Isoquinoline Alkaloids in Sows’ Diet Reduce Body Weight Loss during Lactation and Increase IgG in Colostrum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Housing
2.2. Sows’ Performance Parameters, Blood, Colostrum and Milk Analyses
2.2.1. Sows’ Performance Parameters
2.2.2. Sow’s Blood Analyses
2.2.3. Colostrum and Milk Analysis
2.3. Piglets’ Performance Parameters and Diarrhea Score
2.3.1. Piglets’ Performance
2.3.2. Diarrhea Score
2.4. Sampling of Piglets’ Intestinal Tissues, Histology and Gene Expression Analysis
2.4.1. Sampling of Intestinal Tissues
2.4.2. Histology
2.4.3. Gene Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. Sows’ Performance, Blood, Colostrum and Milk Parameters
3.1.1. Sows’ Performance Parameters
3.1.2. Sows’ Reproductive Performance
3.1.3. Sows’ Blood Parameters
3.1.4. Colostrum and Milk Composition
3.2. Piglets’ Performance Parameters and Diarrhea Score
3.2.1. Piglets’ Performance Parameters
3.2.2. Diarrhea Score of Piglets
3.3. Piglets’ Ileum Gene Expression and Histomorphometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosina, P.; Gregorova, J.; Gruz, J.; Vacek, J.; Kolar, M.; Vogel, M.; Roos, W.; Naumann, K.; Simanek, V.; Ulrichova, J. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia 2010, 81, 1006–1012. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, N.J.; Cao, Y.; Sun, Z.; Wang, Q.; Liu, Z.Y.; Sun, Z.L. Sanguinarine metabolism and pharmacokinetics study in vitro and in vivo. J. Vet. Pharmacol. Ther. 2020, 43, 208–214. [Google Scholar] [CrossRef]
- Zhao, L.; Matulka, R.A.; von Alvensleben, S.; Morlacchini, M. Residue Study for a Standardized Macleaya cordata Extract in Growing-Finishing Swine. Open J. Anim. Sci. 2017, 7, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Newton, S.M.; Lau, C.; Gurcha, S.S.; Besra, G.S.; Wright, C.W. The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J. Ethnopharmacol. 2002, 79, 57–67. [Google Scholar] [CrossRef]
- Tanaka, T.; Metori, K.; Mineo, S.; Hirotani, M.; Furuya, T.; Kobayashi, S. Inhibitory Effects of Berberine-Type Alkaloids on Elastase. Planta Med. 1993, 59, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Fan, T.; Li, W.; Xing, W.; Huang, H. The anti-inflammatory effects of sanguinarine and its modulation of inflammatory mediators from peritoneal macrophages. Eur. J. Pharmacol. 2012, 689, 262–269. [Google Scholar] [CrossRef]
- Chen, J.; Kang, B.; Yao, K.; Fu, C.; Zhao, Y. Effects of dietary Macleaya cordata extract on growth performance, immune responses, antioxidant capacity, and intestinal development in weaned piglets. J. Appl. Anim. Res. 2019, 47, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, M.M.; Kumar, A.; Darnay, B.G.; Chainy, G.B.N.; Agarwal, S.; Aggarwal, B.B. Sanguinarine (Pseudochelerythrine) Is a Potent Inhibitor of NF-κB Activation, IκBα Phosphorylation, and Degradation. J. Biol. Chem. 1997, 272, 30129–30134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadem, A.; Soler, L.; Everaert, N.; Niewold, T.A. Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. Br. J. Nutr. 2014, 112, 1110–1118. [Google Scholar] [CrossRef] [Green Version]
- Kikusato, M.; Xue, G.; Pastor, A.; Niewold, T.A.; Toyomizu, M. Effects of plant-derived isoquinoline alkaloids on growth performance and intestinal function of broiler chickens under heat stress. Poult. Sci. 2021, 100, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Kantas, D.; Papatsiros, V.G.; Tassis, P.D.; Athanasiou, L.V.; Tzika, E.D. The effect of a natural feed additive (Macleaya cordata), containing sanguinarine, on the performance and health status of weaning pigs. Anim. Sci. J. 2015, 86, 92–98. [Google Scholar] [CrossRef]
- Goodarzi Boroojeni, F.; Männer, K.; Zentek, J. The impacts of Macleaya cordata extract and naringin inclusion in post-weaning piglet diets on performance, nutrient digestibility and intestinal histomorphology. Arch. Anim. Nutr. 2018, 72, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guan, G.; Fang, J.; Martínez, Y.; Chen, S.; Bin, P.; Duraipandiyan, V.; Gong, T.; Tossou, M.C.B.; Al-Dhabi, N.A.; et al. Macleaya cordata Extract Decreased Diarrhea Score and Enhanced Intestinal Barrier Function in Growing Piglets. Biomed. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Le, H.H.; Shakeri, M.; Suleria, H.A.R.; Zhao, W.; McQuade, R.M.; Phillips, D.J.; Vidacs, E.; Furness, J.B.; Dunshea, F.R.; Artuso-Ponte, V.; et al. Betaine and isoquinoline alkaloids protect against heat stress and colonic permeability in growing pigs. Antioxidants 2020, 9, 1024. [Google Scholar] [CrossRef] [PubMed]
- Artuso-Ponte, V.; Moeller, S.; Rajala-Schultz, P.; Medardus, J.J.; Munyalo, J.; Lim, K.; Gebreyes, W.A. Supplementation with Quaternary Benzo(c)phenanthridine Alkaloids Decreased Salivary Cortisol and Salmonella Shedding in Pigs after Transportation to the Slaughterhouse. Foodborne Pathog. Dis. 2015, 12, 891–897. [Google Scholar] [CrossRef]
- Eissen, J.J.; Kanis, E.; Kemp, B. Sow factors affecting voluntary feed intake during lactation. Livest. Prod. Sci. 2000, 64, 147–165. [Google Scholar] [CrossRef]
- Tantasuparuk, W.; Dalin, A.-M.; Lundeheim, N.; Kunavongkrit, A.; Einarsson, S. Body weight loss during lactation and its influence on weaning-to-service interval and ovulation rate in Landrace and Yorkshire sows in the tropical environment of Thailand. Anim. Reprod. Sci. 2001, 65, 273–281. [Google Scholar] [CrossRef]
- Eissen, J.J.; Apeldoorn, E.J.; Kanis, E.; Verstegen, M.W.A.; de Greef, K.H. The importance of a high feed intake during lactation of primiparous sows nursing large litters. J. Anim. Sci. 2003, 81, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; Lynch, B.P.; O’Doherty, J. V Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets1. J. Anim. Sci. 2010, 88, 2988–2997. [Google Scholar] [CrossRef] [Green Version]
- Farmer, C.; Quesnel, H. Nutritional, hormonal, and environmental effects on colostrum in sows. J. Anim. Sci. 2009, 87, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Leblois, J.; Massart, S.; Soyeurt, H.; Grelet, C.; Dehareng, F.; Schroyen, M.; Li, B.; Wavreille, J.; Bindelle, J.; Everaert, N. Feeding sows resistant starch during gestation and lactation impacts their faecal microbiota and milk composition but shows limited effects on their progeny. PLoS ONE 2018, 13, e0199568. [Google Scholar] [CrossRef] [PubMed]
- Leblois, J.; Massart, S.; Li, B.; Wavreille, J.; Bindelle, J.; Everaert, N. Modulation of piglets’ microbiota: Differential effects by a high wheat bran maternal diet during gestation and lactation. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozois, C.M.; Oswald, E.; Gautier, N.; Serthelon, J.P.; Fairbrother, J.M.; Oswald, I.P. A reverse transcription-polymerase chain reaction method to analyze porcine cytokine gene expression. Vet. Immunol. Immunopathol. 1997, 58, 287–300. [Google Scholar] [CrossRef]
- Chatelais, L.; Jamin, A.; Le Guen, C.G.; Lallès, J.P.; Le Huërou-Luron, I.; Boudry, G. The level of protein in milk formula modifies ileal sensitivity to LPS later in life in a piglet model. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meissonnier, G.M.; Pinton, P.; Laffitte, J.; Cossalter, A.M.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Galtier, P.; Oswald, I.P. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharmacol. 2008, 231, 142–149. [Google Scholar] [CrossRef]
- Gourbeyre, P.; Berri, M.; Lippi, Y.; Meurens, F.; Vincent-Naulleau, S.; Laffitte, J.; Rogel-Gaillard, C.; Pinton, P.; Oswald, I.P. Pattern recognition receptors in the gut: Analysis of their expression along the intestinal tract and the crypt/villus axis. Physiol. Rep. 2015, 3, e12225. [Google Scholar] [CrossRef]
- Kim, S.W.; Mateo, R.D.; Yin, Y.L.; Wu, G. Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Australas. J. Anim. Sci. 2007, 20, 295–306. [Google Scholar] [CrossRef]
- Kemp, B.; Soede, N. Reproductive problems in primiparous sows. Proc. 18th IPVS Congr. 2004, 2, 843–848. [Google Scholar]
- Baidoo, S.K.; Aherne, F.X.; Kirkwood, R.N.; Foxcroft, G.R. Effect of feed intake during lactation and after weaning on sow reproductive performance. Can. J. Anim. Sci. 1992, 72, 911–917. [Google Scholar] [CrossRef]
- Zak, L.J.; Cosgrove, J.R.; Aherne, F.X.; Foxcroft, G.R. Pattern of Feed Intake and Associated Metabolic and Endocrine Changes Differentially Affect Postweaning Fertility in Primiparous Lactating Sows. J. Anim. Sci. 1997, 75, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkwood, R.N.; Baidoo, S.K.; Aherne, F.X.; Sather, A.P. The Influence of feeding level during lactation on the occurrence and endocrinology of the postweaning estrus in sows. Can. J. Anim. Sci. 1987, 67, 405–415. [Google Scholar] [CrossRef]
- Mullan, B.P.; Williams, I.H. The chemical composition of sows during their first lactation. Anim. Sci. 1990, 51, 375–387. [Google Scholar] [CrossRef]
- Charette, R.; Bigras-Poulin, M.; Martineau, G.-P. Body condition evaluation in sows. Livest. Prod. Sci. 1996, 46, 107–115. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, X.; Pangeni, D.; Baidoo, S.K. Relationship between backfat thickness of sows during late gestation and reproductive efficiency at different parities. Acta Agric. Scand. A Anim. Sci. 2015, 65, 1–8. [Google Scholar] [CrossRef]
- De Rensis, F.; Gherpelli, M.; Superchi, P.; Kirkwood, R.N. Relationships between backfat depth and plasma leptin during lactation and sow reproductive performance after weaning. Anim. Reprod. Sci. 2005, 90, 95–100. [Google Scholar] [CrossRef]
- Serenius, T.; Stalder, K.J.; Baas, T.J.; Mabry, J.W.; Goodwin, R.N.; Johnson, R.K.; Robison, O.W.; Tokach, M.; Miller, R.K. National Pork Producers Council Maternal Line National Genetic Evaluation Program: A comparison of sow longevity and trait associations with sow longevity. J. Anim. Sci. 2006, 84, 2590–2595. [Google Scholar] [CrossRef] [Green Version]
- McMorris, T.; Swain, J.; Smith, M.; Corbett, J.; Delves, S.; Sale, C.; Harris, R.C.; Potter, J. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int. J. Psychophysiol. 2006, 61, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.A.; Nienaber, J.A.; Christenson, R.K.; Manak, R.C.; DeShazer, J.A.; Hahn, G.L. Peripheral concentrations of cortisol as an indicator of stress in the pig. Am. J. Vet. Res. 1985, 46, 1034–1038. [Google Scholar]
- Theil, P.K.; Nielsen, M.O.; Sørensen, M.T.; Lauridsen, C. Chapter 17—Lactation, milk and suckling. Nutr. Physiol. Pigs 2012, 1–49. Available online: http://vsp.lf.dk/~/media/Files/Laerebog_fysiologi/Chapter17.ashx (accessed on 22 July 2021).
- Spincer, J.; Rook, J.A.F.; Towers, K.G. The uptake of plasma constituents by the mammary gland of the sows. Biochem. J. 1969, 111, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, B.; Ata, A.; Kumar, N.V.A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Ayatollahi, S.A.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.Y.; Huang, Z.J.; Wang, G.J.; Fawcett, J.P.; Liu, X.D.; Zhao, X.C.; Sun, J.G.; Xie, Y.Y. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med. 2003, 69, 632–636. [Google Scholar] [CrossRef]
- Père, M.C.; Etienne, M.; Dourmad, J.Y. Adaptations of glucose metabolism in multiparous sows: Effects of pregnancy and feeding level. J. Anim. Sci. 2000, 78, 2933–2941. [Google Scholar] [CrossRef]
- Zou, C.S.; Wang, Y.J.; Zou, H.; Ding, N.; Geng, N.N.; Cao, C.W.; Zhang, G.C. Sanguinarine in Chelidonium majus induced antifeeding and larval lethality by suppressing food intake and digestive enzymes in Lymantria dispar. Pestic. Biochem. Physiol. 2019, 153, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Markowska-Daniel, I.; Pomorska-Mól, M.; Pejsak, Z. Dynamic changes of immunoglobulin concentrations in pig colostrum and serum around parturition. Pol. J. Vet. Sci. 2010, 13, 21–27. [Google Scholar] [PubMed]
- Dividich, J.L.; Rooke, J.A.; Herpin, P. Nutritional and immunological importance of colostrum for the new-born pig. J. Agric. Sci. 2005, 143, 469–485. [Google Scholar] [CrossRef] [Green Version]
- Farmer, C.; Devillers, N.; Rooke, J.A.; Le Dividich, J. Colostrum production in swine: From the mammary glands to the piglets. Pigs News Inf. 2006, 27. [Google Scholar] [CrossRef]
- Burrin, D.G.; Shulman, R.J.; Reeds, P.J.; Davis, T.A.; Gravitt, K.R. Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. J. Nutr. 1992, 122, 1205–1213. [Google Scholar] [CrossRef]
- Kuralkar, P.; Kuralkar, S.V. Nutritional and immunological importance of colostrum for the new born. Vet. World 2010, 3, 46–47. [Google Scholar]
- Everaert, N.; Van Cruchten, S.; Weström, B.; Bailey, M.; Van Ginneken, C.; Thymann, T.; Pieper, R. A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim. Feed Sci. Technol. 2017, 233, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.A.N.; Noblet, J.; Oliveira, R.F.M.; Donzele, J.L.; Primot, Y.; Renaudeau, D. Effects of dietary protein concentration and amino acid supplementation on the feeding behavior of multiparous lactating sows in a tropical humid climate. J. Anim. Sci. 2009, 87, 2104–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient (%) | Gestation | Lactation |
---|---|---|
Wheat | 20.83 | 21.81 |
Barley | 18.70 | 14.00 |
Wheat bran | 12.50 | 10.00 |
Corn | 12.00 | 12.50 |
Beet pulp | 7.40 | 4.90 |
Soybean hulls GMO | 4.00 | 3.00 |
Palm oil | 4.00 | 3.00 |
Rice bran | 3.50 | 3.50 |
Nutex 68 (Dumoulin Inc.) * | 3.40 | 3.40 |
Corn DDGS | 2.80 | 2.00 |
Sunflower meal | 2.70 | - |
Soybean meal GMO | - | 9.60 |
Rapeseed meal | - | 1.20 |
Molasses | 2.00 | 2.00 |
Cocoa hulls | 2.00 | 2.00 |
Corn gluten | 1.50 | 1.50 |
Limestone | 0.98 | 1.53 |
Animal fat | 0.18 | 2.17 |
Salt | 0.25 | 0.51 |
L-Lysine 50% | 0.43 | 0.47 |
Na-Bicarbonate | 0.38 | - |
Monocalcium-phosphate | 0.05 | 0.42 |
Premix (oligo, vitamin, enzymes) | 0.30 | 0.30 |
L-Threonine | 0.06 | 0.03 |
Vitamin E | - | 0.02 |
L-Tryptophan | - | 0.01 |
Threonine + Methionine 70/30 | 0.05 | 0.12 |
Total | 100.00 | 100.00 |
Isoquinoline alkaloids (ppm) | 90 | 150 |
Dry matter a | 874 | 876 |
Crude protein a | 130 | 155 |
Crude fat a | 47 | 65 |
Crude fiber a | 78 | 64 |
Crude ash a | 57 | 65 |
Starch a | 342 | 321 |
Total Sugar a | 47.95 | 51.90 |
Calcium a | 7.00 | 9.76 |
Phosphor-d a | 2.43 | 3.15 |
Ca/P a | 1.36 | 1.68 |
Sodium a | 2.40 | 2.38 |
Non-starch polysaccharide a | 264 | 230 |
Linoleic acid (C 18:2) a | 13.33 | 14.61 |
Linolenic acid (C 18:3) a | 5.35 | 5.67 |
Lysine-d a | 5.05 | 7.26 |
Methionine-d a | 1.77 | 2.25 |
Methionine + Cysteine-d a | 3.33 | 4.09 |
Threonine-d a | 3.43 | 4.79 |
Tryptophan-d a | 1.01 | 1.45 |
Net Energy (kcal) | 2110 | 2230 |
Dietary electrolyte balance (Na+K-Cl, mEq) | 220.40 | 201.70 |
Target Gene | Code | Primer Sequence (5′→3′) | Reference | Accession Number | |
---|---|---|---|---|---|
Actin–beta | ACTB | F | GGA-CTT-CGA-GCA-GGA-GAT-GG | [22] | XM_021086047 |
R | GCA-CCG-TGT-TGG-CGT-AGA-GG | ||||
Glyceraldehyde-3- phosphate dehydrogenase | GAPDH | F | CAT-CCA-TGA-CAA-CTT-CGG-CA | [23] | NM_001206359.1 |
R | GCA-TGG-ACT-GTG-GTC-ATG-AGT-C | ||||
Tumor necrosis factor-alpha | TNF-α | F | ACT-GCA-CTT-CGA-GGT-TAT-CGG | [24] | NM_214022.1 |
R | GGC-GAC-GGG-CTT-ATC-TGA | ||||
Interleukin–6 | IL-6 | F | AGA-CAA-AGC-CAC-CAC-CCC-TAA | [25] | NM_214399 |
R | CTC-GTT-CTG-TGA-CTG-CAG-CTT-ATC | ||||
Interleukin–10 | IL-10 | F | CTG-CCT-CCC-ACT-TTC-TCT-TG | [26] | NM_214041 |
R | TCA-AAG-GGG-CTC-CCT-AGT-TT |
Iterms | NC (n = 8) | IQ1 (n = 7) | IQ2 (n = 8) | ||
---|---|---|---|---|---|
Bodyweight (kg) | mean ± SD | mean ± SD | p-value | mean ± SD | p-value |
G76 | 215 ± 28 | 233 ± 31 | 0.407 | 211 ± 21 | 0.934 |
G106 | 230 ± 21 | 250 ± 37 | 0.341 | 226 ± 17 | 0.931 |
L21 | 202 ± 33 | 228 ± 43 | 0.164 | 210 ± 21 | 0.796 |
L28 | 187 ± 32 | 215 ± 43 | 0.114 | 197 ± 24 | 0.728 |
Bodyweight change (ΔKg) | |||||
Gestation (G76–G106) | 8 ± 2 | 9 ± 2 | 0.954 | 8 ± 2 | 0.999 |
Maternity (G106–L28) | −43 ± 14 | −34 ± 13 | 0.333 | −29 ± 14 | 0.096 |
Feed intake (kg) | |||||
Gestation (G80–G106) | 71 ± 4 | 74 ± 11 | 0.959 | 71 ± 3 | 0.999 |
Maternity (G106–L28) | 174 ± 24 | 179 ± 29 | 0.893 | 175 ± 16 | 0.994 |
Back-fat thickness (mm) | |||||
G76 | 21.1 ± 4.9 | 22.3 ± 2.7 | 0.803 | 21.0 ± 3.9 | 0.997 |
G106 | 20.3 ± 5.2 | 21.9 ± 4.1 | 0.663 | 21.3 ± 4.3 | 0.839 |
L28 | 15.3 ± 3.6 | 19.7 ± 4.2 | 0.067 | 17.5 ± 2.6 | 0.436 |
Back-fat thickness change (Δmm) | |||||
Gestation (G76–G106) | −0.9 ± 0.6 | −0.4 ± 0.8 | 0.941 | 0.3 ± 1.1 | 0.672 |
Maternity (G106–L28) | −5.0 ± 1.2 | −2.1 ± 1.2 | 0.125 | −3.8 ± 1.3 | 0.615 |
Back-muscle thickness (mm) | |||||
G76 | 48.1 ± 6.2 | 52.4 ± 5.0 | 0.257 | 47.5 ± 5.0 | 0.966 |
G106 | 43.5 ± 6.6 | 46.9 ± 5.7 | 0.423 | 45.4 ± 4.1 | 0.738 |
L28 | 40.5 ± 7.2 | 44.9 ± 5.1 | 0.249 | 40.0 ± 5.8 | 0.978 |
Back-muscle thickness change (Δmm) | |||||
Gestation (G76–G106) | −4.6 ± 2.1 | −5.6 ± 1.6 | 0.941 | −2.1 ± 1.8 | 0.647 |
Maternity (G106–L28) | −3.0 ± 8.8 | −2.0 ± 5.3 | 0.934 | −5.4 ± 6.9 | 0.674 |
Iterms | NC (n = 8) | IQ1 (n = 7) | IQ2 (n = 8) | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | p-Value | Mean ± SD | p-Value | |
Duration of farrowing (h) * | 3.0 ± 0.8 | 3.3 ± 1.0 | 0.926 | 3.4 ± 1.1 | 0.706 |
Piglet expulsion rate (piglets/h) * | 5.4 ± 1.6 | 4.4 ± 0.7 | 0.580 | 4.3 ± 1.8 | 0.362 |
No piglets born alive | 15.4 ± 3.6 | 13 ± 1.7 | 0.263 | 12.1 ± 3.5 | 0.096 |
No piglets born dead | 0.6 ± 1.1 | 1.3 ± 1.7 | 0.573 | 0.5 ± 1.4 | 0.977 |
No piglets born total | 16.0 ± 4.2 | 14.3 ± 1.8 | 0.555 | 12.6 ± 3.9 | 0.125 |
Mortality birth rate (%) | 3.2 ± 4.9 | 8.4 ± 11.2 | 0.408 | 2.9 ± 8.3 | 0.998 |
Weight living piglets at birth (kg/piglet) | 1.49 ± 0.16 | 1.44 ± 0.26 | 0.942 | 1.45 ± 0.16 | 0.989 |
Total litter weight at birth (kg) ( living pigs/lactating sow) | 19.91 ± 2.06 | 18.44 ± 2.73 | 0.842 | 17.22 ± 3.29 | 0.909 |
Iterms | NC | IQ1 | IQ2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Number of Piglets | Mean ± SD | n | Mean ± SD | n | p-Value | Mean ± SD | n | p-Value | |
Previous cycle | Born alive/sow/year | 36.2 ± 6.6 | 5 | 35.3 ± 7.5 | 5 | 0.860 | 32.7 ± 4.9 | 5 | 0.308 |
Weaned piglets/sow/year | a 30.9 ± 3.8 | 5 | a 29.3 ± 5.3 | 5 | 0.708 | a 30.9 ± 2.9 | 5 | 0.968 | |
Experiment cycle | Born alive/sow/year | 36.1 ± 5.8 | 8 | 33.0 ± 5.0 | 7 | 0.397 | 30.0 ± 7.1 | 8 | 0.033 |
Weaned piglets/sow/year | b 28.9 ± 3.1 | 8 | b 26.1 ± 4.1 | 7 | 0.455 | b 26.3 ± 4.7 | 8 | 0.471 | |
Next cycle | Born alive/sow/year | 33.6 ± 2.7 | 4 | 34.8 ± 2.5 | 3 | 0.927 | 35.8 ± 4.2 | 3 | 0.997 |
Weaned piglets/sow/year | ab 30.5 ± 1.6 | 4 | ab 25.4 ± 3.6 | 3 | 0.302 | ab 29.4 ± 2.4 | 3 | 0.543 |
Iterms | NC (n = 8) | IQ1 (n = 7) | IQ2 (n = 8) * | ||
---|---|---|---|---|---|
Bodyweight (kg/piglet) | mean ± SD | mean ± SD | p-value | mean ± SD | p-value |
Birth (per lactating sow) * | 1.46 ± 0.15 | 1.42 ± 0.20 | 0.951 | 1.43 ± 0.17 | 0.996 |
L7 | 2.69 ± 0.45 | 2.55 ± 0.35 | 0.898 | 2.66 ± 0.35 | 0.994 |
L14 | 4.09 ± 0.57 | 4.07 ± 0.56 | 0.998 | 4.23 ± 0.76 | 0.886 |
L21 | 5.97 ± 0.67 | 5.62 ± 0.59 | 0.527 | 6.13 ± 1.000 | 0.865 |
ADWG (Δkg/day/piglet) | |||||
Farrowing–L7 * | 0.16 ± 0.05 | 0.17 ± 0.03 | 0.953 | 0.17 ± 0.05 | 0.868 |
L7–L14 | 0.20 ± 0.04 | 0.18± 0.09 | 0.778 | 0.22 ± 0.07 | 0.621 |
L14–L21 | 0.27 ± 0.05 | 0.21 ± 0.04 | 0.105 | 0.26 ± 0.06 | 0.959 |
Lactation (Farrowing–L21) * | 0.21 ± 0.03 | 0.20 ± 0.02 | 0.989 | 0.22 ± 0.05 | 0.657 |
Litter size at birth/lactating sow | 13.8 ± 1.7 | 13 ± 0.6 | 12.1 ± 2.1 | ||
Litter size P7/lactating sow | 12.1 ± 1.4 | 10.9 ± 1.1 | 10.8 ± 2 | ||
No piglets P14 | 11.6 ± 2.3 | 10.6 ± 1.1 | 10.3 ± 2.2 | ||
No piglets P21 | 11.4 ± 2.3 | 10.1 ± 1.3 | 9.8 ± 2.2 | ||
No weaned piglets | 10.4 ± 2.3 | 8.9 ± 1.3 | 8.8 ± 2.2 | ||
Mortality rate lactation period | 15.2 ± 21.5 | 21.8 ± 10.9 | 18.4 ± 16.4 |
Iterms | NC (n = 8) | IQ1 (n = 7) | IQ2 (n = 8) | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | p-Value | Mean ± SD | p-Value | |
Diarrhea score | 1.50 ± 1.51 | 2.29 ± 1.89 | 0.984 | 1.75 ± 1.83 | 0.998 |
Presence of diarrhea (%) | 16.65 ± 16.78 | 25.39 ± 21.01 | 0.174 | 19.44 ± 20.37 | 0.806 |
Total number of observations | 2.38 ± 2.45 | 7.00 ± 7.09 | 0.585 | 5.13 ± 5.91 | 0.811 |
Average fecal consistency | 1.86 ± 0.75 | 2.04 ± 0.57 | 0.999 | 2.19 ± 0.55 | 0.997 |
Histomorphology | NC (n = 8) | IQ1 (n = 8) | IQ2 (n = 8) | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | p-Value | Mean ± SD | p-Value | |
VILLI Height (VH; µm) | 323 ± 42 | 331 ± 25 | 0.835 | 334 ± 48 | 0.688 |
CRYPT Depth (CD; µm) | 170 ± 19 | 164 ± 19 | 0.900 | 164 ± 11 | 0.897 |
VH/CD ratio | 1.90 ± 0.23 | 2.03 ± 0.20 | >0.999 | 2.04 ± 0.31 | >0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arévalo Sureda, E.; Zhao, X.; Artuso-Ponte, V.; Wall, S.-C.; Li, B.; Fang, W.; Uerlings, J.; Zhang, Y.; Schroyen, M.; Grelet, C.; et al. Isoquinoline Alkaloids in Sows’ Diet Reduce Body Weight Loss during Lactation and Increase IgG in Colostrum. Animals 2021, 11, 2195. https://doi.org/10.3390/ani11082195
Arévalo Sureda E, Zhao X, Artuso-Ponte V, Wall S-C, Li B, Fang W, Uerlings J, Zhang Y, Schroyen M, Grelet C, et al. Isoquinoline Alkaloids in Sows’ Diet Reduce Body Weight Loss during Lactation and Increase IgG in Colostrum. Animals. 2021; 11(8):2195. https://doi.org/10.3390/ani11082195
Chicago/Turabian StyleArévalo Sureda, Ester, Xuemei Zhao, Valeria Artuso-Ponte, Sophie-Charlotte Wall, Bing Li, Wei Fang, Julie Uerlings, Yuping Zhang, Martine Schroyen, Clément Grelet, and et al. 2021. "Isoquinoline Alkaloids in Sows’ Diet Reduce Body Weight Loss during Lactation and Increase IgG in Colostrum" Animals 11, no. 8: 2195. https://doi.org/10.3390/ani11082195
APA StyleArévalo Sureda, E., Zhao, X., Artuso-Ponte, V., Wall, S.-C., Li, B., Fang, W., Uerlings, J., Zhang, Y., Schroyen, M., Grelet, C., Dehareng, F., Wavreille, J., & Everaert, N. (2021). Isoquinoline Alkaloids in Sows’ Diet Reduce Body Weight Loss during Lactation and Increase IgG in Colostrum. Animals, 11(8), 2195. https://doi.org/10.3390/ani11082195