The Effects of a Fermented Rapeseed or/and Soybean Meal Additive on Antioxidant Parameters in the Blood and Tissues of Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Laboratory Analyses
2.2.1. Blood Analysis
2.2.2. Tissue Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nega, T.; Woldes, Y. Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J. Nutr. Health Food Eng. 2018, 8, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kamiński, D.; Czech, A.; Grela, E.R.; Wiącek, D.; Tomczyk-Warunek, A. Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Liv. Sci. 2019, 224, 60–68. [Google Scholar] [CrossRef]
- Choi, H.B.; Jeong, J.H.; Kim, D.H.; Lee, Y.; Kwon, H.; Kim, Y.Y. Influence of rapeseed meal on growth performance, blood profiles, nutrient digestibility and economic benefit of growing-finishing pigs. Asian Australas. J. Anim. Sci. 2015, 28, 1345–1353. [Google Scholar] [CrossRef] [Green Version]
- Felker, P.; Bunch, R.; Leung, A.M. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutr. Rev. 2016, 74, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in animal nutrition. A review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Ari, M.M.; Ayanwale, B.A.; Adama, T.Z.; Olatunji, E.A. Evaluation of the chemical composition and antinutritional factors (ANFs) levels of different thermally processed soybeans. Asian J. Agric. Res. 2012, 6, 91–98. [Google Scholar]
- Yaklich, R.W. β-Conglycinin and glycinin in high-protein soybean seeds. J. Agric. Food Chem. 2001, 49, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Yuan, L.; Chang, J.; Yin, Q.; Lu, M.; Di, Y.; Wang, P.; Wang, Z.; Wang, E.; Lu, F. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Anim. Nutr. 2017, 3, 19–24. [Google Scholar] [CrossRef]
- Feng, H.; Qu, H.; Liu, Y.; Shi, Y.; Wu, S.; Bao, W. Effect of fermented soybean meal supplementation on some growth performance, blood chemical parameters, and fecal microflora of finishing pigs. Rev. Bras. Zoot. 2020, 49, e20190096. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Xu, Z.R.; Lu, Y.P.; Liu, Y.Y. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol. 2007, 134, 295–303. [Google Scholar] [CrossRef]
- Sembratowicz, I.; Chachaj, R.; Krauze, M.; Ognik, K. The Effect of diet with fermented soybean meal on blood metabolites and redox status of chickens. Ann. Anim. Sci. 2020, 20, 599–611. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M.; Wlazło, Ł.; Nowakowicz-Dębek, B.A. fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Satessa, G.D.; Tamez-Hidalgo, P.; Hui, Y.; Cieplak, T.; Krych, L.; Kjærulff, S.; Brunsgaard, G.; Nielsen, D.S.; Nielsen, M.O. Impact of dietary supplementation of lactic acid bacteria fermented rapeseed with or without macroalgae on performance and health of piglets following omission of medicinal zinc from weaner diets. Animals 2020, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Drażbo, A.; Ognik, K.; Zaworska, A.; Ferenc, K.; Jankowski, J. The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poult. Sci. 2018, 97, 3910–3920. [Google Scholar] [CrossRef]
- Verni, M.; Verardo, V.; Rizzello, C.G. How fermentation affects the antioxidant properties of cereals and legumes. Foods 2019, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Izumi, T.; Piskula, M.K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130, 1695–1699. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Kirchgessner, M.; Roth, F.X. Schätzgleichungen zur ermittlung des energetischen futterwertes von mischfuttermitteln für schweine. J. Anim. Physiol. Anim. Nutr. 1983, 50, 270–275. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Vaintraub, I.A.; Lapteva, N.A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Anal. Biochem. 1988, 175, 227–230. [Google Scholar] [CrossRef]
- Taylor, K.A.C.C. A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotech. 1996, 56, 49–58. [Google Scholar] [CrossRef]
- Oilseed Residues–Determination of Glucosinolates Content–Method Using High-Performance Liquid Chromatography. Polish Patent Application No. PN-ISO 10633-1:2000, 7 December 2000.
- Canbaş, A.; Erten, H.; Őzaşahin, F. The effects of storage temperature on the chemical composition of hop pellets. Process. Biochem. 2001, 36, 1053–1058. [Google Scholar] [CrossRef]
- Czech, A.; Ognik, K.; Laszewska, M.; Sembratowicz, I. The effect of raw and extruded linseed on the chemical composition, lipid profile and redox status of meat of turkey hens. Anim. Sci. Pap. Rep. 2017, 35, 57–69. [Google Scholar]
- Klem, T.B.; Bleken, E.; Morberg, H.; Thoresen, S.I.; Framstad, T. Hematologic and biochemical reference intervals for Norwegian crossbreed grower pigs. Vet. Clin. Path. 2010, 39, 221–226. [Google Scholar] [CrossRef]
- Ogbu, C.C.; Machebe, N.S.; Okafor, A.E.; Egom, M.A. Growth, haematology and serum biochemistry of pigs fed diets containing different levels of crude fibre with or without a probiotic. Res. Opin. Anim. Vet. Sci. 2014, 4, 512–521. [Google Scholar]
- Kim, Y.G.; Lohakare, J.D.; Yun, J.H.; Heo, S.; Chae, B.J. Effect of feeding levels of microbial fermented soy protein on the growth performance, nutrient digestibility and intenstinal morphology in weaned piglets. Asian Australas. J. Anim. Sci. 2007, 20, 399–404. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Mao, X.; Zheng, P.; Huang, Z.; Chen, D. Amino acid, phosphorus, and energy digestibility of Aspergillus niger fermented rapeseed meal fed to growing pigs. J. Anim. Sci. 2015, 93, 2916–2925. [Google Scholar] [CrossRef] [Green Version]
- Hyder, M.A.; Hasan, M.; Mohieldein, H.A. Comparative levels of ALT, AST, ALP and GGT in liver associated diseases. Eur. J. Exp. Biol. 2013, 3, 280–284. [Google Scholar]
- Bosco, R.; Leeuwenburgh, S.C.G.; Jansen, J.A.; van den Beucken, J.J.J.P. Configurational effects of collagen/ALP coatings on enzyme immobilization and surface mineralization. App. Surf. Sci. 2014, 311, 292–299. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. J. Agric. Food Chem. 2010, 502, 7502–7509. [Google Scholar] [CrossRef]
- Larkin, T.; Price, W.E.; Astheimer, L. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food Sci. Nutr. 2008, 48, 538–552. [Google Scholar] [CrossRef] [Green Version]
- Kwak, C.S.; Lee, M.S.; Park, S.C. Higher antioxidant properties of Chungkookjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation. Nutr. Res. 2007, 27, 717–727. [Google Scholar] [CrossRef]
- Fukuzawa, K.; Saitoh, Y.; Akai, K.; Kogure, K.; Ueno, S.; Tokumura, A.; Otagiri, M.; Shibata, A. Antioxidant effect of bovine serum albumin on membrane lipid peroxidation induced by iron chelate and superoxide. Biochim. Biophys. Acta 2005, 1668, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Stecchini, M.L.; Torre, M.D.; Munari, M. Determination of peroxy radical-scavenging of lactic acid bacteria. Int. J. Food Microb. 2001, 64, 183–188. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef]
- Wang, A.N.; Yi, X.W.; Yu, H.F.; Dong, B.; Qiao, S.Y. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. J. Appl. Microbiol. 2009, 107, 1140–1148. [Google Scholar] [CrossRef]
Diet | Prestarter (29–42 Days) | Starter (43–77 Days) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feeding Group * | Feeding Group * | |||||||||||
FRSM | FSBM | C | FR | FR/FS | FS/FR | FS | C | FR | FR/FS | FS/FR | FS | |
Wheat | 35.5 | 35.5 | 35.5 | 35.5 | 35.5 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | ||
Barley | 28.0 | 26.0 | 27.0 | 29.0 | 30.0 | 28.0 | 26.0 | 27.0 | 29.0 | 30.0 | ||
Soybean meal, 44% CP | 16.0 | 10.0 | 9.0 | 7.0 | 6.0 | 16.0 | 10.0 | 9.0 | 7.0 | 6.0 | ||
Dried whey, 16% CP | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
Soybean oil | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | ||
Complementary feed 1–5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | ||
Mineral–vitamin premix 6 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | ||
Acidifier 7 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | ||
FRSM | 0.0 | 8.0 | 6.0 | 2.0 | 0.0 | 0.0 | 8.0 | 6.0 | 2.0 | 0.0 | ||
FSBM | 0.0 | 0.0 | 2.0 | 6.0 | 8.0 | 0.0 | 0.0 | 2.0 | 6.0 | 8.0 | ||
Dry matter, g | 882.7 | 901.1 | 891.4 | 889.5 | 890.2 | 889.9 | 889.8 | 890.2 | 888.9 | 889.4 | 889.5 | 889.1 |
Crude ash, g | 78.9 | 66.1 | 50.68 | 50.67 | 50.66 | 50.69 | 50.72 | 50.42 | 50.51 | 50.41 | 50.56 | 50.57 |
Crude protein, g | 291.8 | 499.7 | 187.8 | 187.0 | 187.5 | 188.0 | 188.1 | 181.0 | 181.1 | 181.1 | 181.1 | 181.1 |
Ether extract, g | 31.7 | 35.6 | 50.31 | 50.32 | 50.34 | 50.35 | 40.33 | 50.13 | 50.18 | 50.14 | 50.15 | 40.13 |
Crude fiber, g | 91.5 | 17.9 | 40.07 | 40.05 | 40.05 | 40.03 | 40.02 | 40.41 | 40.28 | 40.22 | 39.98 | 39.95 |
Metabolizable energy 8, MJ | 12.27 | 15.64 | 13.32 | 13.32 | 13.31 | 13.32 | 13.32 | 13.21 | 13.21 | 13.21 | 13.21 | 13.21 |
Total phosphorus, g | 9.09 | 7.12 | 6.81 | 6.82 | 6.82 | 6.81 | 6.81 | 6.78 | 6.75 | 6.78 | 6.76 | 6.77 |
Phytin phosphorus, g | 5.73 | 4.61 | 3.92 | 2.44 | 2.73 | 2.82 | 2.74 | 3.93 | 2.46 | 2.76 | 2.87 | 2.79 |
Calcium, g | 8.05 | 2.54 | 7.41 | 7.41 | 7.42 | 7.43 | 7.43 | 7.38 | 7.37 | 7.38 | 7.39 | 7.38 |
Glucosinolates, µmol g−1 | 6.37 | 0.92 | 0.081 | 0.330 | 0.174 | 0.103 | 0.062 | 0.081 | 0.331 | 0.175 | 0.104 | 0.063 |
Tannin, g kg−1 | 4.76 | 1.22 | 2.41 | 3.16 | 2.81 | 2.58 | 2.39 | 2.44 | 3.17 | 2.82 | 2.59 | 2.40 |
Lactic acid, g kg−1 | 50.42 | 44.22 | 14.21 | 81.54 | 80.16 | 75.83 | 74.94 | 14.01 | 81.34 | 79.93 | 75.15 | 74.65 |
Parameter | Feeding Group * | ||||||
---|---|---|---|---|---|---|---|
C | FR | FR/FS | FS/FR | FS | SEM | p-Value | |
GLU; mmol L−1 | 4.75 b | 5.06 ab | 5.25 ab | 5.52 ab | 5.82 a | 0.112 | 0.033 |
TP; g L−1 | 51.75 c | 59.26 b | 67.73 a | 58.20 b | 58.94 b | 1.54 | 0.026 |
ALB; g L−1 | 39.71 b | 41.51 b | 46.48 a | 44.63 a | 45.35 a | 0.773 | 0.011 |
UA; µmol L−1 | 0.268 c | 0.291 c | 0.471 a | 0.403 b | 0.429 b | 0.023 | 0.034 |
UREA; mmol L−1 | 3.47 c | 4.92 b | 5.59 a | 4.06 c | 4.00 c | 0.177 | 0.046 |
CREAT; µmol L−1 | 109.9 | 101.9 | 108.6 | 112.6 | 100.6 | 1.81 | 0.121 |
BIL; µmol L−1 | 11.04 | 9.66 | 7.78 | 10.16 | 9.16 | 0.475 | 0.253 |
Enzyme | Feeding Group * | ||||||
---|---|---|---|---|---|---|---|
C | FR | FR/FS | FS/FR | FS | SEM | p-Value | |
ALP | 103.95 c | 173.20 a | 182.16 a | 161.40 b | 130.19 c | 5.83 | 0.009 |
ALT | 25.80 b | 30.03 a | 30.12 a | 28.88 ab | 27.79 ab | 0.752 | 0.025 |
AST | 26.39 b | 32.87 a | 34.08 a | 34.40 a | 32.79 a | 0.879 | 0.017 |
LDH | 1311.4 c | 1539.9 a | 1592.6 a | 1437.1 b | 1475.7 b | 52.56 | 0.028 |
GGT | 24.57 | 21.86 | 22.39 | 24.32 | 24.13 | 0.787 | 0.109 |
Parameter | Feeding Group * | ||||||
---|---|---|---|---|---|---|---|
C | FR | FR/FS | FS/FR | FS | SEM | p-Value | |
SOD; U mL−1 | 78.38 | 78.85 | 79.14 | 79.52 | 79.24 | 0.129 | 0.247 |
CAT; U mL−1 | 3.69 b | 3.23 bc | 5.09 a | 3.86 b | 3.58 bc | 0.157 | 0.015 |
FRAP; µmol L−1 | 7.69 b | 6.70 b | 9.10 a | 6.43 b | 7.83 b | 0.222 | 0.022 |
Vitamin C; µmol L−1 | 21.48 b | 20.07 b | 27.21 a | 23.07 ab | 24.52 ab | 0.673 | 0.029 |
MDA; µmol L−1 | 6.93 a | 5.22 b | 5.68 b | 5.27 b | 6.44 a | 0.181 | 0.034 |
LOOH; µmol L−1 | 4.48 a | 3.88 ab | 3.36 b | 3.50 b | 4.33 a | 0.107 | 0.041 |
Parameter | Tissue | Feeding Group * | ||||||
---|---|---|---|---|---|---|---|---|
C | FR | FR/FS | FS/FR | FS | SEM | p-Value | ||
SOD U g protein−1 | jejunum | 19.17 b | 21.08 a | 21.08 a | 20.82 a | 20.10 ab | 0.459 | 0.013 |
liver | 11.16 c | 13.37 a | 13.04 a | 13.23 a | 12.49 b | 0.347 | 0.036 | |
LT muscle | 11.68 | 12.01 | 12.14 | 12.06 | 12.05 | 0.441 | 0.099 | |
CAT U g protein−1 | jejunum | 4.83 b | 6.01 a | 6.78 a | 4.98 b | 5.38 b | 0.184 | 0.032 |
liver | 9.05 c | 28.85 a | 31.20 a | 23.48 b | 23.95 b | 1.51 | 0.019 | |
LT muscle | 7.17 c | 10.70 a | 10.39 a | 8.79 b | 8.21 bc | 0.291 | 0.028 | |
Vitamin C pmol mg−1 | jejunum | 190.5 c | 222.9 a | 215.6 a | 209.6 b | 197.7 c | 2.37 | 0.024 |
liver | 983.7 b | 1241.7 a | 1264.6 a | 1093.6 ab | 983.0 b | 5.62 | 0.037 | |
LT muscle | 82.14 a | 84.86 a | 89.19 a | 31.95 c | 67.14 b | 4.49 | 0.008 | |
LOOH µmol mg−1 | jejunum | 4.45 ab | 4.33 ab | 2.31 c | 4.24 b | 4.93 a | 0.180 | <0.001 |
liver | 2.18 b | 2.07 b | 2.87 b | 2.47 b | 3.88 a | 0.147 | 0.023 | |
LT muscle | 0.880 ab | 0.951 ab | 0.786 b | 1.092 a | 0.857 ab | 0.033 | 0.005 | |
MDA nmol mg−1 | jejunum | 0.614 | 0.531 | 0.590 | 0.538 | 0.532 | 0.018 | 0.261 |
liver | 5.26 a | 2.48 c | 2.36 c | 2.57 c | 3.44 b | 0.209 | 0.022 | |
LT muscle | 1.514 | 1.106 | 0.977 | 1.011 | 0.943 | 0.111 | 0.087 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czech, A.; Sembratowicz, I.; Kiesz, M. The Effects of a Fermented Rapeseed or/and Soybean Meal Additive on Antioxidant Parameters in the Blood and Tissues of Piglets. Animals 2021, 11, 1646. https://doi.org/10.3390/ani11061646
Czech A, Sembratowicz I, Kiesz M. The Effects of a Fermented Rapeseed or/and Soybean Meal Additive on Antioxidant Parameters in the Blood and Tissues of Piglets. Animals. 2021; 11(6):1646. https://doi.org/10.3390/ani11061646
Chicago/Turabian StyleCzech, Anna, Iwona Sembratowicz, and Martyna Kiesz. 2021. "The Effects of a Fermented Rapeseed or/and Soybean Meal Additive on Antioxidant Parameters in the Blood and Tissues of Piglets" Animals 11, no. 6: 1646. https://doi.org/10.3390/ani11061646
APA StyleCzech, A., Sembratowicz, I., & Kiesz, M. (2021). The Effects of a Fermented Rapeseed or/and Soybean Meal Additive on Antioxidant Parameters in the Blood and Tissues of Piglets. Animals, 11(6), 1646. https://doi.org/10.3390/ani11061646