Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Challenge Trial
2.3. Intestinal Permeability Assay and Sampling
2.4. Gene Expression Assays
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Relative Weights of Liver, Bursa and Spleen
3.3. Intestinal Permeability
3.4. Ileal Gene Expression Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bortoluzzi, C.; Rochell, S.; Applegate, T. Threonine, arginine, and glutamine: Influences on intestinal physiology, immunology, and microbiology in broilers. Poult. Sci. 2017, 97, 937–945. [Google Scholar] [CrossRef]
- Chalvon-Demersay, T.; Luise, D.; Le Floc’h, N.; Tesseraud, S.; Lambert, W.; Bosi, P.; Trevisi, P.; Beaumont, M.; Corrent, E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front. Vet. Sci. 2021, 8, 496. [Google Scholar] [CrossRef]
- Wu, G.; Knabe, D.A. Arginine synthesis in enterocytes of neonatal pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1995, 269, R621–R629. [Google Scholar] [CrossRef]
- Jacobi, S.K.; Odle, J. Nutritional factors influencing intestinal health of the neonate. Adv. Nutr. Int. Rev. J. 2012, 3, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Applegate, T.J.; Liu, S.; Guo, Y.; Eicher, S.D. Supplemental dietary L-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens. Br. J. Nutr. 2014, 112, 1098–1109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Lv, Z.; Li, H.; Guo, S.; Liu, D.; Guo, Y. Dietary l-arginine inhibits intestinal Clostridium perfringens colonisation and attenuates intestinal mucosal injury in broiler chickens. Br. J. Nutr. 2017, 118, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Barekatain, R.; Chrystal, P.; Howarth, G.; McLaughlan, C.; Gilani, S.; Nattrass, G. Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model. Poult. Sci. 2019, 98, 6761–6771. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Eicher, S.D.; Ajuwon, K.M.; Applegate, T.J. Effect of threonine deficiency on intestinal integrity and immune response to feed withdrawal combined with coccidial vaccine challenge in broiler chicks. Br. J. Nutr. 2016, 116, 2030–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilani, S.; Howarth, G.S.; Tran, C.D.; Kitessa, S.M.; Forder, R.E.; Barekatain, R.; Hughes, R.J. Effects of delayed feeding, sodium butyrate and glutamine on intestinal permeability in newly-hatched broiler chickens. J. Appl. Anim. Res. 2018, 46, 973–976. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Gilani, S.; Chrystal, P.V.; Barekatain, R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. Anim. Nutr. 2021. [Google Scholar] [CrossRef]
- Barekatain, R.; Nattrass, G.; Tilbrook, A.; Chousalkar, K.; Gilani, S. Reduced protein diet and amino acid concentration alter intestinal barrier function and performance of broiler chickens with or without synthetic glucocorticoid. Poult. Sci. 2019, 98, 3662–3675. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, R.; Alleno, C.; Chalvon-Demersay, T.; Lambert, W. Effect of seven different feed programs on broiler performances, ZT1904 experiment. Unpublished work. 2019. [Google Scholar]
- Wideman, R., Jr.; Pevzner, I. Dexamethasone triggers lameness associated with necrosis of the proximal tibial head and proximal femoral head in broilers. Poult. Sci. 2012, 91, 2464–2474. [Google Scholar] [CrossRef] [PubMed]
- Vicuña, E.; Kuttappan, V.; Galarza-Seeber, R.; Latorre, J.; Faulkner, O.; Hargis, B.; Tellez, G.; Bielke, L. Effect of dexamethasone in feed on intestinal permeability, differential white blood cell counts, and immune organs in broiler chicks. Poult. Sci. 2015, 94, 2075–2080. [Google Scholar] [CrossRef]
- Gilani, S.; Howarth, G.; Nattrass, G.; Kitessa, S.; Barekatain, R.; Forder, R.; Tran, C.; Hughes, R. Gene expression and morphological changes in the intestinal mucosa associated with increased permeability induced by short-term fasting in chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, e653–e661. [Google Scholar] [CrossRef]
- Chen, J.; Tellez, G.; Richards, J.D.; Escobar, J. Identification of potential biomarkers for gut barrier failure in broiler chickens. Front. Vet. Sci. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Brisbin, J.T.; Gong, J.; Parvizi, P.; Sharif, S. Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin. Vaccine Immunol. 2010, 17, 1337–1343. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Lin, W.; Wang, S.; Lin, L.; Yu, B.; Lee, T. Evaluation of potential antioxidant and anti-inflammatory effects of Antrodia cinnamomea powder and the underlying molecular mechanisms via Nrf2-and NF-κB-dominated pathways in broiler chickens. Poult. Sci. 2018, 97, 2419–2434. [Google Scholar] [CrossRef]
- Xiao, M.; Mi, Y.; Liu, L.; Lv, C.; Zeng, W.; Zhang, C.; Li, J. Taurine regulates mucosal barrier function to alleviate lipopolysaccharide-induced duodenal inflammation in chicken. Amino Acids 2018, 50, 1637–1646. [Google Scholar] [CrossRef]
- Balogh, K.; Kövesi, B.; Zándoki, E.; Kulcsár, S.; Ancsin, Z.; Erdélyi, M.; Dobolyi, C.; Bata-Vidács, I.; Inotai, K.; Szekeres, A. Effect of sterigmatocystin or aflatoxin contaminated feed on lipid peroxidation and glutathione redox system and expression of glutathione redox system regulatory genes in broiler chicken. Antioxidants 2019, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Hou, Y.; Tan, L.; Liao, M.; Xie, J.; Wang, L.; Ding, B.; Yang, Y.; Gong, J. N-acetylcysteine improves the growth performance and intestinal function in the heat-stressed broilers. Anim. Feed Sci. Technol. 2016, 220, 83–92. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Broiler: Performance Objectives, 2019; Ross Breeders Limited: Scotland, UK, 2019. [Google Scholar]
- Barekatain, R.; Toghyani, M. High dietary zinc and glutamine do not improve the performance or reduce excreta moisture of broiler chickens fed diets with and without magnesium supplementation. Poult. Sci. 2019, 98, 4066–4072. [Google Scholar] [CrossRef]
- Bartell, S.; Batal, A. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult. Sci. 2007, 86, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Abdulkarimi, R.; Shahir, M.H.; Daneshyar, M. Effects of dietary glutamine and arginine supplementation on performance, intestinal morphology and ascites mortality in broiler chickens reared under cold environment. Asian-Australas. J. Anim. Sci. 2019, 32, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Cao, L.; Du, J.; Jia, R.; Kitazawa, T.; Kubota, A.; Teraoka, H. Dexamethasone-induced hepatomegaly and steatosis in larval zebrafish. J. Toxicol. Sci. 2017, 42, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Xiao, H.; Shao, F.; Tan, B.; Hu, S. Arginine accelerates intestinal health through cytokines and intestinal microbiota. Int. Immunopharmacol. 2020, 81, 106029. [Google Scholar] [CrossRef]
- Rawat, M.; Nighot, M.; Al-Sadi, R.; Gupta, Y.; Viszwapriya, D.; Yochum, G.; Koltun, W.; Ma, T.Y. IL1B Increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology 2020, 159, 1375–1389. [Google Scholar] [CrossRef]
- Barekatain, R.; Chrystal, P.V.; Gilani, S.; McLaughlan, C.J. Expression of selected genes encoding mechanistic pathways, nutrient and amino acid transporters in jejunum and ileum of broiler chickens fed a reduced protein diet supplemented with arginine, glutamine and glycine under stress stimulated by dexamethasone. J. Anim. Physiol. Anim. Nutr. 2020. [Google Scholar] [CrossRef]
- Lorén, V.; Cabré, E.; Ojanguren, I.; Domènech, E.; Pedrosa, E.; García-Jaraquemada, A.; Mañosa, M.; Manyé, J. Interleukin-10 enhances the intestinal epithelial barrier in the presence of corticosteroids through p38 MAPK activity in Caco-2 monolayers: A possible mechanism for steroid responsiveness in ulcerative colitis. PLoS ONE 2015, 10, e0130921. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Qiao, H.; Lv, X.-W.; Fan, D.; Liu, T.; Xie, D. High-dose dexamethasone induced LPS-stimulated rat alveolar macrophages apoptosis. Drug Des. Dev. Ther. 2017, 11, 3097. [Google Scholar] [CrossRef] [Green Version]
- Herfarth, H.; Schölmerich, J. IL-10 therapy in Crohn’s disease: At the crossroads. Gut 2002, 50, 146–147. [Google Scholar] [CrossRef]
- He, F.; Wu, C.; Li, P.; Li, N.; Zhang, D.; Zhu, Q.; Ren, W.; Peng, Y. Functions and signaling pathways of amino acids in intestinal inflammation. BioMed Res. Int. 2018, 2018, 9171905. [Google Scholar] [CrossRef]
- Ranta, F.; Avram, D.; Berchtold, S.; Düfer, M.; Drews, G.; Lang, F.; Ullrich, S. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 2006, 55, 1380–1390. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Shibata, M.; Takahashi, T.; Kozakai, T.; Kakudo, M.; Kasuga, S.; Azuma, Y.; Kurose, Y. Active transport of glucose across the jejunal epithelium decreases with age in broiler chickens. Poult. Sci. 2019, 98, 2570–2576. [Google Scholar] [CrossRef]
- de Punder, K.; Pruimboom, L. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front. Immunol. 2015, 6, 223. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Pan, Y.; Wong, E.A.; Webb, K.E. Dietary protein level and stage of development affect expression of an intestinal peptide transporter (cPepT1) in chickens. J. Nutr. 2005, 135, 193–198. [Google Scholar] [CrossRef]
- Ihara, T.; Tsujikawa, T.; Fujiyama, Y.; Bamba, T. Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 2000, 61, 59–67. [Google Scholar] [CrossRef]
- Shehata, A.M.; Saadeldin, I.M.; Tukur, H.A.; Habashy, W.S. Modulation of heat-shock proteins mediates chicken cell survival against thermal stress. Animals 2020, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Song, P.; Huang, C.; Rezaei, A.; Farrar, S.; Brown, M.A.; Ma, X. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget 2016, 7, 80313. [Google Scholar] [CrossRef] [Green Version]
Ingredients. | Grower | Finisher |
---|---|---|
Corn | 30.000 | 30.000 |
Wheat | 35.660 | 38.555 |
Soybean meal | 24.959 | 21.513 |
Canola oil | 3.529 | 4.634 |
Limestone | 1.066 | 0.989 |
Dicalcium phosphate | 1.755 | 1.552 |
Xylanase | 0.005 | 0.005 |
Sodium chloride | 0.141 | 0.156 |
Sodium bicarbonate | 0.402 | 0.384 |
Sand | 0.500 | 0.500 |
Vitamin and mineral premix 1 | 0.200 | 0.200 |
Choline Cl 70% | 0.087 | 0.096 |
L-lysine HCl 78.4 | 0.442 | 0.390 |
DL-methionine | 0.336 | 0.309 |
L-threonine | 0.208 | 0.169 |
Glycine | 0.232 | 0.215 |
L-Arginine | 0.161 | 0.144 |
L-Valine | 0.192 | 0.089 |
L-Isoleucine | 0.126 | 0.103 |
Nutrient (% unless specified) | ||
Dry matter | 90.65 | 90.69 |
AMEn (Kcal/kg) | 3100 | 3200 |
Crude protein | 19.50 | 18.00 |
Crude fat | 5.93 | 7.01 |
Crude fiber | 2.20 | 2.13 |
Digestible Arg | 1.21 | 1.10 |
Digestible Lys | 1.15 | 1.03 |
Digestible Met | 0.58 | 0.54 |
Digestible Cys | 0.27 | 0.26 |
Digestible Met+Cys | 0.85 | 0.80 |
Digestible Trp | 0.21 | 0.19 |
Digestible His | 0.43 | 0.40 |
Digestible Phe | 0.79 | 0.73 |
Digestible Leu | 1.25 | 1.16 |
Digestible Ile | 0.78 | 0.71 |
Digestible Thr | 0.77 | 0.69 |
Digestible Val | 0.93 | 0.78 |
Digestible Gly | 0.86 | 0.80 |
Digestible Ser | 0.76 | 0.71 |
Digestible Phe + Tyr | 1.29 | 1.19 |
Digestible Glyeq | 1.40 | 1.30 |
Calcium | 0.87 | 0.79 |
Available phosphorus | 0.44 | 0.40 |
Sodium | 0.20 | 0.20 |
Potassium | 0.80 | 0.74 |
Chloride | 0.23 | 0.23 |
Genes | Primer 5′–3′ | Reference |
---|---|---|
Reference genes | ||
GAPDH | F: CAACCCCCAATGTCTCTGTT | [16] |
R: TCAGCAGCAGCCTTCACTAC | ||
TBP | F: GTCCACGGTGAATCTTGGTT | [16] |
R: GCGCAGTAGTACGTGGTTCTC | ||
Tight junction proteins | ||
ZO1 | F: CCGCAGTCGTTCACGATCT | [17] |
R: GGAGAATGTCTGGAATGGTCTGA | ||
ZO2 | F: GCCCAGCAGATGGATTACTT | [16] |
R: TGGCCACTTTTCCACTTTTC | ||
Claudin 1 | F: AAGGTGTACGACTCGCTGCT | [16] |
R: CAGCAACAAACACACCAACC | ||
Claudin 3 | F: GCCAAGATCACCATCGTCTC | [16] |
R: CACCAGCGGGTTGTAGAAAT | ||
Immune related and pathways | ||
MUC-2 | F: CAGCACCAACTTCTCAGTTC | [5] |
R: TCTGCAGCCACACATTCTTT | ||
IFN-γ | F: ACACTGACAAGTCAAAGCCGC | [18] |
R: AGTCGTTCATCGGGAGCTTG | ||
IL-6 | F: AGGACGAGATGTGCAAGAAGTTC | [19] |
R: TTGGGCAGGTTGAGGTTGTT | ||
NFκB | F: GAAGGAATCGTACCGGGAACA | [19] |
R: CTCAGAGGGCCTTGTGACAGTAA | ||
Nrf2 | F: GGAAGAAGGTGCTTTTCGGAGC | [19] |
R: GGGCAAGGCAGATCTCTTCCAA | ||
IL-1β | F: CAGCCCGTGGGCATCA | [17] |
R: CTTAGCTTGTAGGTGGCGATGTT | ||
IL-10 | F: ATGAACTTAACATCCAACTGCTC | [20] |
R: TGTTGCCCAGGTCGCCCAT | ||
Oxidative stress related | ||
GSS | F: GTACTCACTGGATGTGGGTGAAGA | [21] |
R: CGGCTCGATCTTGTCCATCAG | ||
HSP-70 | F: AGCGTAACACCACCATTCC | [22] |
R: TGGCTCCCACCCTATCTC | ||
Protein synthesis/apoptosis | ||
mTOR | F: CATGCAATGATGGAGCGTGG | [5] |
R: GCAGCTGCTTTGAGATACGC | ||
Raptor | F: GCTGAGACCGCTTCTTGTCT | [5] |
R: GTTCAGCTGGCATGTACGGA | ||
RPS6KB1 | F: TGGAAGCCATGGGCTCAAAT | [5] |
R: GTACAGCCACACCTCCTGAC | ||
Caspase-3 | F: CAGCTGAAGGCTCCTGGTTT | [20] |
R: GCCACTCTGCGATTTACACG | ||
Bcl-2 | F: GATGACCGAGTACCTGAACC | [20] |
R: CAGGAGAAATCGAACAAAGGC | ||
Transporters related to gut health | ||
SGLT-1 | F: TGCCGGAGTATCTGAGGAAG | [16] |
R: CCCCATGGCCAACTGTATAA | ||
PepT-1 | F: ACACGTTTGTTGCTCTGTGC | [16] |
R: GACTGCCTGCCCAATTGTAT |
Treatments | BW 7 | BW 21 | BW 35 | BWG (d 7–21) | BWG (d 21–35) | BWG (d 7–35) |
---|---|---|---|---|---|---|
Control (CON) | 174 | 1064 | 2454 | 890 | 1391 | 2280 |
CON + Arg | 167 | 1111 | 2515 | 944 | 1405 | 2348 |
CON + Arg + Gln | 176 | 1106 | 2518 | 931 | 1412 | 2343 |
CON + MIX 1 | 174 | 1111 | 2556 | 937 | 1446 | 2383 |
SEM 2 | 1.6 | 10.5 | 18.7 | 9.4 | 10.8 | 17.5 |
p value | 0.305 | 0.333 | 0.309 | 0.203 | 0.346 | 0.249 |
Treatments | FI (d 7–21) | FI (d 21–35) | FI (d 7–35) | FCR (d 7–21) | FCR (d 21–35) | FCR (d 7–35) |
---|---|---|---|---|---|---|
Control (CON) | 1128 | 1980 | 3108 | 1.270 a | 1.423 | 1.363 a |
CON + Arg | 1145 | 1953 | 3097 | 1.214 b | 1.391 | 1.319 b |
CON + Arg + Gln | 1132 | 1978 | 3110 | 1.217 b | 1.401 | 1.328 b |
CON + MIX 1 | 1133 | 2040 | 3173 | 1.209 b | 1.411 | 1.331 b |
SEM 2 | 9.6 | 14.8 | 22.5 | 0.0061 | 0.0048 | 0.0031 |
p value | 0.937 | 0.223 | 0.633 | 0.006 | 0.142 | 0.0004 |
Main Effects | Weight Gain (g/bird) | Feed Intake (g/bird) | Feed Conversion Ratio |
---|---|---|---|
Diet | |||
Control (CON) | 381 | 591 | 1.672 |
CON + Arg | 382 | 583 | 1.634 |
CON + Arg + Gln | 382 | 586 | 1.672 |
CON + MIX 1 | 385 | 595 | 1.668 |
Challenge | |||
Sham | 490 a | 622 a | 1.271 a |
DEX | 274 b | 556 b | 2.052 b |
SEM 2 | 4.8 | 5.4 | 0.0164 |
Source of variation | |||
DEX | <0.0001 | <0.0001 | <0.0001 |
Diet | 0.989 | 0.872 | 0.805 |
Diet × DEX | 0.653 | 0.545 | 0.880 |
Main Effects | Liver | Spleen | Bursa |
---|---|---|---|
Diet | |||
Control (CON) | 3.67 a | 0.062 | 0.156 |
CON + Arg | 3.25 b | 0.055 | 0.148 |
CON + Arg + Gln | 3.42 b | 0.063 | 0.155 |
CON + MIX 1 | 3.41 b | 0.057 | 0.168 |
Challenge | |||
Sham | 2.65 b | 0.074 a | 0.233 a |
DEX | 4.23 a | 0.044 b | 0.078 b |
SEM 2 | 0.035 | 0.0012 | 0.0034 |
Source of variation | |||
DEX | <0.0001 | <0.0001 | <0.0001 |
Diet | 0.0009 | 0.122 | 0.498 |
Diet × DEX | 0.688 | 0.532 | 0.167 |
Treatments | Claudin 1 | Claudin 3 | ZO1 | ZO2 | |
---|---|---|---|---|---|
Control (CON) | 0.614 | 0.630 | 1.192 | 0.673 | |
Control (CON) | DEX | 0.792 | 1.075 | 1.124 | 1.042 |
CON + Arg | 0.782 | 0.830 | 1.259 | 0.832 | |
CON + Arg | DEX | 0.589 | 1.041 | 1.052 | 0.954 |
CON + Arg + Gln | 0.581 | 0.729 | 1.136 | 0.739 | |
CON + Arg + Gln | DEX | 0.847 | 1.040 | 1.070 | 0.905 |
CON + MIX 1 | 0.811 | 0.836 | 1.347 | 0.709 | |
CON + MIX | DEX | 0.584 | 0.973 | 1.245 | 0.967 |
SEM 2 | 0.0382 | 0.0302 | 0.0306 | 0.0219 | |
Main effects | |||||
Sham | 0.697 | 0.756 b | 1.233 | 0.738 b | |
DEX | 0.703 | 1.032 a | 1.122 | 0.967 a | |
Control (CON) | 0.703 | 0.852 | 1.158 | 0.857 | |
CON + Arg | 0.685 | 0.935 | 1.155 | 0.893 | |
CON + Arg + Gln | 0.714 | 0.884 | 1.103 | 0.821 | |
CON + MIX | 0.697 | 0.904 | 1.296 | 0.838 | |
p value | |||||
DEX | 0.935 | <0.0001 | 0.079 | <0.0001 | |
Diet | 0.994 | 0.801 | 0.158 | 0.694 | |
DEX × Diet | 0.056 | 0.317 | 0.833 | 0.215 |
Treatments | MUC2 | IFNy | NFκB | Nrf2 | IL1β | IL6 | IL10 | mTOR | |
---|---|---|---|---|---|---|---|---|---|
Control (CON) | 1.072 | 0.975 | 1.363 | 1.837 c | 0.475 bc | 0.59 | 0.404 | 0.838 | |
Control (CON) | DEX | 1.254 | 3.346 | 1.760 | 2.539 a | 1.234 a | 0.69 | 1.184 | 0.934 |
CON + Arg | 1.028 | 1.291 | 1.480 | 2.158 abc | 0.518 bc | 0.60 | 0.389 | 0.868 | |
CON + Arg | DEX | 1.249 | 2.337 | 1.624 | 1.976 bc | 0.730 bc | 0.43 | 0.975 | 0.896 |
CON + Arg + Gln | 1.179 | 0.814 | 1.561 | 2.036 abc | 0.473 bc | 0.61 | 0.397 | 1.007 | |
CON + Arg + Gln | DEX | 1.113 | 2.159 | 1.599 | 2.371 ab | 0.472 bc | 0.60 | 0.919 | 0.907 |
CON + MIX 1 | 1.093 | 1.230 | 1.535 | 2.305 abc | 0.436 c | 0.76 | 0.583 | 1.033 | |
CON + MIX | DEX | 1.291 | 1.065 | 1.515 | 2.032 abc | 0.831 b | 0.66 | 0.871 | 0.928 |
SEM 2 | 0.0408 | 0.2151 | 0.0405 | 0.0654 | 0.0466 | 0.0404 | 0.0439 | 0.0257 | |
Main effects | |||||||||
Sham | 1.093 | 1.078 b | 1.485 | 2.084 | 0.475 | 0.638 | 0.443 b | 0.936 | |
DEX | 1.226 | 2.227 a | 1.624 | 2.229 | 0.817 | 0.593 | 0.987 a | 0.916 | |
Control (CON) | 1.163 | 2.160 | 1.561 | 2.188 | 0.854 | 0.638 | 0.794 | 0.885 | |
CON + Arg | 1.138 | 1.814 | 1.552 | 2.067 | 0.624 | 0.514 | 0.682 | 0.882 | |
CON + Arg + Gln | 1.146 | 1.486 | 1.579 | 2.203 | 0.472 | 0.604 | 0.657 | 0.957 | |
CON + MIX | 1.192 | 1.147 | 1.525 | 2.168 | 0.633 | 0.707 | 0.726 | 0.980 | |
p value | |||||||||
DEX | 0.109 | 0.0109 | 0.093 | 0.272 | 0.0007 | 0.5797 | <0.0001 | 0.698 | |
Diet | 0.968 | 0.394 | 0.970 | 0.881 | 0.049 | 0.405 | 0.707 | 0.428 | |
DEX × Diet | 0.573 | 0.237 | 0.289 | 0.039 | 0.042 | 0.678 | 0.278 | 0.438 |
Treatments | Bcl2 | Caspase-3 | Raptor | RPS6KB1 | Pept1 | SGLT1 | GSS | HSP70 | |
---|---|---|---|---|---|---|---|---|---|
Control (CON) | 0.547 | 0.900 | 0.319 | 2.032 | 0.235 | 0.225 | 0.506 | 0.983 | |
Control (CON) | DEX | 0.558 | 1.011 | 0.354 | 2.176 | 0.196 | 0.233 | 0.629 | 0.856 |
CON + Arg | 0.577 | 0.929 | 0.340 | 2.224 | 0.248 | 0.263 | 0.541 | 0.939 | |
CON + Arg | DEX | 0.461 | 1.144 | 0.333 | 2.140 | 0.219 | 0.273 | 0.648 | 0.715 |
CON + Arg + Gln | 0.545 | 0.936 | 0.337 | 2.075 | 0.232 | 0.262 | 0.549 | 0.851 | |
CON + Arg + Gln | DEX | 0.555 | 1.096 | 0.280 | 2.213 | 0.278 | 0.256 | 0.534 | 0.838 |
CON + MIX 1 | 0.609 | 1.125 | 0.396 | 2.467 | 0.251 | 0.308 | 0.611 | 0.984 | |
CON + MIX | DEX | 0.506 | 1.148 | 0.368 | 2.395 | 0.359 | 0.486 | 0.708 | 0.833 |
SEM 2 | 0.0191 | 0.0341 | 0.0090 | 0.0544 | 0.0155 | 0.0199 | 0.0149 | 0.0364 | |
Main effects | |||||||||
Sham | 0.569 | 0.972 | 0.348 | 2.199 | 0.241 | 0.264 | 0.551 b | 0.939 | |
DEX | 0.519 | 1.099 | 0.333 | 2.230 | 0.263 | 0.312 | 0.629 a | 0.810 | |
Control (CON) | 0.552 | 0.955 | 0.336 ab | 2.104 | 0.215 | 0.229 b | 0.567 b | 0.919 | |
CON + Arg | 0.518 | 1.036 | 0.336 ab | 2.182 | 0.233 | 0.268 b | 0.594 ab | 0.826 | |
CON + Arg + Gln | 0.549 | 1.016 | 0.308 b | 2.144 | 0.255 | 0.258 b | 0.541 b | 0.844 | |
CON + MIX | 0.557 | 1.136 | 0.381 a | 2.431 | 0.305 | 0.396 a | 0.659 a | 0.908 | |
p value | |||||||||
DEX | 0.203 | 0.069 | 0.432 | 0.774 | 0.487 | 0.240 | 0.012 | 0.084 | |
Diet | 0.888 | 0.316 | 0.049 | 0.156 | 0.213 | 0.025 | 0.047 | 0.756 | |
DEX × Diet | 0.483 | 0.787 | 0.350 | 0.797 | 0.307 | 0.324 | 0.354 | 0.784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barekatain, R.; Chalvon-Demersay, T.; McLaughlan, C.; Lambert, W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals 2021, 11, 2416. https://doi.org/10.3390/ani11082416
Barekatain R, Chalvon-Demersay T, McLaughlan C, Lambert W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals. 2021; 11(8):2416. https://doi.org/10.3390/ani11082416
Chicago/Turabian StyleBarekatain, Reza, Tristan Chalvon-Demersay, Clive McLaughlan, and William Lambert. 2021. "Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution" Animals 11, no. 8: 2416. https://doi.org/10.3390/ani11082416
APA StyleBarekatain, R., Chalvon-Demersay, T., McLaughlan, C., & Lambert, W. (2021). Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals, 11(8), 2416. https://doi.org/10.3390/ani11082416