Optimal Replacement of Soybean Meal with Fermented Palm Kernel Meal as Protein Source in a Fish Meal-Soybean Meal-Based Diet of Sex Reversed Red Tilapia (Oreochromis niloticus × O. mossambicus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of FPKM
2.2. Preparation of the Experimental Diets
2.3. Proximate Compositions of Ingredients and Experimental Diets
2.4. Fish Feeding Trial
2.5. Digestive Enzyme Studies
2.6. Flesh Quality
2.6.1. Protein Synthesis Capacity
2.6.2. Enthalpy of Actin and Myosin
2.7. Carcass Composition Analysis
2.8. Hematological Determinations
2.9. Liver Histological Examination
2.10. Statistical Analysis
3. Results
3.1. Chemical Compositions of PKM and FPKM
3.2. Survival, Growth and Feed Consumption
3.3. Digestive Enzyme Specific Activities
3.4. Flesh Quality
3.5. Carcass Composition
3.6. Hematological Parameters
3.7. Liver Histoarchitecture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Available online: http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en (accessed on 1 June 2021).
- El-Sayed, A.F.M. Tilapia Culture; CABI Publishing: Wallingford, UK, 2006; pp. 1–24. [Google Scholar]
- Manosroi, J.; Petchjul, K.; Manosroi, A. Effect of fluoxymesterone fish feed granule on sex reversal of the hybrid, Thai red tilapia (Oreochromis niloticus Linn. × Oreochromis mossambicus Linn.). Asian Fish. Sci. 2004, 17, 323–331. [Google Scholar]
- El-Saidy, D.M.S.D.; Gaber, M.M.A. Replacement of fish meal with a mixture of different plant protein sources in juvenile Nile tilapia, Oreochromis niloticus (L.) diets. Aquac. Res. 2003, 34, 1119–1127. [Google Scholar] [CrossRef]
- Yue, Y.; Zhou, Q. Effect of replacing soybean meal with cottonseed meal on growth, feed utilization, and hematological indexes for juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Aquaculture 2008, 284, 185–189. [Google Scholar] [CrossRef]
- Plaipetch, P.; Yakupitiyage, A. Effect of replacing soybean meal with yeast-fermented canola meal on growth and nutrient. retention of Nile tilapia, Oreochromis niloticus (Linnaeus 1758). Aquac. Res. 2014, 45, 1744–1753. [Google Scholar] [CrossRef]
- Hossain, M.A.; Islam, S.F. Meat and bone meal as partial substitute for fish meal in nursery diet for giant freshwater prawn, Macrobrachium rosenbergii (deMan). J. World Aquac. Soc. 2007, 38, 272–280. [Google Scholar] [CrossRef]
- Wattanakul, W.; Wattanakul, U.; Thongprajukaew, K.; Muenpo, C. Fish condensate as effective replacer of fish meal protein for striped snakehead, Channa striata (Bloch). Fish Physiol. Biochem. 2017, 43, 217–228. [Google Scholar] [CrossRef]
- Storebakken, T.; Refstie, S.; Ruyter, B. Soy products as fat and protein sources in fish diets for intensive aquaculture. In Soy in Animal Nutrition; Drackley, J.K., Ed.; Federation of Animal Science Societies: Savoy, IL, USA, 2000; pp. 127–170. [Google Scholar]
- Lim, S.J.; Lee, K.J. Partial replacement of fish meal by cottonseed meal and soybean meal with iron and phytase supplementation for parrot fish Oplegnathus fasciatus. Aquaculture 2009, 290, 283–289. [Google Scholar] [CrossRef]
- Sindhu, A.A.; Khan, M.A.; Nisa, M.U.; Sarwar, M. Agro-industrial by-products as a potential source of livestock feed. Int. J. Agric. Biol. 2002, 4, 307–310. [Google Scholar]
- Drew, M.D.; Borgeson, T.L.; Thiessen, D.L. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim. Feed Sci. Technol. 2007, 138, 118–136. [Google Scholar] [CrossRef]
- Khadijat, B.M.; Enoch, O.O.; Suleiman, B.E. Performance, carcass characteristics and blood composition of broilers fed varying levels of palm kernel meal (Elaise guinensis) supplemented with different levels of fish meal. Int. J. Poult. Sci. 2012, 11, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Saenphoom, P.; Liang, J.B.; Ho, Y.W.; Loh, T.C.; Rosfarizan, M. Effects of enzyme treated palm kernel expeller on metabolizable energy, growth performance, villus height and digesta viscosity in broiler chickens. Asian Aust. J. Anim. Sci. 2013, 26, 537–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, W.K.; Lim, H.A.; Lim, S.L.; Ibrahim, C.O. Nutritive value of palm kernel meal pretreated with enzymes or fermented with Trichoderma koningii (Oudemans) as a dietary ingredient for red hybrid tilapia (Oreochromis sp.). Aquac. Res. 2002, 33, 1199–1207. [Google Scholar] [CrossRef]
- Ng, W.K.; Chen, M.L. Replacement of soybean meal with palm kernel meal in practical diets for hybrid Asian-African catfish, Clarias macrocephalus × C. gariepinus. J. Appl. Aquac. 2002, 12, 67–76. [Google Scholar] [CrossRef]
- Thongprajukaew, K.; Rodjaroenc, S.; Tantikitti, C.; Kovitvadhi, U. Physicochemical modifications of dietary palm kernel meal affect growth and feed utilization of Nile tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 2015, 202, 90–99. [Google Scholar] [CrossRef]
- Thongprajukaew, K.; Rodjaroenc, S.; Yoonram, K.; Sornthong, P.; Hutcha, N.; Tantikitti, C.; Kovitvadhi, U. Effects of dietary modified palm kernel meal on growth, feed utilization, radical scavenging activity, carcass composition and muscle quality in sex reversed Nile tilapia (Oreochromis niloticus). Aquaculture 2015, 439, 45–52. [Google Scholar] [CrossRef]
- Esatu, W.; Melesse, A.; Dessie, T. Effect of effective microorganisms on growth parameters and serum cholesterol levels in broilers. Afr. J. Agric. Res. 2011, 6, 3841–3846. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; pp. 69–90. [Google Scholar]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Worthington, V. Worthington Enzyme Manual. Enzymes and Related Biochemicals; Worthington Chemical: Lakewood, NJ, USA, 1993; p. 399. [Google Scholar]
- Rungruangsak-Torrissen, K.; Moss, R.; Andresen, L.H.; Berg, A.; Waagbo, R. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 2006, 32, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Areekijseree, M.; Engkagul, A.; Kovitvadhi, U.; Thongpan, A.; Mingmuang, M.; Pakkong, P.; Rungruangsak-Torrissen, K. Temperature and pH characteristics of amylase and proteinase of adult freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus Simpson 1900. Aquaculture 2004, 234, 575–587. [Google Scholar] [CrossRef]
- Mendels, M.; Weber, J. The product of cellulose in cellulase and their application. Adv. Chem. Ser. 1969, 95, 390–443. [Google Scholar]
- Winkler, U.K.; Stuckmann, M. Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 1979, 138, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Nonthaput, T.; Hahor, W.; Thongprajukaew, K.; Yoonram, K.; Rodjaroen, S. Cathepsin activities and thermal properties of Nile tilapia (Oreochromis niloticus) meat during ambient storage. Agric. Nat. Res. 2017, 51, 206–211. [Google Scholar] [CrossRef]
- Blaxhall, P.C.; Daisley, K.W. Routine haematological methods for use with fish blood. J. Fish Biol. 1973, 5, 771–781. [Google Scholar] [CrossRef]
- Larsen, H.N.; Snieszko, S.F. Comparison of various methods of determination of haemoglobin in trout blood. Prog. Fish-Cult. 1961, 23, 8–17. [Google Scholar] [CrossRef]
- Larsen, H.N.; Snieszko, S.F. Modification of the microhematocrit technique with trout blood. Trans. Amer. Fish. Soc. 1961, 90, 139–142. [Google Scholar] [CrossRef]
- Javed, M.; Ahmad, I.; Ahmad, A.; Usmani, N.; Ahmad, M. Studies on the alterations in haematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) Perciformes, Channidae exposed to thermal power plant effluent. SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Elsevier: North York, ON, Canada, 2013; pp. 40–95. [Google Scholar]
- Dairo, F.A.S.; Fasuyi, A.O. Evaluation of fermented palm kernel meal and fermented copra meal proteins as substitute for soybean meal protein in laying hens diets. J. Cent. Eur. Agric. 2008, 9, 35–44. [Google Scholar]
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Sazili, A.Q.; Lau, W.H. Effect of solid state fermentation on nutrient content and ileal amino acids digestibility of palm kernel cake in broiler chickens. Ind. J. Anim. Sci. 2017, 87, 1135–1140. [Google Scholar]
- Dusterhoft, E.M.; Voragen, A.G.J. Nonstarch polysaccharides from sunflower (Helianthus annuus) and palm kernel (Elaeis.guineensis) meal: Preparation of cell wall material and extraction of polysaccharide fractions. J. Sci. Food Agric. 1991, 55, 411–422. [Google Scholar] [CrossRef]
- Halliwell, G.; Wahab, M.N.B.A.; Patel, A.H. The contribution of endo-1,4-β-D-glucanase to cellulolysis in Trichoderma koningii. J. Appl. Biochem. 1985, 7, 43–54. [Google Scholar]
- Ahmed, S.T.; Mun, H.-S.; Islam, M.M.; Ko, S.-Y.; Yang, C.-J. Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs. Meat Sci. 2016, 122, 7–15. [Google Scholar] [CrossRef]
- Oso, A.O.; Li, L.; Zhang, B.; Uo, R.; Fan, J.X.; Wang, S.; Jiang, G.; Liu, H.; Rahoo, T.; Tossou, M.C.; et al. Effect of fungal fermentation with Aspergillus niger and enzyme supplementation on metabolizable energy values of unpeeled cassava root meal for meat-type cockerels. Anim. Feed Sci. Technol. 2015, 210, 281–286. [Google Scholar] [CrossRef]
- Deng, J.; Mai, K.; Chen, L.; Mi, H.; Zhang, L. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × O. aureus). Fish Shell. Immunol. 2015, 44, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Azaza, M.S.; Wassim, K.; Mensi, F.; Abdelmouleh, A.; Brini, B.; Kraϊem, M.M. Evaluation of faba beans (Vicia faba L. var. minuta) as a replacement for soybean meal in practical diets of juvenile Nile tilapia Oreochromis niloticus. Aquaculture 2009, 287, 174–179. [Google Scholar] [CrossRef]
- Barros, M.M.; Lim, C.; Klesius, P.H. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of channel catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge. Aquaculture 2002, 207, 263–279. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. Anti-nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. Br. Poult. Sci. 1992, 33, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Thongprajukaew, K.; Rodjaroen, S. Intermittent feeding induces compensatory growth of juvenile yellow mystus (Hemibagrus nemurus). Aquat. Liv. Res. 2017, 30, 6. [Google Scholar] [CrossRef] [Green Version]
- Eshel, A.; Lindner, P.; Smirnoff, P.; Newton, S.; Harpaz, S. Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp. Biochem. Physiol. 1993, 106A, 627–634. [Google Scholar] [CrossRef]
- Romijn, J.A.; Godfried, M.H.; Hommes, M.J.T.; Endert, E.; Sauerwein, H.P. Decreased glucose oxidation during short-term starvation. Metabolism 1990, 39, 525–530. [Google Scholar] [CrossRef]
- Carter, C.G.; He, Z.Y.; Houlihan, D.F.; McCarthy, I.D.; Davidson, I. Effects of feeding on the tissue free amino acid concentrations in rainbow trout (Oncorhynchus mykiss Walbaum). Fish Physiol. Biochem. 1995, 14, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Thongprajukaew, K.; Kovitvadhi, U.; Kovitvadhi, S.; Engkagul, A.; Rungruangsak-Torrissen, K. Evaluation of growth performance and nutritional quality of diets using enzymatic markers and in vitro digestibility in Siamese fighting fish (Betta splendens Regan, 1910). Afr. J. Biotechnol. 2013, 12, 1689–1702. [Google Scholar]
- Matos, E.; Silva, T.S.; Tiago, T.; Aureliano, M.; Dinis, M.T.; Dias, J. Effect of harvesting stress and storage conditions on protein degradation in fillets of farmed gilthead seabream (Sparus aurata): A differential scanning calorimetry study. Food Chem. 2011, 126, 270–276. [Google Scholar] [CrossRef]
- Das, B.K.; Mukherjee, S.C. Toxicity of cypermethrin in Labeo rohita fingerlings: Biochemical enzymatic and haematological consequence. Comp. Biochem. Physiol. 2003, 134C, 109–121. [Google Scholar] [CrossRef]
- Sharma, B.B.; Saha, R.K.; Saha, H. Effects of feeding detoxified rubber seed meal on growth performance and haematological indices of Labeo rohita (Hamilton) fingerlings. Anim. Feed Sci. Technol. 2014, 193, 84–92. [Google Scholar] [CrossRef]
- Hong, K.J.; Lee, C.H.; Kim, S.W. Aspergillus oryzae 3.042GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food. 2004, 7, 430–434. [Google Scholar] [CrossRef]
- Sitjà-Bobadilla, A.; Peña-Llopis, S.; Gómez-Requeni, P.; Médale, F.; Kaushik, S.; Pérez-Sánchez, J. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 2005, 249, 387–400. [Google Scholar] [CrossRef] [Green Version]
Item | 0FPKM | 25FPKM | 50FPKM | 75FPKM | 100FPKM |
---|---|---|---|---|---|
Ingredient | |||||
Fish meal | 26.9 | 30.8 | 34.8 | 38.8 | 42.7 |
SBM | 25.0 | 18.8 | 12.5 | 6.2 | – |
FPKM | – | 6.2 | 12.5 | 18.8 | 25.0 |
Corn meal | 15.9 | 14.2 | 12.5 | 10.8 | 9.1 |
Broken rice | 12.7 | 11.4 | 10.0 | 8.6 | 7.3 |
Rice bran | 8.5 | 7.6 | 6.7 | 5.8 | 4.9 |
Fish oil | 2 | 2 | 2 | 2 | 2 |
Soybean oil | 2 | 2 | 2 | 2 | 2 |
Alfa starch | 4 | 4 | 4 | 4 | 4 |
Vitamin-mineral premix a | 3 | 3 | 3 | 3 | 3 |
Proximate composition (% fed basis) | |||||
Moisture | 5.84 | 5.96 | 5.81 | 5.90 | 5.91 |
Crude protein | 30.63 | 29.87 | 30.61 | 30.22 | 30.05 |
Crude lipid | 10.13 | 10.90 | 10.11 | 9.54 | 9.50 |
Crude ash | 13.28 | 14.50 | 15.37 | 17.22 | 18.78 |
Crude fiber | 7.28 | 7.47 | 7.82 | 8.03 | 8.98 |
NFE | 32.84 | 31.30 | 30.28 | 29.09 | 26.78 |
GE (kJ g−1) | 16.88 | 16.74 | 16.43 | 15.90 | 14.45 |
Composition | PKM | FPKM |
---|---|---|
Crude protein (%) | 13.13 | 15.86 |
Crude lipid (%) | 9.14 | 7.71 |
Crude fiber (%) | 38.74 | 24.62 |
Ash (%) | 4.03 | 2.84 |
NFE (%) | 34.96 | 48.97 |
GE (kJ g−1) | 12.72 | 15.21 |
Parameter | 0FPKM | 25FPKM | 50FPKM | 75FPKM | 100FPKM | p-Value |
---|---|---|---|---|---|---|
Survival (%) | 93.13 ± 1.57 | 91.88 ± 1.20 | 95.00 ± 1.44 | 92.50 ± 2.70 | 92.50 ± 1.02 | 0.733 |
Average initial weight (g) | 14.66 ± 0.37 | 15.13 ± 1.23 | 14.60 ± 0.60 | 15.05 ± 0.25 | 14.81 ± 0.56 | 0.975 |
Average final weight (g) | 74.99 ± 1.51 b | 75.77 ± 1.88 b | 81.42 ± 0.72 a | 76.38 ± 1.32 b | 77.18 ± 0.82 b | 0.029 |
Total length (cm) | 17.59 ± 0.27 a | 15.08 ± 0.29 c | 16.56 ± 0.38 ab | 16.41 ± 0.35 b | 16.39 ± 0.52 b | 0.001 |
K | 1.30 ± 0.01 b | 2.04 ± 0.17 a | 1.68 ± 0.12 ab | 1.58 ± 0.02 b | 1.57 ± 0.16 b | 0.047 |
DGC (% BW day–1) | 2.16 ± 0.05 | 2.10 ± 0.09 | 2.25 ± 0.04 | 2.11 ± 0.03 | 2.15 ± 0.03 | 0.317 |
FR (% BW day−1) | 2.42 ± 0.11 | 2.48 ± 0.05 | 2.28 ± 0.06 | 2.46 ± 0.08 | 2.43 ± 0.03 | 0.301 |
FCR (g feed g gain−1) | 1.70 ± 0.08 | 1.64 ± 0.09 | 1.71 ± 0.09 | 1.69 ± 0.07 | 1.83 ± 0.08 | 0.635 |
PER (g gain g protein−1) | 1.93 ± 0.10 | 2.06 ± 0.11 | 1.93 ± 0.11 | 1.97 ± 0.08 | 1.83 ± 0.08 | 0.584 |
Digestive Enzyme | 0FPKM | 25FPKM | 50FPKM | 75FPKM | 100FPKM | p-Value |
---|---|---|---|---|---|---|
Pepsin (U mg protein−1) | 0.50 ± 0.10 b | 0.60 ± 0.19 b | 1.42 ± 0.17 a | 1.24 ± 0.15 a | 0.46 ± 0.13 b | <0.001 |
Trypsin (mU mg protein−1) | 165.34 ± 8.21 c | 158.09 ± 10.48 c | 205.98 ± 12.29 b | 142.60 ± 18.05 c | 258.27 ± 17.77 a | <0.001 |
Amylase (U mg protein−1) | 59.25 ± 2.58 | 52.96 ± 2.11 | 55.62 ± 2.74 | 61.93 ± 3.57 | 52.14 ± 2.03 | 0.056 |
Cellulase (U mg protein−1) | 227.70 ± 11.21 c | 241.09 ± 16.41 c | 265.18 ± 16.01 bc | 268.56 ± 18.24 ab | 314.83 ± 10.18 a | 0.002 |
Lipase (mU mg protein−1) | 42.00 ± 3.41 b | 40.72 ± 3.75 b | 45.11 ± 2.31 b | 61.00 ± 2.64 a | 53.95 ± 3.22 ab | 0.012 |
Flesh Parameter | 0FPKM | 25FPKM | 50FPKM | 75FPKM | 100FPKM | p-Value |
---|---|---|---|---|---|---|
RNA (μg g−1) | 3,612 ± 123 a | 3,614 ± 93 a | 3,604 ± 141 a | 3,052 ± 113 b | 3,077 ± 171 b | 0.002 |
Protein (mg g−1) | 199.97 ± 16.45 b | 221.65 ± 12.19 ab | 240.51 ± 7.26 a | 197.58 ± 7.69 b | 216.25 ± 12.91 ab | 0.046 |
RNA/protein ratio (μg mg−1) | 18.74 ± 1.64 a | 16.54 ± 0.81 ab | 15.12 ± 0.80 b | 14.43 ± 1.12 b | 14.45 ± 0.93 b | 0.045 |
∆HMyosin (J g−1) | 0.67 ± 0.08 | 0.57 ± 0.03 | 0.80 ± 0.19 | 0.80 ± 0.07 | 0.68 ± 0.07 | 0.485 |
∆HActin (J g−1) | 0.34 ± 0.00 | 0.23 ± 0.03 | 0.34 ± 0.07 | 0.25 ± 0.05 | 0.31 ± 0.01 | 0289 |
∆HMyosin + Actin(J g−1) | 1.07 ± 0.07 | 0.81 ± 0.06 | 0.97 ± 0.20 | 1.06 ± 0.10 | 1.07 ± 0.08 | 0.330 |
∆Actin/myosin ratio | 0.58 ± 0.06 a | 0.41 ± 0.03 ab | 0.54 ± 0.01 a | 0.32 ± 0.06 b | 0.47 ± 0.06 ab | 0.050 |
Composition (%) | 0FPKM | 25FPKM | 50FPKM | 75FPKM | 100FPKM | p-Value |
---|---|---|---|---|---|---|
Moisture | 67.48 ± 0.77 | 66.71 ± 0.68 | 68.15 ± 0.85 | 67.29 ± 0.72 | 67.96 ± 0.71 | 0.719 |
Crude protein | 17.26 ± 0.10 | 13.09 ± 4.58 | 15.30 ± 1.72 | 17.64 ± 0.44 | 18.49 ± 0.32 | 0.465 |
Crude lipid | 5.94 ± 0.72 | 6.42 ± 0.54 | 4.77 ± 0.60 | 4.88 ± 0.59 | 5.17 ± 0.62 | 0.309 |
Ash | 4.99 ± 0.35 | 5.45 ± 0.52 | 5.26 ± 0.60 | 5.59 ± 0.40 | 5.72 ± 0.47 | 0.795 |
Hematological Parameter | 0FPKM | 25FPKM | 50FPKM | 75FPKM | 100FPKM | p-Value |
---|---|---|---|---|---|---|
RBC (×106 cells μL−1) | 1.95 ± 0.07 | 1.95 ± 0.13 | 2.05 ± 0.07 | 2.04 ± 0.05 | 2.00 ± 0.13 | 0.901 |
WBC (×104 cells μL−1) | 37.33 ± 2.52 b | 38.37 ± 4.48 b | 55.67 ± 2.73 a | 52.90 ± 1.87 a | 59.20 ± 4.42 a | 0.002 |
Hb (g dL−1) | 7.33 ± 0.18 | 7.60 ± 0.44 | 7.78 ± 0.23 | 7.78 ± 0.23 | 7.33 ± 0.25 | 0.637 |
Hematocrit (%) | 28.88 ± 0.64 | 29.93 ± 1.75 | 30.83 ± 0.93 | 31.05 ± 0.96 | 28.88 ± 1.09 | 0.526 |
MCH (pg cell−1) | 37.70 ± 0.40 | 39.08 ± 0.61 | 37.98 ± 0.86 | 38.05 ± 0.50 | 38.50 ± 0.31 | 0.517 |
MCHC (g dL−1) | 25.35 ± 0.06 a | 25.40 ± 0.06 a | 25.20 ± 0.07 ab | 25.05 ± 0.05 b | 25.38 ± 0.11 a | 0.021 |
MCV (fL) | 148.50 ± 1.85 | 154.00 ± 2.71 | 150.75 ± 3.25 | 152.00 ± 2.12 | 151.67 ± 1.86 | 0.618 |
Lymphocyte (%) | 90.33 ± 1.45 | 77.33 ± 9.82 | 73.25 ± 8.16 | 81.75 ± 3.09 | 82.00 ± 4.55 | 0.437 |
Monocyte (%) | 4.50 ± 1.19 | 6.50 ± 1.19 | 6.00 ± 1.47 | 4.00 ± 0.58 | 5.75 ± 1.75 | 0.694 |
Neutrophil (%) | 17.50 ± 11.86 | 25.00 ± 12.21 | 20.75 ± 6.77 | 12.00 ± 3.94 | 12.25 ± 5.36 | 0.799 |
Plasma protein (g dL−1) | 1.44 ± 0.13 c | 2.13 ± 0.13 b | 2.03 ± 0.05 b | 1.91 ± 0.11 b | 2.54 ± 0.12 a | <0.001 |
BUN (mg dL−1) | 6.50 ± 1.55 | 6.00 ± 1.35 | 5.75 ± 1.25 | 2.67 ± 0.33 | 4.75 ± 1.31 | 0.365 |
Creatinine (mg dL−1) | 0.46 ± 0.37 | 0.24 ± 0.08 | 0.64 ± 0.28 | 0.59 ± 0.21 | 0.30 ± 0.12 | 0.696 |
Uric acid (mg dL−1) | 0.85 ± 0.59 | 1.25 ± 0.62 | 1.48 ± 1.09 | 0.23 ± 0.05 | 0.63 ± 0.28 | 0.655 |
ALP (U L−1) | 39.33 ± 7.97 | 33.00 ± 4.06 | 29.25 ± 5.04 | 29.33 ± 2.85 | 25.67 ± 5.78 | 0.509 |
AST (U L−1) | 124.33 ± 12.57 | 92.67 ± 9.91 | 128.50 ± 17.50 | 114.67 ± 5.50 | 70.00 ± 14.74 | 0.181 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wattanakul, W.; Thongprajukaew, K.; Hahor, W.; Suanyuk, N. Optimal Replacement of Soybean Meal with Fermented Palm Kernel Meal as Protein Source in a Fish Meal-Soybean Meal-Based Diet of Sex Reversed Red Tilapia (Oreochromis niloticus × O. mossambicus). Animals 2021, 11, 2287. https://doi.org/10.3390/ani11082287
Wattanakul W, Thongprajukaew K, Hahor W, Suanyuk N. Optimal Replacement of Soybean Meal with Fermented Palm Kernel Meal as Protein Source in a Fish Meal-Soybean Meal-Based Diet of Sex Reversed Red Tilapia (Oreochromis niloticus × O. mossambicus). Animals. 2021; 11(8):2287. https://doi.org/10.3390/ani11082287
Chicago/Turabian StyleWattanakul, Wattana, Karun Thongprajukaew, Waraporn Hahor, and Naraid Suanyuk. 2021. "Optimal Replacement of Soybean Meal with Fermented Palm Kernel Meal as Protein Source in a Fish Meal-Soybean Meal-Based Diet of Sex Reversed Red Tilapia (Oreochromis niloticus × O. mossambicus)" Animals 11, no. 8: 2287. https://doi.org/10.3390/ani11082287
APA StyleWattanakul, W., Thongprajukaew, K., Hahor, W., & Suanyuk, N. (2021). Optimal Replacement of Soybean Meal with Fermented Palm Kernel Meal as Protein Source in a Fish Meal-Soybean Meal-Based Diet of Sex Reversed Red Tilapia (Oreochromis niloticus × O. mossambicus). Animals, 11(8), 2287. https://doi.org/10.3390/ani11082287