Association between THRSP Gene Polymorphism and Fatty Acid Composition in Milk of Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Polymorphism Analysis
2.3. Milk Composition Analysis
- saturated: C6:0 (caproic), C8:0 (caprylic), C10:0 (capric), C12:0 (lauric), C14:0 (myristic), C16:0 (palmitic), C18:0 (stearic);
- unsaturated: C14:1 (myristoleic), C16:1 (palmitoleic), C18:1n-9c (oleic), C18:1n-9t (elaidic), C18:2n-6c (linoleic), C18:3n3 (α-linoleic).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kęsek-Woźniak, M.M.; Wojtas, E.; Zielak-Steciwko, A.E. Impact of SNPs in ACACA, SCD1, and DGAT1 Genes on Fatty Acid Profile in Bovine Milk with Regard to Lactation Phases. Animals 2020, 10, 997. [Google Scholar] [CrossRef]
- Wellberg, E.A.; Rudolph, M.C.; Lewis, A.S.; Padilla-Just, N.; Jedlicka, P.; Anderson, S.M. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis. Breast Cancer Res. 2014, 16, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Liu, Z.; Sun, X.; Hou, X.; Qu, B.; Zhao, F.; Gao, X.; Sun, Z.; Li, Q. Thyroid hormone responsive protein spot 14 enhances lipogenesis in bovine mammary epithelial cells. Vitr. Cell. Dev. Biol.-Anim. 2015, 51, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Carre, W.; Zhou, H.; Lamont, S.J.; Cogburn, L.A. Duplicated Spot 14 genes in the chicken: Characterization and identification of polymorphisms associated with abdominal fat traits. Gene 2004, 12, 79–88. [Google Scholar] [CrossRef]
- Cao, Z.P.; Wang, S.Z.; Wang, Q.G.; Wang, Y.X.; Li, H. Association of Spot14α Gene Polymorphisms with Body Weight in the Chicken. Poult. Sci. 2007, 86, 1873–1880. [Google Scholar] [CrossRef]
- An, X.; Zhao, H.; Bai, L.; Hou, J.; Peng, J.; Wang, J.; Song, Y.; Cao, B. Polymorphism identification in the goat THRSP gene and association analysis with growth traits. Arch. Anim. Breed. 2012, 55, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cheng, J.; Qin, W.; Chen, H.; Chen, G.; Shang, X.; Zhang, M.; Balsai, N.; Chen, H. Polymorphisms in 5′ proximal regulating region of THRSP gene are associated with fat production in pigs. 3 Biotech 2020, 10, 267. [Google Scholar] [CrossRef]
- Zhang, X.B.; Zan, L.S.; Wang, H.B.; Hao, R.J.; Yang, Y.J. Correlation of C184T Mutation in THRSP Gene with Meat Traits in the Qinchuan Cattle. Sci. Agric. Sin. Zhongguo Nong Ye Ke Xue 2009, 42, 4058–4063. [Google Scholar]
- Oh, D.-Y.; Lee, Y.-S.; La, B.-M.; Lee, J.-Y.; Park, Y.-S.; Lee, J.-H.; Ha, J.-J.; Yi, J.-K.; Kim, B.-K.; Yeo, J.-S. Identification of Exonic Nucleotide Variants of the Thyroid Hormone Responsive Protein Gene Associated with Carcass Traits and Fatty Acid Composition in Korean Cattle. Asian-Australas. J. Anim. Sci. 2014, 27, 1373–1380. [Google Scholar] [CrossRef]
- Fontanesi, L.; Calò, D.G.; Galimberti, G.; Negrini, R.; Marino, R.; Nardone, A.; Ajmone-Marsan, P.; Russo, V. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim. Genet. 2014, 45, 576–580. [Google Scholar] [CrossRef]
- Ensembl. Ensembl Genome Browser. ENSBTAG00000011666. Available online: http://www.ensembl.org (accessed on 11 January 2021).
- UniprotKB. A0A4W2BRK0. Available online: https://www.uniprot.org/uniprot/A0A4W2BRK0 (accessed on 1 February 2021).
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- GenBank. rs42714482, AC_000186.1, AY656814. Available online: https://www.ncbi.nlm.nih.gov/genbank (accessed on 11 January 2021).
- Lock, A.; Garnsworthy, P. Seasonal variation in milk conjugated linoleic acid and Δ9—Desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 22 September 2020).
- Kinghorn, B.P. An algorithm for efficient constrained mate selection. Genet. Sel. Evol. 2011, 43, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Therneau, T.; Atkinson, E.; Sinnwell, J.; Schaid, D.; Mcdonnell, S. Kinship2: Pedigree Functions. R Package Version 1.8.5. Available online: http://CRAN.R-project.org/package=kinship2 (accessed on 22 September 2020).
- Therneau, T.M. Coxme: Mixed Effects Cox Models, R Package Version 2.2-16. Available online: http://CRAN.R-project.org/package=coxme (accessed on 22 September 2020).
- Harvatine, K.J.; Bauman, D.E. SREBP1 and Thyroid Hormone Responsive Spot 14 (S14) Are Involved in the Regulation of Bovine Mammary Lipid Synthesis during Diet-Induced Milk Fat Depression and Treatment with CLA. J. Nutr. 2006, 136, 2468–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salcedo-Tacuma, D.; Parales-Giron, J.; Prom, C.; Chirivi, M.; Laguna, J.; Lock, A.L.; Contreras, G.A. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus). BMC Genom. 2020, 21, 824. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Christie, W.W. Lipid metabolism in the mammary gland or ruminant animals. Prog. Lipid Res. 1979, 17, 347–395. [Google Scholar] [CrossRef]
- Yao, D.; Luo, J.; He, Q.; Wu, M.; Shi, H.; Wang, H.; Wang, M.; Xu, H.; Loor, J. Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells. J. Dairy Sci. 2016, 99, 3124–3133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Cho, M.; Hong, W.-Y.; Lim, D.; Kim, H.-C.; Cho, Y.-M.; Jeong, J.-Y.; Choi, B.-H.; Ko, Y.; Kim, A.J. Evolutionary Analyses of Hanwoo (Korean Cattle)-Specific Single-Nucleotide Polymorphisms and Genes Using Whole-Genome Resequencing Data of a Hanwoo Population. Mol. Cells 2016, 39, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Sobotka, W.; Stanek, M.; Fiedorowicz, E. Health-promoting properties of milk fat depending on cattle breed (Prozdrowotne właściwości tłuszczu mlekowego w zależności od rasy krów). Probl. Hig. Epidemiol. 2015, 96, 808–811. [Google Scholar]
- Eijndhoven, M.M.-V.; Bovenhuis, H.; Soyeurt, H.; Calus, M. Differences in milk fat composition predicted by mid-infrared spectrometry among dairy cattle breeds in the Netherlands. J. Dairy Sci. 2013, 96, 2570–2582. [Google Scholar] [CrossRef]
- Loften, J.R.; Linn, J.G.; Drackley, J.K.; Jenkins, T.C.; Soderholm, C.G.; Kertz, A.F. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J. Dairy Sci. 2014, 97, 4661–4674. [Google Scholar] [CrossRef]
- Djordjevic, J.; Ledina, T.; Baltic, M.Z.; Trbovic, D.; Babic, M.; Bulajic, S. Fatty Acid Profile of Milk. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 60th International Meat Industry Conference MEATCON2019, Kopaonik, Serbia, 22–25 September 2019; IOP Publishing: Bristol, UK, 2019; Volume 333, p. 012057. [Google Scholar]
- Markiewicz-Kęszycka, M.; Czyżak-Runowska, G.; Lipińska, P.; Wójtowski, J. Fatty Acid Profile of Milk—A Review. Bull. Veter. Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Lai, O.-M.; Tan, C.-P.; Akoh, C.C. Palm Oil: Production, Processing, Characterisation, and Uses; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780981893693. [Google Scholar]
Parameter | Breed | ||
---|---|---|---|
Holstein-Friesian | Jersey | ||
Dry weight | % | 45.0 | 40.7 |
Protein | g/kg dw | 149.9 | 157.4 |
Fat | g/kg dw | 32.6 | 29.8 |
Carbohydrates | g/kg dw | 763.3 | 727.7 |
Calcium | mg/kg dw | 6.0 | 9.0 |
Magnesium | mg/kg dw | 2.9 | 3.4 |
Phosphorus | mg/kg dw | 2.8 | 4.7 |
Natrium | mg/kg dw | 2.6 | 2.7 |
Breed | n | Genotypes | Alleles | HWE | ||||
---|---|---|---|---|---|---|---|---|
CC | CT | TT | C | T | χ2 | p | ||
Jersey | 80 | 0.16 (n = 13) | 0.51 (n = 41) | 0.33 (n = 26) | 0.42 | 0.58 | 0.223 | 0.637 |
Polish Holstein-Friesian | 144 | 0.46 (n = 66) | 0.45 (n = 65) | 0.09 (n = 13) | 0.68 | 0.32 | 0.282 | 0.596 |
Trait | Genotype | Mean | p | ||
---|---|---|---|---|---|
CC (n = 13) | CT (n = 41) | TT (n = 26) | |||
MY | 22.646 ± 4.653 | 20.917 ± 3.749 | 22.323 ± 4.142 | 21.655 ± 4.053 | n.s. |
FY | 1.193 ± 0.232 | 1.049 ± 0.191 | 1.114 ± 0.245 | 1.093 ± 0.220 | n.s. |
FC | 5.306 ± 0.544 | 5.045 ± 0.624 | 4.995 ± 0.702 | 5.072 ± 0.640 | n.s. |
C6:0 | 2.913 ± 0.433 | 2.626 ± 0.377 | 2.694 ± 0.370 | 2.695 ± 0.392 | n.s. |
C8:0 | 1.877 ± 0.331 | 1.637 ± 0.238 | 1.653 ± 0.296 | 1.681 ± 0.284 | n.s. |
C10:0 | 3.553 ± 0.292 | 3.407 ± 0.431 | 3.425 ± 0.453 | 3.437 ± 0.418 | n.s. |
C12:0 | 4.173 ± 0.389 | 3.928 ± 0.539 | 3.901 ± 0.609 | 3.959 ± 0.545 | n.s. |
C14:0 | 12.716 ± 0.873 | 12.351 ± 1.211 | 12.241 ± 1.320 | 12.375 ± 1.198 | n.s. |
C16:0 | 37.197 ± 2.523 a | 37.346 ± 3.207 | 38.462 ± 3.028 b | 37.684 ± 3.062 | p < 0.05 |
C18:0 | 12.516 ± 1.461 | 12.883 ± 1.599 b | 12.242 ± 1.726 a | 12.615 ± 1.627 | p < 0.05 |
C14:1 | 1.517 ± 0.396 | 1.299 ± 0.351 | 1.323 ± 0.423 | 1.342 ± 0.386 | n.s. |
C16:1 | 1.588 ± 0.235 | 1.543 ± 0.282 | 1.710 ± 0.444 | 1.605 ± 0.342 | n.s. |
C18:1n-9c | 15.703 ± 1.959 | 17.001 ± 3.496 | 16.569 ± 3.716 | 16.650 ± 3.370 | n.s. |
C18:1n-9t | 1.092 ± 0.168 | 1.021 ± 0.204 | 1.039 ± 0.220 | 1.038 ± 0.203 | n.s. |
C18:2n-6c | 2.119 ± 0.321 | 2.018 ± 0.334 | 1.900 ± 0.389 | 1.996 ± 0.355 | n.s. |
C18:3n-3 | 0.114 ± 0.042 | 0.118 ± 0.050 | 0.103 ± 0.045 | 0.113 ± 0.047 | n.s. |
ΣC14 | 14.233 ± 1.093 b | 13.650 ± 1.439 | 13.564 ± 1.583 a | 13.717 ± 1.441 | p < 0.05 |
ΣC16 | 38.786 ± 2.466 a | 38.889 ± 3.152 | 40.172 ± 3.057 b | 39.289 ± 3.048 | p < 0.05 |
ΣC6–16 | 62.622 ± 3.452 | 61.511 ± 4.809 a | 62.717 ± 4.770 b | 62.083 ± 4.590 | p < 0.05 |
ΣC18 | 31.557 ± 3.396 | 33.055 ± 5.002 | 31.865 ± 5.106 | 32.424 ± 4.807 | n.s. |
Δ9IC14 | 9.458 ± 3.342 | 9.065 ± 2.775 | 10.052 ± 3.308 | 9.450 ± 3.042 | n.s. |
Δ9IC16 | 5.734 ± 2.214 | 4.847 ± 1.417 | 4.839 ± 1.569 | 4.988 ± 1.628 | n.s. |
Δ9IC18 | 65.067 ± 7.090 | 63.796 ± 5.739 | 65.410 ± 3.995 | 64.527 ± 5.472 | n.s. |
Δ9MUFA | 23.154 ± 2.379 | 24.049 ± 3.908 | 23.703 ± 4.181 | 23.791 ± 3.772 | n.s. |
SFA | 77.304 ± 2.314 | 76.467 ± 3.776 | 76.839 ± 4.176 | 76.724 ± 3.694 | n.s. |
UFA | 22.696 ± 2.314 | 23.533 ± 3.776 | 23.161 ± 4.176 | 23.276 ± 3.694 | n.s. |
MUFA | 20.160 ± 2.120 | 21.135 ± 3.560 | 20.913 ± 3.928 | 20.904 ± 3.479 | n.s. |
PUFA | 2.536 ± 0.394 | 2.398 ± 0.416 | 2.248 ± 0.438 | 2.372 ± 0.426 | n.s. |
UFA/SFA | 0.295 ± 0.039 | 0.311 ± 0.069 | 0.305 ± 0.077 | 0.307 ± 0.067 | n.s. |
AI | 4.125 ± 0.661 | 3.986 ± 0.878 | 4.095 ± 0.907 | 4.044 ± 0.849 | n.s. |
TI | 5.250 ± 0.739 | 5.183 ± 0.987 | 5.324 ± 0.978 | 5.240 ± 0.940 | n.s. |
Trait | Genotype | Mean | p | ||
---|---|---|---|---|---|
CC (n = 66) | CT (n = 65) | TT (n = 13) | |||
MY | 31.344 ± 8.441 | 30.434 ± 8.711 | 30.877 ± 7.975 | 30.891 ± 8.478 | n.s. |
FY | 1.267 ± 0.369 | 1.266 ± 0.350 | 1.264 ± 0.383 | 1.266 ± 0.359 | n.s. |
FC | 4.067 ± 0.598 | 4.221 ± 0.663 | 4.098 ± 0.678 | 4.140 ± 0.635 | n.s. |
C6:0 | 2.296 ± 0.442 | 2.173 ± 0.420 a | 2.458 ± 0.470 b | 2.255 ± 0.440 | p < 0.05 |
C8:0 | 1.333 ± 0.241 | 1.278 ± 0.247 | 1.372 ± 0.288 | 1.312 ± 0.248 | n.s. |
C10:0 | 3.097 ± 0.510 | 2.988 ± 0.581 | 3.169 ± 0.730 | 3.054 ± 0.564 | n.s. |
C12:0 | 3.712 ± 0.554 | 3.656 ± 0.708 | 3.756 ± 0.774 | 3.691 ± 0.644 | n.s. |
C14:0 | 12.478 ± 1.342 | 12.170 ± 1.592 | 12.379 ± 1.381 | 12.330 ± 1.461 | n.s. |
C16:0 | 41.211 ± 5.073 | 41.450 ± 4.590 b | 39.644 ± 5.248 a | 41.177 ± 4.867 | p < 0.05 |
C18:0 | 9.377 ± 2.416 | 8.871 ± 2.541 | 10.269 ± 2.699 | 9.229 ± 2.514 | n.s. |
C14:1 | 1.321 ± 0.462 | 1.443 ± 0.521 b | 1.107 ± 0.372 a | 1.357 ± 0.490 | p < 0.05 |
C16:1 | 2.062 ± 0.633 | 2.352 ± 0.758 b | 1.849 ± 0.606 a | 2.174 ± 0.707 | p < 0.05 |
C18:1n-9c | 16.275 ± 2.863 | 16.660 ± 3.609 | 17.012 ± 3.400 | 16.515 ± 3.253 | n.s. |
C18:1n-9t | 0.962 ± 0.291 | 1.046 ± 0.327 | 0.896 ± 0.165 | 0.994 ± 0.302 | n.s. |
C18:2n-6c | 2.865 ± 0.679 | 2.718 ± 0.618 | 3.180 ± 0.737 | 2.827 ± 0.666 | n.s. |
C18:3n-3 | 0.280 ± 0.099 | 0.280 ± 0.087 | 0.310 ± 0.106 | 0.283 ± 0.094 | n.s. |
ΣC14 | 13.799 ± 1.490 | 13.613 ± 1.798 | 13.486 ± 1.342 | 13.687 ± 1.619 | n.s. |
ΣC16 | 43.274 ± 5.066 | 43.801 ± 4.705 | 41.493 ± 5.249 | 43.351 ± 4.929 | n.s. |
ΣC6–16 | 67.511 ± 4.836 | 67.509 ± 5.456 | 65.733 ± 5.704 | 67.350 ± 5.190 | n.s. |
ΣC18 | 29.772 ± 4.810 | 29.588 ± 5.701 | 31.680 ± 5.718 | 29.861 ± 5.305 | n.s. |
Δ9IC14 | 9.515 ± 2.952 | 10.493 ± 3.352 | 8.263 ± 2.846 | 9.844 ± 3.184 | n.s. |
Δ9IC16 | 4.824 ± 1.563 | 5.393 ± 1.647 | 4.511 ± 1.519 | 5.053 ± 1.619 | n.s. |
Δ9IC18 | 63.698 ± 5.355 | 65.449 ± 5.205 | 62.483 ± 6.037 | 64.379 ± 5.411 | n.s. |
Δ9MUFA | 23.766 ± 3.896 | 24.625 ± 3.980 | 24.245 ± 4.534 | 24.197 ± 3.986 | n.s. |
SFA | 75.709 ± 3.746 | 74.937 ± 3.897 | 75.112 ± 4.524 | 75.306 ± 3.877 | n.s. |
UFA | 24.291 ± 3.746 | 25.063 ± 3.897 | 24.888 ± 4.524 | 24.694 ± 3.877 | n.s. |
MUFA | 20.901 ± 3.286 | 21.805 ± 3.702 | 21.135 ± 4.013 | 21.330 ± 3.547 | n.s. |
PUFA | 3.391 ± 0.782 | 3.259 ± 0.715 | 3.753 ± 0.874 | 3.364 ± 0.768 | n.s. |
UFA/SFA | 0.324 ± 0.069 | 0.338 ± 0.074 | 0.336 ± 0.082 | 0.332 ± 0.072 | n.s. |
AI | 4.017 ± 0.785 | 3.860 ± 0.800 | 3.902 ± 1.052 | 3.936 ± 0.815 | n.s. |
TI | 4.922 ± 0.953 | 4.725 ± 0.893 | 4.777 ± 1.185 | 4.820 ± 0.947 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polasik, D.; Golińczak, J.; Proskura, W.; Terman, A.; Dybus, A. Association between THRSP Gene Polymorphism and Fatty Acid Composition in Milk of Dairy Cows. Animals 2021, 11, 1144. https://doi.org/10.3390/ani11041144
Polasik D, Golińczak J, Proskura W, Terman A, Dybus A. Association between THRSP Gene Polymorphism and Fatty Acid Composition in Milk of Dairy Cows. Animals. 2021; 11(4):1144. https://doi.org/10.3390/ani11041144
Chicago/Turabian StylePolasik, Daniel, Jacek Golińczak, Witold Proskura, Arkadiusz Terman, and Andrzej Dybus. 2021. "Association between THRSP Gene Polymorphism and Fatty Acid Composition in Milk of Dairy Cows" Animals 11, no. 4: 1144. https://doi.org/10.3390/ani11041144
APA StylePolasik, D., Golińczak, J., Proskura, W., Terman, A., & Dybus, A. (2021). Association between THRSP Gene Polymorphism and Fatty Acid Composition in Milk of Dairy Cows. Animals, 11(4), 1144. https://doi.org/10.3390/ani11041144