Prediction of Thiol Group Changes in Minced Raw and Cooked Chicken Meat with Plant Extracts—Kinetic and Neural Network Approaches
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Plant Extract
2.3. Meat Sample Preparation and Storage Conditions
2.4. SH Content
2.5. The Kinetic Model
2.6. Artificial Neural Networks (ANNs)
2.7. Validation and Evaluation of Kinetic and ANN Models
2.8. Multiple Linier Regression Analysis (MLR)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Development of Kinetic Models for Thiol Groups Decrease in Ground Chicken Meat
3.2. ANN Models for Thiol Groups Decrease in Ground Chicken Meat
3.3. Validation and Evaluation of SH Prediction Models
3.4. Regression Modeling Using MLR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobral, M.M.C.; Casal, S.; Faria, M.A.; Cunha, S.C.; Ferreira, I.M.P.L.V.O. Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food Chem. Toxicol. 2020, 141, 111401. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef]
- Kim, Y.H.; Huff-Lonergan, E.; Sebranek, J.G.; Lonergan, S.M. High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Sci. 2010, 85, 759–767. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Goethals, S.; Van Hecke, T.; Vossen, E.; Vanhaecke, L.; Van Camp, J. Commercial luncheon meat products and their in vitro gastrointestinal digests contain more protein carbonyl compounds but less lipid oxidation products compared to fresh pork. Food Res. Int. 2020, 136, 109585. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Luna, C. Dietary protein oxidation: A silent threat to human health? Crit. Rev. Food Sci. Nutr. 2017, 57, 3781–3793. [Google Scholar] [CrossRef]
- Estévez, M.; Li, Z.; Soladoye, O.P.; Van-Hecke, T. Health Risks of Food Oxidation. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2017; Volume 82, pp. 45–81. [Google Scholar]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Burri, S.; Granheimer, K.; Rémy, M.; Tannira, V.; So, Y.; Rumpunen, K.; Tornberg, E.; Canaviri Paz, P.; Uhlig, E.; Oscarsson, E.; et al. Processed meat products with added plant antioxidants affect the microbiota and immune response in C57BL/6JRj mice with cyclically induced chronic inflammation. Biomed. Pharmacother. 2020, 135, 111133. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, M. The Chemistry of Protein Oxidation in Food. Angew. Chem. Int. Ed. 2019, 58, 16742–16763. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Racanicci, A.M.C.C.; Skibsted, L.H. Mate extract is superior to green tea extract in the protection against chicken meat protein thiol oxidation. Food Chem. 2019, 300, 125134. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Tørngren, M.A.; Gunvig, A.; Skibsted, L.H.; Lund, M.N. Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork. Meat Sci. 2012, 93, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Jongberg, S.; Andersen, M.L.; Skibsted, L.H. Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic. Meat Sci. 2013, 95, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, M. Die Chemie der Proteinoxidation in Lebensmitteln. Angew. Chem. 2019, 131, 16896–16918. [Google Scholar] [CrossRef]
- Silva, F.A.; Estévez, M.; Ferreira, V.C.; Silva, S.A.; Lemos, L.T.; Ida, E.I.; Shimokomaki, M.; Madruga, M.S. Protein and lipid oxidations in jerky chicken and consequences on sensory quality. LWT 2018, 97, 341–348. [Google Scholar] [CrossRef]
- Rysman, T.; Van Hecke, T.; Van Poucke, C.; De Smet, S.; Van Royen, G. Protein oxidation and proteolysis during storage and in vitro digestion of pork and beef patties. Food Chem. 2016, 209, 177–184. [Google Scholar] [CrossRef]
- Lund, M.N.; Lametsch, R.; Hviid, M.S.; Jensen, O.N.; Skibsted, L.H. High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Sci. 2007, 77, 295–303. [Google Scholar] [CrossRef]
- Zainudin, M.A.M.; Jongberg, S.; Lund, M.N.; Asraf, M.; Zainudin, M.A.M.; Jongberg, S.; Lund, M.N. Combination of light and oxygen accelerates formation of covalent protein-polyphenol bonding during chill storage of meat added 4-methyl catechol. Food Chem. 2021, 334, 127611. [Google Scholar] [CrossRef]
- Tuell, J.R.; Park, J.-Y.; Wang, W.; Cheng, H.-W.; Kim, Y.H.B. Functional/physicochemical properties and oxidative stability of ground meat from broilers reared under different photoperiods. Poult. Sci. 2020, 99, 3761–3768. [Google Scholar] [CrossRef]
- Silva, A.A.; De Melo, M.P.; Silva, S.L.; Lins, P.G.; Lobo, A.R.; Fernandes, R.P.P.; Amaral, N.R.; Taniguchi, M.V.; Lopes, N.P. Protein oxidation and color stability in meat aged under aerobic conditions from bull and steer. In Proceedings of the 58th International Congress of Meat Science and Technology, Montreal, QC, Canada, 12–17 August 2012. [Google Scholar]
- Weiss, D.; Kaczmarek, A.; Stangierski, J. Applicability of bacterial growth models in spreadable processed cheese. Acta Sci. Pol. Technol. Aliment. 2015, 14, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Stangierski, J.; Weiss, D.; Kaczmarek, A. Multiple regression models and Artificial Neural Network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed Gouda cheese. Eur. Food Res. Technol. 2019, 245, 2539–2547. [Google Scholar] [CrossRef] [Green Version]
- Limbo, S.; Torri, L.; Sinelli, N.; Franzetti, L.; Casiraghi, E. Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat Sci. 2010, 84, 129–136. [Google Scholar] [CrossRef]
- Wang, H.; Kong, C.; Li, D.; Qin, N.; Fan, H. Modeling Quality Changes in Brined Bream (Megalobrama amblycephala) Fillets During Storage: Comparison of the Arrhenius Model, BP, and RBF Neural Network. Food Bioprocess Technol. 2015, 8, 2429–2443. [Google Scholar] [CrossRef]
- Wenjiao, F.; Yongkui, Z.; Yunchuan, C.; Junxiu, S.; Yuwen, Y. TBARS predictive models of pork sausages stored at different temperatures. Meat Sci. 2014, 96, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Zhou, Z.; Lu, H.; Luo, Y.; Shen, H. Modelling quality changes in Songpu mirror carp (Cyprinus carpio) fillets stored at chilled temperatures: Comparison between Arrhenius model and log-logistic model. Int. J. Food Sci. Technol. 2013, 48, 387–393. [Google Scholar] [CrossRef]
- Guo, Z.; Ge, X.; Yu, Q.L.; Han, L.; Zhao, H.; Cao, H. Quality predictive models for bovine liver during storage and changes in volatile flavors. Int. J. Food Prop. 2018, 21, 2452–2468. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.; Rauh, C.; Park, J.; Kim, Y.; Groß, F.; Diez, L. Artificial Neural Networks: Applications in Food Processing. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780081005965. [Google Scholar]
- Panagou, E.Z.; Mohareb, F.R.; Argyri, A.A.; Bessant, C.M.; Nychas, G.J.E. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints. Food Microbiol. 2011, 28, 782–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Ruhil, A.; Jain, D.; Patel, A.; Patil, G. Prediction of sensory quality of UHT milk—A comparison of kinetic and neural network approaches. J. Food Eng. 2009, 92, 146–151. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Kaczmarek, A.; Tomaszewska-Gras, J.; Cegielska-Radziejewska, R.; Szablewski, T.; Majcher, M.; Stuper-Szablewska, K. A Chemometric Approach to Oxidative Stability and Physicochemical Quality of Raw Ground Chicken Meat Affected by Black Seed and Other Spice Extracts. Antioxidants 2020, 9, 903. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Kaczmarek, A.; Tomaszewska-Gras, J.; Cegielska-Radziejewska, R.; Majcher, M. Oxidative and microbiological stability of raw ground pork during chilled storage as affected by Plant extracts. Int. J. Food Prop. 2019, 22, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Kaczmarek, A.; Muzolf-Panek, M. Predictive Modeling of Changes in TBARS in the Intramuscular Lipid Fraction of Raw Ground Beef Enriched with Plant Extracts. Antioxidants 2021, 10, 736. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Kinetic modeling of food quality: A critical review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 144–158. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Olley, J.; Mcmeekin, T.A.; Ball, A. Relationship Between Temperature and Growth Rate of Bacterial Cultures. J. Bacteriol. 1982, 149, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boekel, M.A.J.S. Kinetic Modeling of Reactions in Foods, 1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009; ISBN 9781574446142. [Google Scholar]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Wang, Z.Z.; He, Z.; Zhang, D.; Li, H.; Wang, Z.Z. Using oxidation kinetic models to predict the quality indices of rabbit meat under different storage temperatures. Meat Sci. 2020, 162, 108042. [Google Scholar] [CrossRef]
- Radha Krishnan, K.; Babuskin, S.; Azhagu Saravana Babu, P.; Sivarajan, M.; Sukumar, M. Evaluation and predictive modeling the effects of spice extracts on raw chicken meat stored at different temperatures. J. Food Eng. 2015, 166, 29–37. [Google Scholar] [CrossRef]
- Olivera, D.F.; Bambicha, R.; Laporte, G.; Cárdenas, F.C.; Mestorino, N. Kinetics of colour and texture changes of beef during storage. J. Food Sci. Technol. 2013, 50, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, A.; Cegielska-Radziejewska, R.; Szablewski, T.; Zabielski, J. TBARS and microbial growth predicative models of pork sausage stored at different temperatures. Czech, J. Food Sci. 2015, 33, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Liu, X.; Wang, H.; Hong, H.; Luo, Y. Comparison between the Arrhenius model and the radial basis function neural network (RBFNN) model for predicting quality changes of frozen shrimp (Solenocera melantho). Int. J. Food Prop. 2017, 20, 2711–2723. [Google Scholar] [CrossRef] [Green Version]
- Tsironi, T.; Salapa, I.; Taoukis, P. Shelf life modelling of osmotically treated chilled gilthead seabream fillets. Innov. Food Sci. Emerg. Technol. 2009, 10, 23–31. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Naviglio, D. Antioxidant addition to prevent lipid and protein oxidation in chicken meat mixed with supercritical extracts of Echinacea angustifolia. J. Supercrit. Fluids 2012, 72, 198–204. [Google Scholar] [CrossRef]
Extracts | DPPH µM TE/g | TPC mg GAE g/DW |
---|---|---|
Allspice * | 555 ± 24 g | 31.61 ± 0.81 e |
Basil | 134.7 ± 2.3 c | 14.81 ± 0.35 bc |
Bay leaf * | 231.9 ± 1.5 e | 22.56 ± 0.16 cd |
Black seed * | 7.59 ± 0.84 a | 2.46 ± 0.61 a |
Cardamom * | 5.45 ± 0.35 a | 1.24 ± 0.01 a |
Caraway * | 20.2 ± 0.6 a | 2.39 ± 0.14 a |
Clove * | 1443 ± 1 h | 167.2 ± 9.3 f |
Garlic | 14.8 ± 1.6 a | 3.6 ± 0.05 a |
Nutmeg * | 22.22 ± 0.15 ab | 3.89 ± 0.14 a |
Onion | 5.74 ± 0.28 a | 7.05 ± 0.58 ab |
Oregano | 171.6 ± 5.8 d | 20.7 ± 0.1 cd |
Rosemary | 50.4 ± 3.6 b | 4.66 ± 0.36 a |
Thyme | 278.3 ± 16.2 f | 23.5 ± 0.6 d |
Plant Extract | Raw Chicken Meat | Cooked Chicken Meat | ||
---|---|---|---|---|
Equation | R2 | Equation | R2 | |
Control | 0.941 | 0.998 | ||
Allspice | 0.905 | 0.899 | ||
Basil | 0.998 | 0.979 | ||
Bay leaf | 0.977 | 0.985 | ||
Black seed | 0.989 | 0.950 | ||
Caraway | 0.963 | 0.981 | ||
Cardamon | 0.970 | 0.996 | ||
Clove | 0.963 | 0.979 | ||
Garlic | 0.882 | 0.926 | ||
Nutmeg | 0.914 | 0.998 | ||
Onion | 0.870 | 0.934 | ||
Oregano | 0.961 | 0.995 | ||
Rosemary | 0.988 | 0.991 | ||
Thyme | 0.996 | 0.945 |
Extract | (K) | Arrhenius Model | |||||
---|---|---|---|---|---|---|---|
Raw Chicken Meat | Cooked Chicken Meat | ||||||
R2 | RMSE | ΣR2 | R2 | RMSE | ΣR2 | ||
Control | 277 | 0.9243 ± 0.0587 | 5.75 ± 0.30 | 3.81 | 0.9947 ± 0.0044 | 1.64 ± 0.55 | 3.99 |
281 | 0.9636 ± 0.0290 | 4.26 ± 0.21 | 0.9945 ± 0.0042 | 1.64 ± 0.11 | |||
289 | 0.9309 ± 0.0552 | 6.17 ± 0.50 | 0.9979 ± 0.0016 | 1.20 ± 0.15 | |||
293 | 0.9931 ± 0.0051 | 2.26 ± 0.26 | 0.9987 ± 0.0011 | 1.13 ± 0.25 | |||
Allspice | 277 | 0.9942 ± 0.0043 | 1.86 ± 0.16 | 3.66 | 0.9800 ± 0.0157 | 2.84 ± 0.35 | 3.64 |
281 | 0.8000 ± 0.1693 | 7.21 ± 0.76 | 0.7987 ± 0.1614 | 9.73 ± 0.59 | |||
289 | 0.9258 ± 0.0526 | 8.30 ± 0.45 | 0.9192 ± 0.0632 | 7.19 ± 0.53 | |||
293 | 0.9433 ± 0.0309 | 10.22 ± 1.45 | 0.9461 ± 0.0394 | 6.72 ± 0.04 | |||
Basil | 277 | 0.9082 ± 0.0739 | 5.14 ± 0.54 | 3.74 | 0.8782 ± 0.0986 | 5.72 ± 0.37 | 3.75 |
281 | 0.9236 ± 0.0606 | 5.59 ± 0.16 | 0.8936 ± 0.0867 | 5.72 ± 0.80 | |||
289 | 0.9984 ± 0.0009 | 1.21 ± 0.53 | 0.9886 ± 0.0092 | 2.52 ± 0.69 | |||
293 | 0.9146 ± 0.0640 | 9.57 ± 1.30 | 0.9893 ± 0.0075 | 3.27 ± 0.05 | |||
Bay Leaf | 277 | 0.9946 ± 0.0056 | 1.04 ± 0.44 | 3.94 | 0.9662 ± 0.0269 | 3.69 ± 0.21 | 3.80 |
281 | 0.9768 ± 0.0200 | 1.94 ± 0.12 | 0.9760 ± 0.0209 | 2.24 ± 0.32 | |||
289 | 0.9813 ± 0.0155 | 2.38 ± 0.06 | 0.9468 ± 0.0405 | 6.55 ± 0.22 | |||
293 | 0.9921 ± 0.0061 | 2.34 ± 0.15 | 0.9063 ± 0.0553 | 12.70 ± 1.61 | |||
Black seed | 277 | 0.9902 ± 0.0082 | 1.75 ± 0.36 | 3.83 | 0.9923 ± 0.0059 | 1.98 ± 0.42 | 3.83 |
281 | 0.8937 ± 0.0893 | 4.41 ± 0.07 | 0.9349 ± 0.0543 | 5.07 ± 0.66 | |||
289 | 0.9919 ± 0.0075 | 1.77 ± 0.51 | 0.9248 ± 0.0556 | 7.92 ± 0.37 | |||
293 | 0.9584 ± 0.0309 | 6.19 ± 0.10 | 0.9804 ± 0.0129 | 4.87 ± 0.09 | |||
Caraway | 277 | 0.9987 ± 0.0010 | 0.97 ± 0.40 | 3.59 | 0.9978 ± 0.0018 | 0.62 ± 0.15 | 3.94 |
281 | 0.9700 ± 0.0260 | 2.76 ± 0.37 | 0.9493 ± 0.0510 | 1.76 ± 0.83 | |||
289 | 0.7347 ± 0.1785 | 18.35 ± 0.13 | 0.9965 ± 0.0030 | 0.93 ± 0.22 | |||
293 | 0.8856 ± 0.0758 | 12.92 ± 0.40 | 0.9956 ± 0.0033 | 2.01 ± 0.38 | |||
Cardamom | 277 | 0.9980 ± 0.0014 | 1.29 ± 0.48 | 3.63 | 0.9972 ± 0.0030 | 0.89 ± 0.26 | 3.96 |
281 | 0.8114 ± 0.1521 | 7.88 ± 0.43 | 0.9938 ± 0.0065 | 1.30 ± 0.66 | |||
289 | 0.9056 ± 0.0570 | 11.72 ± 0.22 | 0.9751 ± 0.0186 | 4.12 ± 0.08 | |||
293 | 0.9177 ± 0.0441 | 12.70 ± 0.20 | 0.9967 ± 0.0025 | 1.82 ± 0.23 | |||
Clove | 277 | 0.9988 ± 0.0008 | 0.67 ± 0.30 | 3.87 | 0.9687 ± 0.0348 | 2.51 ± 1.50 | 3.79 |
281 | 0.9958 ± 0.0046 | 1.09 ± 0.65 | 0.9711 ± 0.0235 | 2.87 ± 0.29 | |||
289 | 0.9139 ± 0.0675 | 7.13 ± 0.24 | 0.9512 ± 0.0395 | 4.62 ± 0.23 | |||
293 | 0.9651 ± 0.0252 | 5.94 ± 0.26 | 0.9032 ± 0.0638 | 11.30 ± 0.31 | |||
Garlic | 277 | 0.9510 ± 0.0405 | 3.70 ± 0.94 | 3.73 | 0.9635 ± 0.0303 | 3.93 ± 0.30 | 3.78 |
281 | 0.9053 ± 0.0751 | 6.33 ± 0.56 | 0.9569 ± 0.0361 | 4.62 ± 0.54 | |||
289 | 0.8965 ± 0.0859 | 5.58 ± 0.62 | 0.9296 ± 0.0552 | 6.07 ± 1.31 | |||
293 | 0.9796 ± 0.0134 | 4.90 ± 0.88 | 0.9289 ± 0.0479 | 8.41 ± 1.78 | |||
Nutmeg | 277 | 0.9946 ± 0.0099 | 1.05 ± 0.50 | 3.44 | 0.9992 ± 0.0011 | 0.44 ± 0.16 | 3.98 |
281 | 0.6991 ± 0.4739 | 5.88 ± 0.88 | 0.9949 ± 0.0062 | 0.91 ± 0.31 | |||
289 | 0.9337 ± 0.0251 | 6.35 ± 0.11 | 0.9872 ± 0.0102 | 2.48 ± 0.32 | |||
293 | 0.8144 ± 0.1296 | 12.43 ± 1.15 | 0.9991 ± 0.0005 | 1.19 ± 0.26 | |||
Onion | 277 | 0.9626 ± 0.0331 | 3.18 ± 0.64 | 3.68 | 0.8167 ± 0.1514 | 5.51 ± 0.98 | 3.67 |
281 | 0.8429 ± 0.1192 | 9.79 ± 0.31 | 0.8732 ± 0.0950 | 7.23 ± 2.59 | |||
289 | 0.9054 ± 0.0780 | 5.54 ± 0.31 | 0.9919 ± 0.0073 | 1.51 ± 0.38 | |||
293 | 0.9669 ± 0.0214 | 6.23 ± 0.61 | 0.9840 ± 0.0164 | 2.36 ± 0.80 | |||
Oregano | 277 | 0.8917 ± 0.0961 | 6.04 ± 1.59 | 3.73 | 0.9055 ± 0.0759 | 5.25 ± 0.65 | 3.81 |
281 | 0.8952 ± 0.0799 | 7.69 ± 0.85 | 0.9111 ± 0.0639 | 7.23 ± 1.56 | |||
289 | 0.9695 ± 0.0281 | 4.36 ± 1.71 | 0.9968 ± 0.0025 | 1.48 ± 0.37 | |||
293 | 0.9774 ± 0.0157 | 5.09 ± 0.14 | 0.9987 ± 0.0010 | 1.17 ± 0.15 | |||
Rosemary | 277 | 0.9589 ± 0.0359 | 2.86 ± 0.38 | 3.86 | 0.9805 ± 0.0205 | 2.79 ± 0.76 | 3.83 |
281 | 0.9400 ± 0.0504 | 3.96 ± 0.16 | 0.9714 ± 0.0232 | 3.80 ± 0.31 | |||
289 | 0.9825 ± 0.0158 | 2.33 ± 0.42 | 0.9889 ± 0.0133 | 2.38 ± 0.88 | |||
293 | 0.9807 ± 0.0147 | 4.22 ± 0.29 | 0.8927 ± 0.0554 | 13.96 ± 0.43 | |||
Thyme | 277 | 0.9772 ± 0.0191 | 2.37 ± 0.08 | 3.63 | 0.7280 ± 0.2073 | 10.27 ± 0.93 | 3.54 |
281 | 0.8840 ± 0.0953 | 5.41 ± 0.62 | 0.9619 ± 0.0252 | 5.37 ± 0.72 | |||
289 | 0.7943 ± 0.1682 | 9.67 ± 0.71 | 0.9352 ± 0.0479 | 6.32 ± 0.13 | |||
293 | 0.9794 ± 0.0130 | 5.54 ± 0.32 | 0.9125 ± 0.0443 | 11.38 ± 1.28 |
Net Parameters | Net Structure | ||||
---|---|---|---|---|---|
MLP 20-14-1 | MLP 20-19-1 | MLP 20-29-1 | MLP 20-28-1 | MLP 20-12-1 | |
Training accuracy | 0.991 | 0.994 | 0.985 | 0.991 | 0.991 |
Test accuracy | 0.985 | 0.987 | 0.977 | 0.982 | 0.985 |
Validation accuracy | 0.984 | 0.985 | 0.978 | 0.982 | 0.980 |
Training error | 3.913 | 2.548 | 6.237 | 3.766 | 3.730 |
Test error | 7.398 | 6.528 | 10.971 | 8.473 | 7.414 |
Validation error | 6.728 | 6.145 | 9.140 | 7.511 | 8.102 |
Training algorithm | BFGS 192 | BFGS 274 | BFGS 275 | BFGS 280 | BFGS 297 |
Error function | SOS | SOS | SOS | SOS | SOS |
Hidden activation | Tanh | Tanh | Exponential | Logistic | Logistic |
Output activation | Tanh | Tanh | Linear | Linear | Tanh |
RMSE | 2.127 | 1.884 | 2.733 | 2.185 | 2.367 |
R2 | 0.979 | 0.983 | 0.965 | 0.977 | 0.974 |
Independent Variables and Intercept | Slope | |
---|---|---|
Raw Meat | Cooked Meat | |
Allspice | 4.78 * | −0.03 |
Basil | 2.87 | 2.59 |
Bay leaf | 13.48 * | 5.59 * |
Black seed | 9.26 * | −0.97 |
Caraway | 7.70 * | 14.30 * |
Cardamon | 1.61 | 0.44 |
Clove | 12.26 * | 5.31 * |
Garlic | 6.79 * | −2.03 |
Nutmeg | 7.27 * | 8.49 * |
Onion | 3.06 | 8.76 * |
Oregano | 2.48 | 2.40 |
Rosemary | 8.56 * | −2.61 |
Thyme | 8.20 * | −4.36 * |
Temperature | −1.80 * | −1.74 * |
Time | −7.89 * | −9.27 * |
Intercept | 110.76 * | 115.03 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarek, A.; Muzolf-Panek, M. Prediction of Thiol Group Changes in Minced Raw and Cooked Chicken Meat with Plant Extracts—Kinetic and Neural Network Approaches. Animals 2021, 11, 1647. https://doi.org/10.3390/ani11061647
Kaczmarek A, Muzolf-Panek M. Prediction of Thiol Group Changes in Minced Raw and Cooked Chicken Meat with Plant Extracts—Kinetic and Neural Network Approaches. Animals. 2021; 11(6):1647. https://doi.org/10.3390/ani11061647
Chicago/Turabian StyleKaczmarek, Anna, and Małgorzata Muzolf-Panek. 2021. "Prediction of Thiol Group Changes in Minced Raw and Cooked Chicken Meat with Plant Extracts—Kinetic and Neural Network Approaches" Animals 11, no. 6: 1647. https://doi.org/10.3390/ani11061647
APA StyleKaczmarek, A., & Muzolf-Panek, M. (2021). Prediction of Thiol Group Changes in Minced Raw and Cooked Chicken Meat with Plant Extracts—Kinetic and Neural Network Approaches. Animals, 11(6), 1647. https://doi.org/10.3390/ani11061647