Physiological and Clinical Responses in Pigs in Relation to Plasma Concentrations during Anesthesia with Dexmedetomidine, Tiletamine, Zolazepam, and Butorphanol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals and Housing
2.2. Central Vein Catheterization
2.3. Anesthesia
2.4. Physiological Measurements and Blood Sampling
2.5. Drug Analyses
2.6. Pharmacokinetic Analyses
2.7. Statistical Analysis
3. Results
3.1. Anesthesia
3.2. Physiological Data
3.3. Concentration and Pharmacokinetic Data
4. Discussion
4.1. Anesthesia
4.2. Pharmacokinetics
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schook, L.B.; Collares, T.V.; Darfour-Oduro, K.A.; De, A.K.; Rund, L.A.; Schachtschneider, K.M.; Seixas, F.K. Unraveling the swine genome: Implications for human health. Annu. Rev. Anim. Biosci. 2015, 3, 219–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geovanini, G.R.; Pinna, F.R.; Prado, F.A.; Tamaki, W.T.; Marques, E. Standardization of anesthesia in swine for experimental cardiovascular surgeries. Rev. Bras. Anestesiol. 2008, 58, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Swindle, M.M. Swine in the Laboratory: Anesthesia, Analgesia, and Perioperative Care, 2nd ed.; Swindle, M.M., Ed.; CRP Press: Boca Raton, FL, USA, 2007; pp. 35–75. [Google Scholar]
- Heinonen, M.L.; Raekallio, M.R.; Oliviero, C.; Ahokas, S.; Peltoniemi, O.A. Comparison of azaperone-detomidine-butorphanol-ketamine and azaperone-tiletamine-zolazepam for anaesthesia in piglets. Vet. Anaesth. Analg. 2009, 36, 151–157. [Google Scholar] [CrossRef] [PubMed]
- De Monte, V.; Staffieri, F.; Di Meo, A.; Vannucci, J.; Bufalari, A. Comparison of ketamine-dexmedetomidine-methadone and tiletamine-zolazepam-methadone combinations for short-term anaesthesia in domestic pigs. Vet. J. 2015, 205, 364–368. [Google Scholar] [CrossRef]
- Albrecht, M.; Henke, J.; Tacke, S.; Markert, M.; Guth, B. Influence of repeated anaesthesia on physiological parameters in male Wistar rats: A telemetric study about isoflurane, ketamine-xylazine and a combination of medetomidine, midazolam and fentanyl. BMC Vet. Res. 2014, 10, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, R.; Sakaguchi, M.; Mochizuki, M.; Sasaki, N.; Takahashi, H.; Tamura, H.; Takeuchi, A. A balanced anesthesia with a combination of xylazine, ketamine and butorphanol and its antagonism by yohimbine in pigs. J. Vet. Med. Sci. 1992, 54, 615–620. [Google Scholar] [CrossRef]
- Malavasi, L.M.; Jensen-Waern, M.; Augustsson, H.; Nyman, G. Changes in minimal alveolar concentration of isoflurane following treatment with medetomidine and tiletamine/zolazepam, epidural morphine or systemic buprenorphine in pigs. Lab. Anim. 2008, 42, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, M.; Nishimura, R.; Sasaki, N.; Ishiguro, T.; Tamura, H.; Takeuchi, A. Anesthesia induced in pigs by use of a combination of medetomidine, butorphanol, and ketamine and its reversal by administration of atipamezole. Am. J. Vet. Res. 1996, 57, 529–534. [Google Scholar]
- Kumar, A.; Mann, H.J.; Remmel, R.P. Determination of constituents of Telazol®—Tiletamine and zolazepam by a gas chromatography/mass spectrometry-based method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 842, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mann, H.J.; Remmel, R.P.; Beilman, G.J.; Kaila, N. Pharmacokinetic study in pigs and in vitro metabolic characterization in pig- and human-liver microsomes reveal marked differences in disposition and metabolism of tiletamine and zolazepam (Telazol). Xenobiotica 2014, 44, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Broad, K.; Kawano, G.; Faulkner, S.; Hassell, J.; Fleiss, B.; Gressens, P.; Fierens, I.; Rostami, J.; Maze, M.; et al. Pharmacokinetics of dexmedetomidine combined with therapeutic hypothermia in a piglet asphyxia model. Acta Anaesthesiol. Scand. 2014, 58, 733–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, P.S. The art of reasonable combining drugs in anesthesia. Cah. D’Anesthesiol. 1994, 42, 635–640. [Google Scholar]
- Rydén, A.; Manell, E.; Biglarnia, A.; Hedenqvist, P.; Strandberg, G.; Ley, C.; Hansson, K.; Nyman, G.; Jensen-Waern, M. Nursing and training of pigs used in renal transplantation studies. Lab. Anim. 2020, 54, 469–478. [Google Scholar] [CrossRef]
- Re, M.; Canfrán, S.; Largo, C.; de Segura, I.A.G. Effect of Lidocaine-Ketamine Infusions Combined with Morphine or Fentanyl in Sevoflurane-Anesthetized Pigs. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2016, 55, 317–320. [Google Scholar]
- Laricchiuta, P.; De Monte, V.; Campolo, M.; Grano, F.; Iarussi, F.; Crovace, A.; Staffieri, F. Evaluation of a butorphanol, detomidine, and midazolam combination for immobilization of captive Nile lechwe antelopes (Kobus magaceros). J. Wildl. Dis. 2012, 48, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Henrikson, H.; Jensen-Waern, M.; Nyman, G. Anaesthetics for general anaesthesia in growing pigs. Acta Vet. Scand. 1995, 36, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Grandin, T. Minimizing Stress in Pig Handling in the Research Lab. Lab. Anim. 1986, 15, 15–20. [Google Scholar]
- Whelan, G.; Flecknell, P.A. The assessment of depth of anaesthesia in animals and man. Lab. Anim. 1992, 26, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eger, E.I., 2nd; Johnson, B.H.; Weiskopf, R.B.; Holmes, M.A.; Yasuda, N.; Targ, A.; Rampil, I.J. Minimum alveolar concentration of I-653 and isoflurane in pigs: Definition of a supramaximal stimulus. Anesth. Analg. 1988, 67, 1174–1176. [Google Scholar] [CrossRef] [PubMed]
- Haga, H.A.; Tevik, A.; Moerch, H. Motor responses to stimulation during isoflurane anaesthesia in pigs. Vet. Anaesth. Analg. 2002, 29, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, G.M.; Breuckmann, F.; Aker, S.; Eggebrecht, H.; Kuehl, H.; Erbel, R.; Fruhauf, N.R.; Broelsch, C.E.; Quick, H.H. Anesthesia for cardiovascular interventions and magnetic resonance imaging in pigs. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2007, 46, 30–33. [Google Scholar]
- Lu, D.Z.; Fan, H.G.; Wang, H.B.; Hu, K.; Zhang, J.T.; Yu, S.M. Effect of the addition of tramadol to a combination of tiletamine-zolazepam and xylazine for anaesthesia of miniature pigs. Vet. Rec. 2010, 167, 489–492. [Google Scholar] [CrossRef]
- Lima-Rodriguez, J.R.; Garcia-Gil, F.A.; Garcia-Garcia, J.J.; Rocha-Camarero, G.; Martin-Cancho, M.F.; Luis-Fernandez, L.; Crisostomo, V.; Uson-Gargallo, J.; Carrasco-Jimenez, M.S. Effects of premedication with tiletamine/zolazepam/medetomidine during general anesthesia using sevoflurane/fentanyl in swine undergoing pancreas transplantation. Transplant. Proc. 2008, 40, 3001–3006. [Google Scholar] [CrossRef]
- Rydén, A.; Nyman, G.; Nalin, L.; Andreasson, S.; Velikyan, I.; Korsgren, O.; Eriksson, O.; Jensen-Waern, M. Cardiovascular side-effects and insulin secretion after intravenous administration of radiolabeled Exendin-4 in pigs. Nucl. Med. Biol. 2016, 43, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Clutton, R.E.; Blissitt, K.J.; Bradley, A.A.; Camburn, M.A. Comparison of three injectable anaesthetic techniques in pigs. Vet. Rec. 1997, 141, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Morgaz, J. Swine model in transplant research: Review of anaesthesia and perioperative management. World J. Anesthesiol. 2015, 4, 73. [Google Scholar] [CrossRef]
- Pehbock, D.; Dietrich, H.; Klima, G.; Paal, P.; Lindner, K.H.; Wenzel, V. Anesthesia in swine: Optimizing a laboratory model to optimize translational research. Der Anaesthesist 2015, 64, 65–70. [Google Scholar] [CrossRef]
- Lin, H.C.; Thurmon, J.C.; Benson, G.J.; Tranquilli, W.J. Telazol—A review of its pharmacology and use in veterinary medicine. J. Vet. Pharmacol. Ther. 1993, 16, 383–418. [Google Scholar] [CrossRef]
- Santos González, M.; Bertrán de Lis, B.T.; Tendillo Cortijo, F.J. Effects of intramuscular alfaxalone alone or in combination with diazepam in swine. Vet. Anaesth. Analg. 2013, 40, 399–402. [Google Scholar] [CrossRef]
- Pawson, P.; Forsyth, S. Anesthetic agents. In Small Animal Clinical Pharmacology, 2nd ed.; Maddison, J.E., Page, S.W., Church, D.B., Eds.; W.B. Saunders: Edinburgh, UK, 2008; pp. 83–112. [Google Scholar] [CrossRef]
- Musk, G.C.; Costa, R.S.; Tuke, J. Body temperature measurements in pigs during general anaesthesia. Lab. Anim. 2015, 50, 119–124. [Google Scholar] [CrossRef]
- Alstrup, A.K. Blood Lactate Concentrations in Göttingen Minipigs Compared with Domestic Pigs. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2016, 55, 18–20. [Google Scholar]
- Carroll, G.L.; Boothe, D.M.; Hartsfield, S.M.; Waller, M.K.; Geller, S.C. Pharmacokinetics and selected behavioral responses to butorphanol and its metabolites in goats following intravenous and intramuscular administration. Vet. Anaesth. Analg. 2001, 28, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Paine, S.W.; Bright, J.; Scarth, J.P.; Hincks, P.R.; Pearce, C.M.; Hannan, C.; Machnik, M.; Hillyer, L. The intravenous pharmacokinetics of butorphanol and detomidine dosed in combination compared with individual dose administrations to exercised horses. J. Vet. Pharmacol. Ther. 2020, 43, 162–170. [Google Scholar] [CrossRef]
- Knych, H.K.; Casbeer, H.C.; McKemie, D.S.; Arthur, R.M. Pharmacokinetics and pharmacodynamics of butorphanol following intravenous administration to the horse. J. Vet. Pharmacol. Ther. 2013, 36, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Honkavaara, J.; Restitutti, F.; Raekallio, M.; Salla, K.; Kuusela, E.; Ranta-Panula, V.; Rinne, V.; Vainio, O.; Scheinin, M. Influence of MK-467, a peripherally acting α2-adrenoceptor antagonist on the disposition of intravenous dexmedetomidine in dogs. Drug Metab. Dispos. 2012, 40, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pypendop, B.H.; Ilkiw, J.E. Pharmacokinetics of dexmedetomidine after intravenous administration of a bolus to cats. Am. J. Vet. Res. 2014, 75, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Ranheim, B.; Risberg, Å.I.; Spadavecchia, C.; Landsem, R.; Haga, H.A. The pharmacokinetics of dexmedetomidine administered as a constant rate infusion in horses. J. Vet. Pharmacol. Ther. 2015, 38, 93–96. [Google Scholar] [CrossRef]
- Grimsrud, K.N.; Ait-Oudhia, S.; Durbin-Johnson, B.P.; Rocke, D.M.; Mama, K.R.; Rezende, M.L.; Stanley, S.D.; Jusko, W.J. Pharmacokinetic and pharmacodynamic analysis comparing diverse effects of detomidine, medetomidine, and dexmedetomidine in the horse: A population analysis. J. Vet. Pharmacol. Ther. 2015, 38, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, G.; Zhong, Z.; Xie, B.; Zhou, Z.; Gu, W.; Shi, X.; Tang, T.; Ai, S.; Fu, H.; et al. Validation of an HPLC assay for determination of Telazol in pregnant pigs: Application to placental transfer study. J. Vet. Med. Sci. 2017, 79, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Semple, H.A.; Gorecki, D.K.; Farley, S.D.; Ramsay, M.A. Pharmacokinetics and tissue residues of Telazol in free-ranging polar bears. J. Wildl. Dis. 2000, 36, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Farrell, K.S.; Hopper, K.; Cagle, L.A.; Epstein, S.E. Evaluation of pulse oximetry as a surrogate for PaO(2) in awake dogs breathing room air and anesthetized dogs on mechanical ventilation. J. Vet. Emerg. Crit. Care 2019, 29, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Rigg, J.R.; Jones, N.L. Clinical assessment of respiratory function. Br. J. Anaesth. 1978, 50, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Recovery Score | Description |
---|---|
1 Excellent | Animal transitions from lateral to sternal recumbency with minimal ataxic movements. Stands in one or two attempts. Walks with only slight ataxia. |
2 Good | Animal in transition from lateral to sternal recumbency displays moderate ataxic movements and may take one or two attempts. Some imbalance in sternal recumbency and requires more than two attempts to stand. Walks with moderate ataxia. |
3 Poor | Animal makes frequent attempts with severe ataxic movements to transition from lateral to sternal recumbency before being successful. Severe imbalance in sternal recumbency. Makes numerous attempts to stand but falls before being successful and displays marked ataxia when walking. |
Concentration Range (ng/mL) Group S and R | ||||||
---|---|---|---|---|---|---|
Noted Observations | Time (min) from Injection (IM) | Dexmedetomidine | Tiletamine | Zolazepam | Butorphanol | |
S | R | |||||
Lateral recumbency | 2–4 | <1.59–3.56 | <126–268 | <106–789 | <5.22–15.60 | |
Unconsciousness | 5–15 | 1.99–6.00 | 169–337 | 737–1330 | 8.86–19.20 | |
Last sample before response to noxious stimulus | 60–120 | 120 | 2.01–3.48 | 115–158 | 520–1180 | 6.74–11.60 |
Palpebral reflexes | 60–70 | 126–180 | 1.69–2.38 | 101–129 | 525–782 | 6.80–10.50 |
Response to noxious stimulus | 70–140 | 126–180 | 1.69–2.38 | 101–129 | 525–782 | 6.80–10.50 |
First movement | 70–140 | 126–180 | 1.69–1.97 | 106–123 | 444–713 | 6.47–9.42 |
Standing | 120–180 | 175–240 | 1.14–2.01 | 73.7–109 | 250–678 | 4.74–8.70 |
Compound | Dexmedetomidine | Tiletamine | Zolazepam | Butorphanol | |
---|---|---|---|---|---|
Detection limit (ng/mL) | <0.02 | 0.2 | 0.05 | 0.05 | 0.02 |
Quantitation limit (ng/mL) | 0.02 | 0.5 | 0.1 | 0.1 | 0.05 |
Range (ng/mL) | 0.02–200 | 0.5–1000 | 0.1–1000 | 0.1–500 | 0.05–500 |
R2 | >0.999 | >0.998 | >0.997 | >0.996 | >0.999 |
IM Group S (n = 3) | IV Group R (n = 4) | |||||
---|---|---|---|---|---|---|
t½ (min) | tmax (min) | Cmax (ng/L) | t½ (min) | cI (L/kg/min) | Vd (L/kg) | |
Dexmedetomidine | 125 ± 37 | 13 ± 3 | 5.6 ± 3.2 | 117 ± 24 | 0.012 ± 0.004 | 1.7 ± 0.5 |
Tiletamine | 90 ± 12 | 10 ± 5 | 342 ± 152 | 80 ± 13 | 0.050 ± 0.010 | 5.8 ± 0.9 |
Zolazepam | 72 ± 6 | 12 ± 3 | 1372 ± 438 | 76 ± 13 | 0.009 ± 0.002 | 1.0 ± 0.2 |
Butorphanol | 97 ± 11 | 13 ± 3 | 21 ± 9 | 101 ± 16 | 0.012 ± 0.002 | 1.6 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydén, A.; Jensen-Waern, M.; Nyman, G.; Olsén, L. Physiological and Clinical Responses in Pigs in Relation to Plasma Concentrations during Anesthesia with Dexmedetomidine, Tiletamine, Zolazepam, and Butorphanol. Animals 2021, 11, 1482. https://doi.org/10.3390/ani11061482
Rydén A, Jensen-Waern M, Nyman G, Olsén L. Physiological and Clinical Responses in Pigs in Relation to Plasma Concentrations during Anesthesia with Dexmedetomidine, Tiletamine, Zolazepam, and Butorphanol. Animals. 2021; 11(6):1482. https://doi.org/10.3390/ani11061482
Chicago/Turabian StyleRydén, Anneli, Marianne Jensen-Waern, Görel Nyman, and Lena Olsén. 2021. "Physiological and Clinical Responses in Pigs in Relation to Plasma Concentrations during Anesthesia with Dexmedetomidine, Tiletamine, Zolazepam, and Butorphanol" Animals 11, no. 6: 1482. https://doi.org/10.3390/ani11061482
APA StyleRydén, A., Jensen-Waern, M., Nyman, G., & Olsén, L. (2021). Physiological and Clinical Responses in Pigs in Relation to Plasma Concentrations during Anesthesia with Dexmedetomidine, Tiletamine, Zolazepam, and Butorphanol. Animals, 11(6), 1482. https://doi.org/10.3390/ani11061482