properties of golek chicken. Int. Food Res. J. 2012, 19, 1449–1455. [Google Scholar]
- Vlahova-Vangelova, D.; Dragoev, S. Marination: Effect on meat safety and human health. A review. Bulg. J. Agric. Sci. 2014, 20, 503–509. [Google Scholar]
- Aktaş, N.; Aksu, M.İ.; Kaya, M. The effect of organic acid marination on tenderness, cooking loss and bound water content of beef. J. Muscle Foods 2003, 14, 181–194. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Esfahani Mehr, A. The effect of meat marinating with lactic and citric acid on some physicochemical and electrophoretic pattern of beef burger. Iran J. Vet. Med. 2015, 9, 103–108. [Google Scholar]
- Gómez, I.; Janardhanan, R.; Ibañez, F.C.; Beriain, M.J. The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods 2020, 9, 1416–1446. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Decker, E.A.; Hultin, H.O.; Huang, Y. Impact of citric acid on the tenderness, microstructure and oxidative stability of beef muscle. Meat Sci. 2009, 82, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Stanisławczyk, R.; Rudy, M.; Gil, M. The influence of frozen storage and selected substances on the quality of horse meat. Meat Sci. 2019, 155, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Stanisławczyk, R.; Rudy, M.; Gil, M.; Duma-Kocan, P. Influence of cold and frozen storage on the chemical content, hydration properties and texture parameters of horse meat. Med. Weter 2019, 75, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Stanisławczyk, R.; Rudy, M.; Gil, M. Quality characteristics of horse meat as influence by the age of horse. Int. J. Food Prop. 2020, 23, 864–877. [Google Scholar] [CrossRef]
- Stanisławczyk, R.; Rudy, M.; Gil, M.; Duma-Kocan, P.; Dziki, D.; Rudy, S. The effect of citric acid, NaCl, and CaCl2 on qualitative changes of horse meat in cold storage. Processes 2020, 8, 1099–1109. [Google Scholar] [CrossRef]
- Pérez-Chabela, M.L.; Escalona-Buendia, H.; Guerrero-Legarreta, I. Physicochemical and sensory characteristics of calcium chloride-treated horse meat. Int. J. Food Prop. 2003, 6, 73–85. [Google Scholar] [CrossRef]
- Pérez, M.L.; Escalona, H.; Guerrero, I. Effect of calcium chloride marination on calpain and quality characteristics of meat from chicken, horse, cattle and rabbit. Meat Sci. 1998, 48, 125–134. [Google Scholar] [CrossRef]
- Pérez-Chabela, M.L.; Guerrero, I.; Gutierrez-Ruiz, M.C.; Betancourt-Rule, J.M. Effect of calcium chloride marination and collagen content on beef, horse, rabbit and hen meat hardness. J. Muscle Foods 2005, 16, 141–154. [Google Scholar] [CrossRef]
- PN-ISO 1442. Meat and Meat Products—Determination of Moisture Content (Reference Method); Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- PN-A-04018: 1975/Az3. Agricultural food products. In Determination of Nitrogen by the Kjeldahl Method and Expressing as Protein; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- PN-ISO 1444. Meat and Meat Products—Determination of Free Fat Content; Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- Znaniecki, P. Outline of Circulation, Assessment and Processing of Raw Materials of Animalorigin; PWRiL: Warsaw, Poland, 1983; pp. 226–227. (In Polish) [Google Scholar]
- Van Oeckel, M.J.; Warnants, N.; Boucqueé, C.V. Comparison of different methods for measuring water holding capacity and juiciness of pork versus online screening methods. Meat Sci. 1999, 51, 313–320. [Google Scholar] [CrossRef]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Testing of Food. In Basics—Methods—Application; Polish Society of Food Technologists: Wrocław, Poland, 2009. (In Polish) [Google Scholar]
- ISO 8586-2. Sensory Analysis. In General Guidance for the Selection, Training and Monitoring of Assessors; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- ISO 8587. Sensory Analysis. In Methodology, International Organization for Standardization (ISO); International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- PN-EN ISO 8589. General Guidelines for the Design of a Sensory Analysis Laboratory; Polish Committee for Standardization: Warsaw, Poland, 2010. [Google Scholar]
- Znamirowska, A. Slaughter Value and Quality of Horsemeat and Fat in Cool and Cold Storage as Well as Toxic-Compounds Accumulation Levels Depending on Horse Age; Wydawnictwo Uniwersytetu Rzeszowskiego: Rzeszów, Poland, 2005; Chapter 4. (In Polish) [Google Scholar]
- Korzeniowski, W.; Jankowska, B.; Kwiatkowska, A. Quality of horse muscle and adipose tissues. Med. Weter 1994, 50, 3–5. [Google Scholar]
- Bianchi, M.; Petracci, M.; Cavani, C. The use of marination to improve poultry meat quality. Ital. J. Anim. Sci. 2009, 2, 757–759. [Google Scholar] [CrossRef]
- Garner, L.J.; Brooks, L.; Spencer, L.F.; Rehm, J.; Kataria, J.; Morey, A. Effect of pre-blended phosphates on the freezing quality characteristics of ground woody breast meat compared to normal meat. Animals 2020, 10, 1880. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Lee, H.J.; Kim, H.J.; Young, H.I.; Lee, H.; Jo, H. Marination and physicochemical characteristics of vacuum-aged duck breast meat. Asian-Australas. J. Anim. Sci. 2016, 29, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Shu Qin, X.U.; Guang Hong, Z.; Zeng Qi, P.; Li Yan, Z.; Rui, Y. The influence of polyphosphate marination on Simmental beef shear value and ultrastructure. J. Muscle Foods 2009, 20, 101–116. [Google Scholar]
- Wang, F.; Tang, H. Influence of malic acid marination on characteristics of connective tissue and textural properties of beef semitendinosus muscle. CyTA-J. Food. 2018, 16, 730–737. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, G.E.; Lim, K.W.; Park, W.; Lee, C.H. Influence of citric acid on the pink color and characteristics of sous vide processed chicken breasts during chill storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Klinhom, P.; Klinhom, J.; Senapa, J.; Methawiwat, S. Improving the quality of citric acid and calcium chloride marinated culled cow meat. Int. Food Res. J. 2015, 22, 1410–1416. [Google Scholar]
- Capita, R.; Alonso-Calleja, C.; Sierra, M.; Moreno, B.; Del Camino Garcla-Fernández, M. Effect of trisodium phosphate solutions washing on the sensory evaluation of poultry meat. Meat Sci. 2000, 55, 471–474. [Google Scholar] [CrossRef]
- Sheard, P.R.; Nute, G.R.; Richardson, R.I.; Perry, A.; Taylor, A.A. Injection of water and polyphosphate into pork to improve juiciness and tenderness after cooking. Meat Sci. 1999, 51, 371–376. [Google Scholar] [CrossRef]
Specification | Months | Age | Control Sample | Lactic Acid | Malic Acid | Phosphates with Salt | Phosphates with Rosemary | Lactic Acid with Phosphates | Malic Acid with Phosphates | ANO VA |
---|---|---|---|---|---|---|---|---|---|---|
Protein (%) | 1 | Y O | 19.83 ± 0.86 20.50 ± 0.44 | 19.53 ± 1.03 20.53 ± 1.46 | 19.37 ± 0.21 20.43 ± 0.12 | 20.30 ± 0.40 20.60 ± 0.00 | 19.83 ± 0.40 20.13 ± 0.31 | 19.43 ± 0.40 20.07 ± 0.76 | 19.07 ± 0.50 20.40 ± 0.46 | |
3 | Y O | 20.13 ± 0.05 21.03 ± 0.06 | 19.90 ± 0.00 20.50 ± 0.17 | 20.02 ± 0.12 20.67 ± 0.67 | 20.08 ± 0.20 20.13 ± 0.31 | 19.67 ± 0.29 20.50 ± 0.10 | 20.10 ± 0.10 20.60 ± 0.56 | 19.93 ± 0.47 20.23 ± 0.32 | ||
Fat (%) | 1 | Y O | 4.17 x ± 1.76 8.10 y ± 2.26 | 4.40 x ± 1.03 10.80 y ± 2.86 | 4.43 ± 0.52 4.67 ± 1.30 | 3.80 ± 0.95 4.83 ± 0.85 | 3.43 ± 0.06 5.20 ± 0.95 | 4.10 ± 0.35 4.13 ± 1.06 | 4.30 ± 1.54 5.23 ± 1.05 | A * |
3 | Y O | 1.47 x ± 0.10 5.40 y ± 0.15 | 4.70 x ± 0.12 6.07 y ± 0.96 | 1.20 x ± 0.15 2 77 y ± 0.10 | 4.40 ± 0.10 4.97 ± 0.75 | 3.17 ± 0.59 4.20 ± 0.10 | 1.60 x ± 0.10 4.50 y ± 0.85 | 2.53 ± 1.99 2.77 ± 1.72 | ||
Water (%) | 1 | Y O | 74.20 ± 1.47 70.23 a ± 2.15 | 73.63 x ± 2.29 67.20 y,c ± 4.29 | 74.90 ± 0.72 73.37 ± 1.92 | 74.00 ± 2.04 73.40 ± 0.69 | 74.70 ± 0.10 73.07 ± 0.81 | 74.50 ± 2.23 75.43 b ± 0.55 | 75.10 ± 1.15 73.17 ± 0.67 | |
3 | Y O | 76.30 ± 0.10 72.80 ± 0.10 | 73.40 ± 1.14 72.40 d ± 0.10 | 75.03 ± 0.46 74.20 ± 0.20 | 74.27 ± 0.81 73.80 ± 0.20 | 74.90 ± 0.52 74.10 ± 0.20 | 76.93 ± 1.35 74.20 ± 0.20 | 75.70 ± 2.87 74.23 ± 1.53 |
Specification | Months | Age | Control Sample | Lactic Acid | Malic Acid | Phosphates with Salt | Phosphates with Rosemary | Lactic Acid with Phosphates | Malic Acid with Phosphates | ANOVA |
---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | Y O | 5.55 a ± 0.02 5.46 ± 0.04 | 5.32 ± 0.02 5.27 ± 0.09 | 5.20 b ± 0.05 5.29 ± 0.09 | 5.60 ± 0.03 5.55 ± 0.08 | 5.63 ± 0.06 5.58 ± 0.02 | 5.26 b ± 0.14 5.37 ± 0.04 | 5.20 b ± 0.21 5.18 ± 0.11 | T * S × T * |
3 | Y O | 5.81 a ± 0.13 5.59 a ± 0.05 | 5.45 b ± 0.03 5.36 ± 0.14 | 5.32 b ± 0.12 5.38 ± 0.06 | 5.80 ± 0.06 5.89 b ± 0.12 | 5.70 ± 0.13 5.89 b ± 0.03 | 5.53 ± 0.10 5.46 ± 0.04 | 5.31 b ± 0.03 5.42 ± 0.10 | ||
L * | 1 | Y O | 39.34 ± 3.62 36.18 ± 0.96 | 40.93 ± 2.42 33.33 ± 2.74 | 32.94 ± 2.11 41.28 ± 3.63 | 41.27 ± 0.89 39.89 ± 2.99 | 41.00 ± 2.46 40.57 ± 3.43 | 36.94 ± 3.06 43.03 ± 2.06 | 43.16 ± 2.59 40.68 ± 3.91 | |
3 | Y O | 38.36 ± 4.71 43.47 ± 3.50 | 42.51 ± 2.65 38.86 ± 0.71 | 39.32 ± 3.55 40.65 ± 6.85 | 39.72 ± 2.37 40.80 ± 1.35 | 40.52 ± 3.01 41.43 ± 1.86 | 41.27 ± 1.56 34.33 ± 0.93 | 41.12 ± 2.90 42.01 ± 4.02 | ||
a * | 1 | Y O | 15.18 a ± 2.15 13.49 a,c ± 3.96 | 11.74 b ± 0.60 8.16 b ± 0.85 | 7.27 b ± 0.55 9.62 ± 3.34 | 26.28 b,c± 1.53 17.65 b ± 1.22 | 17.19 ± 1.19 17.45 b ± 0.86 | 12.25 ± 0.95 12.12 ± 2.21 | 11.92 ± 1.13 9.33 ± 0.47 | A × S × T * |
3 | Y O | 13.35 x ± 2.22 7.99 a,y,d ± 1.21 | 8.68 ± 0.93 7.16 ± 0.75 | 9.92 ± 0.47 6.96 ± 0.43 | 11.05 x,d± 2.34 18.73 b,y ± 0.21 | 17.98 ± 0.89 15.08 b ± 0.74 | 9.79 ± 0.24 8.56 ± 0.19 | 10.22 ± 2.00 8.38 ± 0.73 | ||
b * | 1 | Y O | 6.83 ± 0.77 7.24 c ± 0.86 | 8.43 ± 0.22 5.72 ± 0.16 | 6.84 ± 0.53 8.69 ± 1.30 | 7.08 ± 1.09 6.61 ± 0.44 | 6.35 ± 0.72 7.90 ± 0.88 | 9.13 ± 1.04 10.16 ± 1.59 | 10.06 ± 1.64 8.97 ± 0.40 | A × S × T * |
3 | Y O | 6.94 a,x ± 0.76 12.59 a,y,d ± 2.12 | 10.75 b ± 2.27 8.73 b ± 1.36 | 8.65 ± 0.70 10.29 ± 1.17 | 8.06 ± 0.33 7.59 b ± 0.22 | 7.00 ± 0.70 9.08 ± 1.56 | 9.95 ± 0.84 6.83 b ± 0.10 | 9.27 ± 2.03 9.22 ± 1.43 | ||
Thermal drip (%) | 1 | Y O | 20.00 a,c ± 0.30 19.70 a ± 1.50 | 32.80 b,x,c± 2.00 27.10 b,y ± 1.00 | 33.30 b,c± 0.15 29.85 b ± 1.00 | 25.25 b ± 1.50 23.50 b ± 2.00 | 24.80 b ± 0.20 21.75 ± 1.00 | 34.35 b,c± 3.00 30.95 c ± 1.00 | 34.75 b ± 2.00 32.05 b ± 2.00 | T * S × T * A × T * |
3 | Y O | 29.75 a,x,d± 1.00 21.35 a,y ± 0.25 | 34.50 x,d ± 1.00 25.95 b,y ± 0.50 | 38.90 b,d± 0.10 35.90 b ± 0.90 | 23.25 ± 0.25 22.30 b ± 0.30 | 32.05 b ± 0.30 25.30 b ± 0.30 | 35.45 b,d ± 1.00 33.25 b,d± 0.05 | 36.45 b,x ± 1.00 31.75 y ± 0.25 | ||
Forced drip (cm2) | 1 | Y O | 6.35 a ± 0.10 3.70 a ± 0.35 | 9.25 b ± 1.25 9.32 b ± 0.26 | 11.17 b ± 1.25 8.45 c ± 0.75 | 6.70 ± 0.20 6.00 ± 0.20 | 6.40 ± 1.20 4.85 ± 0.05 | 10.63 b ± 1.05 10.60 b ± 0.10 | 11.56 b ± 0.73 10.65 b ± 0.65 | T * |
3 | Y O | 7.03 a ± 0.10 4.10 a ± 1.88 | 8.80 b ± 0.20 9.50 b ± 2.95 | 12.93 b ± 0.20 11.60 b,d± 2.02 | 9.30 b ± 0.15 7.00 ± 3.90 | 7.70 ± 0.20 6.60 ± 0.70 | 12.20 b,x ± 0.20 7.98 y ± 0.18 | 10.88 b ± 0.53 9.20 b ± 2.66 | ||
Thawing drip (%) | 1 | Y O | 3.19 a ± 0.23 2.65 a ± 0.53 | 13.42 b ± 0.65 13.27 b ± 1.03 | 14.24 b ± 0.59 12.54 b ± 0.56 | 9.62 ± 0.88 9.40 ± 0.52 | 9.19 ± 0.32 8.92 ± 0.76 | 9.79 x ± 0.79 2.67 y ± 0.20 | 9.88 ± 0.33 7.28 ± 0.59 | T * A × T * |
3 | Y O | 8.65 a,x ± 0.37 4.38 a,y ± 0.65 | 15.58 b ± 0.87 14.74 b ± 0.98 | 21.42 b,x ± 1.02 14.63 b,y ± 0.54 | 12.10 ± 0.49 11.70 b ± 1.01 | 13.39 b ± 1.76 11.83 ± 0.56 | 17.95 b,x ± 1.03 9.79 y ± 0.42 | 20.37 b,x ± 1.02 15.56 b,y ± 0.99 |
Specification | Months | Age | Control Sample | Lactic Acid | Malic Acid | Phosphates with Salt | Phosphates with Rosemary | Lactic Acid with Phosphates | Malic Acid with Phosphates | ANOVA |
---|---|---|---|---|---|---|---|---|---|---|
Shear force (N/cm2) | 1 | Y O | 75.21 x ± 6.53 79.78 y ± 6.19 | 70.63 ± 9.46 72.26 ± 5.75 | 62.78 x ± 9.66 72.26 y ± 9.68 | 59.84 x ± 7.85 82.40 y ± 7.66 | 83.05 ± 10.80 84.03 ± 9.32 | 71.28 x ± 7.23 85.02 y ± 10.76 | 66.38 x ± 7.40 83.71 y ± 4.42 | A * |
3 | Y O | 75.20 x ± 3.54 78.48 a,y ± 8.46 | 59.83 x ± 6.13 76.19 y ± 2.83 | 78.80 x ± 4.84 81.74 y ± 3.61 | 68.99 x ± 6.89 81.42 y ± 3.54 | 86.00 x ± 4.30 107.25 b,y ± 5.03 | 83.38 x ± 3.53 92.21 y ± 4.50 | 74.55 x ± 2.19 79.13 y ± 8.03 | ||
Hardness 1 (N) | 1 | Y O | 144.35 a,x ± 4.04 226.06 y ± 6.42 | 75.74 b,x ± 7.93 173.39 y ± 3.70 | 83.43 b,x ± 8.72 161.83 y ± 4.14 | 88.01 b,x ± 5.56 153.50 y ± 9.27 | 107.80 x ± 11.68 194.60 y ± 9.45 | 99.93 x ± 3.35 164.52 y ± 4.64 | 138.11 x,c ± 7.09 237.55 y,c ± 3.86 | A * S × T * |
3 | Y O | 84.04 a,x ± 4.96 161.44 y ± 1.79 | 65.22 b,x ± 1.98 67.55 y ± 7.86 | 66.69 b,x ± 4.32 220.88 y ± 5.53 | 125.69 b,x ± 4.77 155.05 y ± 5.57 | 108.15 x ± 5.42 136.29 y ± 7.28 | 86.04 x ± 2.60 119.79 y ± 1.36 | 11.97 b,x,d ± 3.30 23.06 y,d ± 2.15 | ||
Hardness 2 (N) | 1 | Y O | 89.69 x ± 8.18 98.55 y ± 6.49 | 45.72 x ± 2.08 109.50 y ± 5.98 | 56.52 x ± 2.84 91.05 y ± 7.26 | 61.04 x ± 1.54 100.06 y ± 3.51 | 67.64 x ± 1.99 106.60 y ± 4.51 | 55.32 x ± 4.62 101.30 y ± 7.35 | 87.99 x ± 8.70 150.14 y,c ± 8.98 | A * |
3 | Y O | 51.96 a,x ± 4.05 113.75 a,y ± 4.74 | 45.75 ± 2.81 48.71 ± 2.23 | 44.39 b,x ± 0.16 120.83 y ± 12.86 | 55.54 x ± 5.93 100.94 y ± 9.21 | 55.81 x ± 2.17 79.66 y ± 5.51 | 65.15 x ± 1.31 72.67 y ± 5.37 | 9.07 b,x ± 1.86 16.96 b,y,d ± 3.37 | ||
Stiffness up to 5 mm (N) | 1 | Y O | 19.48 x ± 1.46 36.06 y,c ± 3.85 | 11.68 x ± 2.59 23.05 y ± 1.60 | 8.17 x ± 1.16 26.62 y ± 0.43 | 9.84 x ± 0.89 14.81 y ± 1.84 | 10.45 x ± 1.87 42.78 y,c ± 1.03 | 13.67 ± 1.47 16.99 ± 2.00 | 14.86 ± 1.74 15.42 ± 1.64 | A * A × S * |
3 | Y O | 5.87 x ± 1.86 9.62 y,d ± 0.04 | 5.28 x ± 1.85 9.24 y ± 1.00 | 4.60 x ± 1.88 10.89 y ± 0.24 | 12.05 x ± 1.60 16.34 y ± 1.57 | 8.26 ± 1.98 9.95 d ± 0.64 | 7.99 x ± 1.96 16.89 y ± 1.08 | 1.65 x ± 0.16 3.31 y ± 0.32 | ||
Stiffness up to 8 mm (N) | 1 | Y O | 92.53 a,x ± 13.13 180.62 a,y,c ± 24.18 | 38.93 b,x ± 4.50 66.39 b,y ± 7.96 | 33.48 b,x ± 5.98 114.18 y ± 2.19 | 40.90 b,x ± 8.05 82.66 b,y ± 3.82 | 48.97 b,x ± 2.55 163.25 y,c ± 5.85 | 64.23 b,x ± 1.90 79.09 b,y ± 5.53 | 63.58 b,x ± 2.49 82.61 b,y ± 1.37 | A * A × S × T * |
3 | Y O | 27.09 x ± 4.90 54.10 y,d ± 0.42 | 20.95 x ± 2.46 32.01 y ± 3.49 | 22.69 x ± 1.01 67.23 y ± 1.80 | 73.28 x ± 5.31 80.89 y ± 5.36 | 43.19 x ± 4.50 62.87 y,d ± 1.19 | 36.23 x ± 1.30 64.77 y ± 3.91 | 2.85 x ± 0.25 10.85 y ± 1.28 | ||
Adhesiveness (mJ) | 1 | Y O | 4.90 ± 1.10 3.10 ± 0.27 | 1.60 ± 1.03 1.30 ± 0.05 | 1.10 ± 0.07 1.50 ± 0.05 | 4.47 ± 0.67 2.47 ± 0.80 | 0.90 ± 0.07 5.50 ± 0.71 | 1.05 ± 0.09 2.90 ± 0.09 | 0.95 ± 0.05 1.60 ± 0.07 | |
3 | Y O | 4.20 ± 0.68 5.20 ± 0.37 | 0.40 ± 0.14 0.40 ± 0.01 | 2.75 ± 0.35 0.33 ± 0.06 | 4.53 ± 0.90 0.90 ± 0.09 | 2.20 ± 0.67 0.80 ± 0.02 | 2.55 ± 0.18 0.45 ± 0.07 | 0.40 ± 0.14 0.40 ± 0.01 | ||
Resilience | 1 | Y O | 0.05 ± 0.01 0.11 ± 0.01 | 0.09 ± 0.04 0.12 ± 0.01 | 0.08 ± 0.01 0.13 ± 0.02 | 0.10 ± 0.04 0.16 ± 0.04 | 0.14 ± 0.07 0.08 ± 0.01 | 0.11 ± 0.03 0.11 ± 0.03 | 0.12 ± 0.03 0.11 ± 0.01 | |
3 | Y O | 0.14 ± 0.02 0.12 ± 0.01 | 0.18 ± 0.02 0.17 ± 0.01 | 0.07 ± 0.01 0.09 ± 0.01 | 0.12 ± 0.01 0.08 ± 0.01 | 0.12 ± 0.01 0.14 ± 0.02 | 0.12 ± 0.04 0.20 ± 0.01 | 0.14 ± 0.02 0.11 ± 0.01 | ||
Cohesiveness | 1 | Y O | 0.07 ± 0.01 0.17 ± 0.01 | 0.20 ± 0.01 0.21 ± 0.02 | 0.14 ± 0.01 0.31 ± 0.01 | 0.21 ± 0.02 0.25 ± 0.05 | 0.25 ± 0.01 0.10 ± 0.04 | 0.21 ± 0.03 0.19 ± 0.07 | 0.24 ± 0.01 0.25 ± 0.02 | |
3 | Y O | 0.28 ± 0.01 0.25 ± 0.02 | 0.33 ± 0.05 0.39 ± 0.04 | 0.26 ± 0.08 0.23 ± 0.03 | 0.19 ± 0.08 0.15 ± 0.01 | 0.20 ± 0.04 0.20 ± 0.02 | 0.24 ± 0.01 0.40 ± 0.06 | 0.29 ± 0.02 0.29 ± 0.05 | ||
Springiness (mm) | 1 | Y O | 2.25 ± 0.06 4.10 ± 0.74 | 3.39 ± 0.08 3.54 ± 0.05 | 3.41 ± 0.05 3.84 ± 0.55 | 3.13 ± 0.28 3.47 ± 0.07 | 3.50 ± 0.38 2.91 ± 0.64 | 3.97 ± 0.26 3.47 ± 0.48 | 4.02 ± 0.36 3.48 ± 0.28 | |
3 | Y O | 3.36 ± 0.07 2.70 ± 0.01 | 4.28 ± 0.22 3.81 ± 0.37 | 4.18 ± 0.60 1.75 ± 0.24 | 2.66 ± 0.59 3.38 ± 0.23 | 2.95 ± 0.05 3.54 ± 0.09 | 3.88 ± 0.52 4.33 ± 0.04 | 2.01 ± 0.06 2.77 ± 0.07 | ||
Gumminess (mm) | 1 | Y O | 10.14 x ± 2.58 48.43 y ± 2.31 | 15.14 x ± 2.77 36.41 y ± 1.67 | 11.69 x ± 0.64 50.16 y ± 3.14 | 18.48 x ± 1.87 38.37 y ± 1.01 | 26.29 ± 3.82 19.46 ± 2.11 | 20.97 x ± 3.58 31.25 y ± 3.21 | 33.14 x ± 3.82 59.38 y ± 1.60 | A * |
3 | Y O | 23.53 x ± 4.40 40.36 y ± 1.75 | 21.52 x ± 0.83 26.34 y ± 1.10 | 17.33 x ± 7.96 50.80 y ± 0.13 | 23.88 ± 2.61 23.25 ± 0.90 | 21.63 x ± 3.30 27.25 y ± 3.99 | 20.64 x ± 3.22 47.91 y ± 3.85 | 3.47 x ± 0.38 6.68 y ± 0.68 | ||
Chewiness (mJ) | 1 | Y O | 22.73 x ± 1.39 157.56 y ± 3.05 | 51.35 x ± 4.52 128.89 y ± 4.99 | 39.82 x ± 3.32 192.64 y ± 3.65 | 57.83 x ± 5.51 133.16 y ± 4.74 | 56.62 x ± 8.69 94.32 y ± 3.02 | 83.30 x ± 9.72 108.46 y ± 5.56 | 133.24 x ± 3.54 206.66 y ± 3.76 | A * |
3 | Y O | 79.06 x ± 26.85 108.97 y ± 7.11 | 92.11 x ± 4.34 100.37 y ± 13.36 | 72.47 x ± 5.12 88.90 y ± 5.15 | 63.53 x ± 8.85 78.61 y ± 8.48 | 63.80 x ± 9.42 96.49 y ± 7.04 | 80.12 x ± 6.47 207.47 y ± 5.41 | 6.97 x ± 1.43 18.52 y ± 2.07 |
Specification | Months | Age | Control Sample | Lactic Acid | Malic Acid | Phosphates with Salt | Phosphates with Rosemary | Lactic Acid with Phosphates | Malic Acid with Phosphates | ANOVA |
---|---|---|---|---|---|---|---|---|---|---|
Aroma: intensity | 1 | Y O | 3.83 ± 0.29 3.00 ± 0.50 | 3.33 ± 0.76 3.67 ± 0.58 | 3.83 x ± 0.29 2.17 y ± 0.29 | 4.00 ± 0.00 4.00 ± 0.00 | 3.67 ± 0.58 2.67 ± 0.58 | 2.83 ± 0.29 2.67 ± 0.76 | 2.83 ± 0.29 2.50 ± 0.50 | |
3 | Y O | 3.83 ± 0.29 3.33 ± 0.58 | 3.50 ± 0.50 3.17 ±1.04 | 3.00 ± 0.87 2.67 ± 0.58 | 4.00 ± 0.90 3.67 ± 0.58 | 4.00 ± 0.90 3.83 ± 0.29 | 2.50 ± 0.50 3.33 ± 0.29 | 2.33 ± 0.58 2.00 ± 0.00 | ||
Aroma: desirability | 1 | Y O | 3.83 ± 0.76 3.17 ± 0.29 | 3.33 ± 0.58 3.67 ± 0.58 | 2.33 ± 1.53 2.67 ± 0.58 | 4.00 ± 0.00 4.17 ± 0.29 | 4.33 ± 0.29 3.50 ± 0.50 | 2.83 ± 0.76 3.33 ± 0.58 | 2.83 ± 0.76 3.00 ± 0.50 | |
3 | Y O | 3.83 ± 0.29 3.33 ± 0.58 | 3.83 ± 0.76 3.17 ± 1.44 | 2.83 ± 0.76 2.67 ± 0.58 | 4.33 ± 0.29 3.83 ± 0.29 | 4.00 ± 0.90 4.17 ± 0.29 | 2.83 ± 0.76 3.00 ± 0.10 | 2.83 ± 0.76 2.00 ± 0.00 | ||
Tenderness | 1 | Y O | 4.00 a ± 1.00 3.00 a ± 0.50 | 3.67 ± 0.58 3.50 ± 0.50 | 2.00 b ± 1.00 1.67 ± 0.58 | 4.17 ± 1.04 3.33 ± 0.29 | 4.17 ± 0.29 3.67 ± 0.29 | 1.83 b ± 0.50 1.50 b ± 0.76 | 1.83 b ± 0.58 1.67 b ± 1.04 | A × T * |
3 | Y O | 4.50 a,x ± 0.50 1.83 a,y ± 0.29 | 3.67 ± 0.29 3.17 ± 0.29 | 2.83 ± 1.23 2.17 ± 0.29 | 4.50 ± 0.29 4.33 b ± 0.50 | 3.67 ± 0.50 3.50 ± 0.58 | 3.67 x ± 0.58 1.33 y ± 0.58 | 1.33 b ± 0.58 1.17 ± 0.29 | ||
Juiciness | 1 | Y O | 3.33 a ± 0.58 2.67 ± 0.58 | 3.00 ± 0.10 3.00 ± 1.00 | 2.67 ± 0.58 1.50 ± 0.50 | 2.67 ± 0.76 3.67 ± 0.58 | 3.00 ± 0.00 3.50 ± 0.50 | 1.33 b ± 0.58 2.00 ± 0.50 | 2.00 ± 0.87 2.50 ± 0.87 | A × T * |
3 | Y O | 4.00 a,x ± 0.90 1.67 a,y ± 0.58 | 3.17 ± 0.29 2.17 ± 0.58 | 3.17 ± 1.04 2.00 ± 0.50 | 3.83 ± 0.58 4.00 b ± 0.00 | 3.33 ± 0.29 3.17 ± 0.29 | 1.33 b ± 0.58 2.67 ± 0.58 | 1.33 b ± 0.58 1.00 ± 0.10 | ||
Taste: intensity | 1 | Y O | 3.67 ± 0.58 3.33 ± 0.58 | 3.50 ± 0.50 3.00 ± 0.50 | 3.00 ± 1.73 3.00 ± 1.73 | 3.33 ± 0.58 4.33 ± 0.29 | 3.67 ± 0.58 3.67 ± 0.58 | 2.00 ± 1.00 2.33 ± 0.76 | 2.00 ± 1.00 2.33 ± 1.15 | |
3 | Y O | 4.17 a ± 0.29 2.00 ± 1.00 | 3.50 ± 0.00 3.17 ± 0.58 | 3.00 ± 1.00 2.17 ± 1.04 | 4.17 ± 0.29 4.33 ± 0.58 | 3.33 ± 0.76 3.67 ± 0.29 | 1.67 b ± 1.15 3.50 ± 0.50 | 1.33 b ± 0.58 1.33 ± 0.58 | ||
Taste: desirability | 1 | Y O | 3.67 ± 0.58 3.67 ± 0.58 | 3.50 ± 0.50 3.17 ± 0.58 | 2.00 ± 1.00 1.50 ± 0.87 | 3.33 ± 0.58 4.33 ± 0.29 | 3.83 ± 0.76 3.83 ± 0.29 | 2.00 ± 1.00 2.50 ± 0.87 | 2.33 ± 1.53 1.50 ± 0.87 | |
3 | Y O | 4.17 a ± 0.29 2.00 ± 1.00 | 3.67 ± 0.29 3.17 ± 0.58 | 3.00 ± 1.00 2.17 ± 1.04 | 4.33 ± 0.29 4.17 ± 0.29 | 3.33 ± 0.76 3.83 ± 0.29 | 1.83 ± 1.44 3.67 ± 0.58 | 1.33 b ± 0.58 1.33 ± 0.58 | ||
General acceptability | 1 | Y O | 3.72 ± 0.57 3.14 ± 0.24 | 3.39 ± 0.13 3.33 ± 0.29 | 2.64 ± 0.89 2.08 ± 0.55 | 3.44 ± 0.48 4.11 ± 0.25 | 3.69 ± 0.32 3.56 ± 0.32 | 2.08 ± 0.60 2.44 ± 0.55 | 2.28 ± 0.68 2.28 ± 0.61 | |
3 | Y O | 4.08 ± 0.14 2.36 ± 0.29 | 3.56 ± 0.27 3.00 ± 0.58 | 2.97 ± 0.97 2.31 ± 0.38 | 4.17 ± 0.25 4.08 ± 0.33 | 3.58 ± 0.38 3.72 ± 0.27 | 1.92 ± 0.80 3.31 ± 0.25 | 1.75 ± 0.36 1.47 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanisławczyk, R.; Rudy, M.; Gil, M.; Duma-Kocan, P.; Żurek, J. Influence of Horse Age, Marinating Substances, and Frozen Storage on Horse Meat Quality. Animals 2021, 11, 2666. https://doi.org/10.3390/ani11092666
Stanisławczyk R, Rudy M, Gil M, Duma-Kocan P, Żurek J. Influence of Horse Age, Marinating Substances, and Frozen Storage on Horse Meat Quality. Animals. 2021; 11(9):2666. https://doi.org/10.3390/ani11092666
Chicago/Turabian StyleStanisławczyk, Renata, Mariusz Rudy, Marian Gil, Paulina Duma-Kocan, and Jagoda Żurek. 2021. "Influence of Horse Age, Marinating Substances, and Frozen Storage on Horse Meat Quality" Animals 11, no. 9: 2666. https://doi.org/10.3390/ani11092666
APA StyleStanisławczyk, R., Rudy, M., Gil, M., Duma-Kocan, P., & Żurek, J. (2021). Influence of Horse Age, Marinating Substances, and Frozen Storage on Horse Meat Quality. Animals, 11(9), 2666. https://doi.org/10.3390/ani11092666