Effects of Increasing Doses of Condensed Tannins Extract from Cistus ladanifer L. on In Vitro Ruminal Fermentation and Biohydrogenation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cistus Ladanifer Sampling
2.2. Preparation of Cistus Ladanifer Condensed Tannins Extract
2.3. In Vitro Incubation with Ruminal Fluid
2.4. Fatty Acids Analysis
2.5. Calculations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, T.K.; Singh, B.; Sharma, O.P. Microbial degradation of tannins-A current perspective. Biodegradation 1998, 9, 343–357. [Google Scholar]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar]
- McMahon, L.R.; McAllister, T.A.; Berg, B.P.; Majak, W.; Acharya, S.N.; Popp, J.D.; Coulman, B.E.; Wang, Y.; Cheng, K.J. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant. Sci. 2000, 80, 469–485. [Google Scholar]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed. Sci. Technol. 2001, 91, 83–93. [Google Scholar]
- Vasta, V.; Makkar, H.P.S.; Mele, M.; Priolo, A. Ruminal biohydrogenation as affected by tannins in vitro. Br. J. Nutr. 2009, 102, 82–92. [Google Scholar]
- Khiaosa-Ard, R.; Bryner, S.F.; Scheeder, M.R.L.; Wettstein, H.R.; Leiber, F.; Kreuzer, M.; Soliva, C.R. Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy. Sci. 2009, 92, 177–188. [Google Scholar]
- Guerreiro, O.; Alves, S.P.; Costa, M.; Cabo, A.; Duarte, M.F.; Jerónimo, E.; Bessa, R.J.B. Effects of extracts obtained from Cistus ladanifer L. on in vitro rumen biohydrogenation. Anim. Feed. Sci. Technol. 2016, 219, 304–312. [Google Scholar]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat. Sci. 2020, 165, 108114. [Google Scholar]
- Bessa, R.J.B.; Santos-Silva, J.; Ribeiro, J.M.R.; Portugal, A.V. Reticulo-rumen biohydrogenation and the enrichment of ruminant edible products with linoleic acid conjugated isomers. Livest. Prod. Sci. 2000, 63, 201–211. [Google Scholar]
- Vasta, V.; Bessa, R.J.B. Manipulating ruminal biohydrogenation by the use of plants bioactive compounds. In Dietary Phytochemicals and Microbes; Patra, A.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 263–284. [Google Scholar]
- Buccioni, A.; Minieri, S.; Rapaccini, S.; Antongiovanni, M.; Mele, M. Effect of chestnut and quebracho tannins on fatty acid profile in rumen liquid- and solid-associated bacteria: An in vitro study. Animal 2011, 5, 1521–1530. [Google Scholar]
- Costa, M.; Alves, S.P.; Cabo, A.; Guerreiro, O.; Stilwell, G.; Dentinho, M.T.; Bessa, R.J.B. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources. J. Sci. Food Agric. 2017, 97, 629–635. [Google Scholar]
- Carreño, D.; Hervás, G.; Toral, P.G.; Belenguer, A.; Frutos, P. Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Anim. Feed Sci. Technol. 2015, 202, 42–51. [Google Scholar]
- Guerreiro, O.; Dentinho, M.T.; Moreira, O.C.; Guerra, A.R.; Ramos, P.A.B.; Bessa, R.J.B.; Duarte, M.F.; Jerónimo, E. Potential of Cistus ladanifer L. (rockrose) in small ruminant diets-effect of season and plant age on chemical composition, in vitro digestibility and antioxidant activity. Grass Forage Sci. 2016, 71, 437–447. [Google Scholar]
- Jerónimo, E.; Alves, S.P.; Dentinho, M.T.P.; Martins, S.V.; Prates, J.A.M.; Vasta, V.; Santos-Silva, J.; Bessa, R.J.B. Effect of grape seed extract, Cistus ladanifer L. and vegetable oil supplementation on fatty acid composition of abomasal digesta and intramuscular fat of lambs. J. Agric. Food Chem. 2010, 58, 10710–10721. [Google Scholar]
- Jerónimo, E.; Alfaia, C.M.M.; Alves, S.P.; Dentinho, M.T.P.; Prates, J.A.M.; Vasta, V.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary grape seed extract and Cistus ladanifer L. in combination with vegetable oil supplementation on lamb meat quality. Meat Sci. 2012, 92, 841–847. [Google Scholar]
- Francisco, A.; Dentinho, M.T.; Alves, S.P.; Portugal, P.V.; Fernandes, F.; Sengo, S.; Jerónimo, E.; Oliveira, M.A.; Costa, P.; Sequeira, A.; et al. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Sci. 2015, 100, 275–282. [Google Scholar]
- Alves, S.P.; Francisco, A.; Costa, M.; Santos-Silva, J.; Bessa, R.J.B. Biohydrogenation patterns in digestive contents and plasma of lambs fed increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Anim. Feed Sci. Technol. 2017, 225, 157–172. [Google Scholar]
- Frutos, P.; Hervás, G.; Natalello, A.; Luciano, G.; Fondevila, M.; Priolo, A.; Toral, P.G. Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed Sci. Technol. 2020, 269, 114623. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); Agricultural Research Service, USDA: Washington, DC, USA, 1970; p. 20. [Google Scholar]
- Santos-Silva, J.; Francisco, A.; Alves, S.P.; Portugal, P.; Dentinho, T.; Almeida, J.; Soldado, D.; Jerónimo, E.; Bessa, R.J.B. Effect of dietary neutral detergent fibre source on lambs growth, meat quality and biohydrogenation intermediates. Meat Sci. 2019, 147, 28–36. [Google Scholar]
- Francisco, A.E.; Janíček, M.; Dentinho, T.; Portugal, A.P.V.; Almeida, J.M.; Alves, S.P.; Fialho, L.; Jerónimo, E.; Bessa, R.J.B.; Santos-Silva, J. Effects of alfalfa particle size and starch content in diets on feeding behaviour, intake, rumen parameters, animal performance and meat quality of growing lambs. Meat Sci. 2020, 161, 107964. [Google Scholar]
- Bessa, R.J.B.; Alves, S.P.; Jeronimo, E.; Alfaia, C.M.; Prates, J.A.M.; Santos-Silva, J. Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. European J. Lipid Sci. Technol. 2007, 109, 868–878. [Google Scholar]
- Oliveira, M.A.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Effects of clays used as oil adsorbents in lamb diets on fatty acid composition of abomasal digesta and meat. Anim. Feed Sci. Technol. 2016, 213, 64–73. [Google Scholar]
- Jenkins, T.C. Technical note: Common analytical errors yielding inaccurate results during analysis of fatty acids in feed and digesta samples. J. Dairy Sci. 2010, 93, 1170–1174. [Google Scholar]
- Alves, S.P.; Santos-Silva, J.; Cabrita, A.R.J.; Fonseca, A.J.M.; Bessa, R.J.B. Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil. PLoS ONE 2013, 8, e58386. [Google Scholar]
- Jerónimo, E.; Pinheiro, C.; Lamy, E.; Dentinho, M.T.; Sales-Baptista, E.; Lopes, O.; Silva, F. Tannins in ruminant nutrition: Impact on animal performance and quality of edible products. In Tannins: Biochemistry, Food Sources and Nutritional Properties; Combs, C.A., Ed.; Nova Science Publisher Inc.: Hauppauge, NY, USA, 2016; pp. 121–168. [Google Scholar]
- Jerónimo, E.; Dentinho, M.T.; Guerreiro, O.; Francisco, A.; Soldado, D.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Cistus ladanifer L. in Ruminant Diets-A Sustainable Approach to Improve the Feed Nutritional Value and the Quality of Edible Products. In Advances in Animal Health, Medicine and Production; Springer: Berlin/Heidelberg, Germany, 2020; pp. 128–160. [Google Scholar]
- Purba, R.A.P.; Paengkoum, P.; Paengkoum, S. The links between supplementary tannin levels and conjugated linoleic acid (CLA) formation in ruminants: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0216187. [Google Scholar]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar]
- Frutos, P.; Hervas, G.; Giraldez, F.J.; Mantecon, A.R. An in vitro study on the ability of polyethylene glycol to inhibit the effect of quebracho tannins and tannic acid on rumen fermentation in sheep, goats, cows, and deer. Aust. J. Agr. Res. 2004, 55, 1125–1132. [Google Scholar]
- Hatew, B.; Stringano, E.; Mueller-Harvey, I.; Hendriks, W.H.; Carbonero, C.H.; Smith, L.M.J.; Pellikaan, W.F. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Nutr. 2016, 100, 348–360. [Google Scholar]
- Jayanegara, A.; Kreuzer, M.; Leiber, F. Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livestock Sci. 2012, 147, 104–112. [Google Scholar]
- Bodas, R.; Prieto, N.; Garcia-Gonzalez, R.; Andres, S.; Giraldez, F.J.; Lopez, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar]
- Klevenhusen, F.; Muro-Reyes, A.; Khiaosa-Ard, R.; Metzler-Zebeli, B.U.; Zebeli, Q. A meta-analysis of effects of chemical composition of incubated diet and bioactive compounds on in vitro ruminal fermentation. Anim. Feed Sci. Technol. 2012, 176, 61–69. [Google Scholar]
- Belanche, A.; Doreau, M.; Edwards, J.E.; Moorby, J.M.; Pinloche, E.; Newbold, C.J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 2012, 142, 1684–1692. [Google Scholar]
- Snelling, T.J.; Auffret, M.D.; Duthie, C.-A.; Stewart, R.D.; Watson, M.; Dewhurst, R.J.; Roehe, R.; Walker, A.W. Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Animal Microbiome 2019, 1, 1–14. [Google Scholar]
- Francisco, A.; Alves, S.P.; Portugal, P.V.; Dentinho, M.T.; Jerónimo, E.; Sengo, S.; Almeida, J.; Bressan, M.C.; Pires, V.M.R.; Alfaia, C.M.; et al. Effects of dietary inclusion of citrus pulp and rockrose soft stems and leaves on lamb meat quality and fatty acid composition. Animal 2018, 12, 872–881. [Google Scholar]
- Enjalbert, F.; Eynard, P.; Nicot, M.C.; Troegeler-Meynadier, A.; Bayourthe, C.; Moncoulon, R. In vitro versus in situ ruminal biohydrogenation of unsaturated fatty acids from a raw or extruded mixture of ground canola seed/canola meal. J. Dairy Sci. 2003, 86, 351–359. [Google Scholar]
- Kaneda, T. Iso-fatty and anteiso-fatty acids in bacteria-Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar]
- Bessa, R.J.B.; Maia, M.R.G.; Jerónimo, E.; Belo, A.T.; Cabrita, A.R.J.; Dewhurst, R.J.; Fonseca, A.J.M. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Anim. Feed Sci. Technol. 2009, 150, 197–206. [Google Scholar]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar]
- Costa, M.; Alves, S.; Cappucci, A.; Cook, S.R.; Duarte, A.; Caldeira, R.; McAllister, T.A.; Bessa, R.J.B. Effects of condensed and hydrolysable tannins on rumen metabolism with emphasis on the biohydrogenation of unsaturated fatty acids. J. Agr. Food Chem. 2018, 66, 3367–3377. [Google Scholar]
- Smith, A.H.; Zoetendal, E.; Mackie, R.I. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol. 2005, 50, 197–205. [Google Scholar]
- Russell, J.B.; Wallace, R.J. Energy-yielding and energy-consuming reactions. In The Rumen Microbial Ecosystem; Springer: Berlin/Heidelberg, Germany, 1997; pp. 246–282. [Google Scholar]
- Maia, M.R.G.; Chaudhary, L.C.; Bestwick, C.S.; Richardson, A.J.; McKain, N.; Larson, T.R.; Graham, I.A.; Wallace, R.J. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010, 10, 52. [Google Scholar]
- Jones, G.A.; McAllister, T.A.; Muir, A.D.; Cheng, K.J. Effects of sainfoin (Onobrychis viciifolia scop) condensed tannins on growth and proteolysis by 4 strains of ruminal bacteria. Appl. Environ. Microb. 1994, 60, 1374–1378. [Google Scholar]
- Eberlein, C.; Baumgarten, T.; Starke, S.; Heipieper, H.J. Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: Cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl. Microbiol. Biotechnol. 2018, 102, 2583–2593. [Google Scholar]
- Endo, Y.; Kamisada, S.; Fujimoto, K.; Saito, T. Trans. fatty acids promote the growth of some Lactobacillus strains. J. Gen. Appl. Microbiol. 2006, 52, 29–35. [Google Scholar]
- Hackmann, T.; Firkins, J. Maximizing efficiency of rumen microbial protein production. Front. Microbiol. 2015, 6, 465. [Google Scholar]
- Jenkins, T.C.; AbuGhazaleh, A.A.; Freeman, S.; Thies, E.J. The production of 10-hydroxystearic and 10-ketostearic acids is an alternative route of oleic acid transformation by the ruminal microbiota in cattle. J. Nutr. 2006, 136, 926–931. [Google Scholar]
- McKain, N.; Shingfield, K.J.; Wallace, R.J. Metabolism of conjugated linoleic acids and 18: 1 fatty acids by ruminal bacteria: Products and mechanisms. Microbiol. SGM 2010, 156, 579–588. [Google Scholar]
C. ladanifer CT, g/kg Dry Matter | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | Linear | Quadratic | ||
Total VFA | 35.4 | 33.2 | 32.6 | 26.6 | 25.8 | 1.59 | <0.001 | 0.629 |
2:0 | 22.0 | 20.9 | 20.7 | 16.4 | 16.3 | 1.20 | <0.001 | 0.623 |
3:0 | 7.28 | 6.79 | 6.62 | 5.60 | 5.19 | 0.314 | <0.001 | 0.554 |
iso-4:0 | 0.41 | 0.24 | 0.26 | 0.20 | 0.16 | 0.042 | <0.001 | 0.219 |
4:0 | 4.43 | 4.33 | 4.15 | 3.68 | 3.45 | 0.205 | <0.001 | 0.190 |
iso-5:0 | 0.61 | 0.46 | 0.41 | 0.36 | 0.33 | 0.025 | <0.001 | 0.004 |
5:0 | 0.50 | 0.40 | 0.37 | 0.30 | 0.27 | 0.020 | <0.001 | 0.107 |
2:0/3:0 ratio | 3.04 | 3.09 | 3.02 | 2.92 | 3.13 | 0.138 | 0.734 | 0.738 |
C. ladanifer CT, g/kg Dry Matter | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | Linear | Quadratic | ||
Biohydrogenation (%) | ||||||||
c9–18:1 | 51.2 | 52.4 | 47.1 | 48.6 | 48.5 | 4.30 | 0.426 | 0.760 |
c9,c12–18:2 | 68.7 | 67.1 | 63.4 | 64.6 | 65.0 | 3.93 | 0.431 | 0.545 |
c9,c12,c15–18:3 | 67.6 | 61.2 | 52.3 | 54.7 | 50.8 | 3.76 | 0.003 | 0.239 |
Biohydrogenation Products (%) | ||||||||
18:0 | 49.2 | 47.8 | 45.6 | 50.2 | 49.5 | 3.50 | 0.666 | 0.327 |
18:1 1 | 35.8 | 35.3 | 35.9 | 34.0 | 35.0 | 4.65 | 0.553 | 0.952 |
18:2 2 | 4.18 | 3.36 | 3.44 | 2.36 | 2.34 | 0.608 | 0.020 | 0.841 |
oxo-FA 3 | 11.5 | 14.1 | 15.4 | 13.9 | 13.6 | 2.15 | 0.046 | 0.001 |
Biohydrogenation:VFA ratio | ||||||||
c9–18:1BH/VFA | 1.47 | 1.59 | 1.45 | 1.86 | 1.95 | 0.182 | 0.009 | 0.340 |
c9,c12–18:2BH/VFA | 1.95 | 2.03 | 1.95 | 2.47 | 2.58 | 0.171 | 0.004 | 0.278 |
c9,c12,c15–18:3BH/VFA | 1.93 | 1.85 | 1.60 | 2.10 | 2.01 | 0.159 | 0.437 | 0.235 |
C. ladanifer CT, g/kg Dry Matter | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | Linear | Quadratic | ||
C18 FA loss | ||||||||
c9-18:1 | −635 | −646 | −576 | −597 | −597 | 57.5 | 0.479 | 0.730 |
c9,c12-18:2 | −1004 | −946 | −827 | −896 | −956 | 240.2 | 0.617 | 0.230 |
c9,c12,c15-18:3 | −23.5 | −21.5 | −16.9 | −19.4 | −18.4 | 3.61 | 0.061 | 0.233 |
Sum | −1663 | −1613 | −1420 | −1512 | −1572 | 259.4 | 0.544 | 0.364 |
C18 FA gains | ||||||||
18:0 | 774 | 750 | 656 | 743 | 753 | 100.1 | 0.836 | 0.380 |
18:1 isomers | ||||||||
t4- | 2.84 | 3.33 | 3.60 | 4.44 | 4.68 | 0.718 | <0.001 | 0.947 |
t5- | 1.25 | 0.93 | 2.08 | 2.40 | 3.27 | 0.815 | 0.002 | 0.395 |
t6-, t7-, t8- | 22.8 | 27.1 | 27.1 | 31.5 | 33.3 | 4.73 | 0.009 | 0.960 |
t9- | 61.7 | 54.7 | 43.4 | 42.2 | 40.2 | 6.40 | <0.001 | 0.538 |
t10- | 33.6 | 40.7 | 40.4 | 42.5 | 41.8 | 7.18 | 0.276 | 0.493 |
t11- | 456 | 397 | 324 | 333 | 376 | 136.9 | 0.186 | 0.155 |
t12- | 27.4 | 29.8 | 28.6 | 32.2 | 33.7 | 4.79 | 0.131 | 0.780 |
t15- | 14.3 | 16.4 | 15.1 | 19.0 | 20.7 | 3.08 | 0.025 | 0.566 |
c11- | −10.6 | −11.5 | −8.12 | −10.0 | −9.42 | 2.90 | 0.518 | 0.747 |
c12- | 22.2 | 21.2 | 18.5 | 20.0 | 21.2 | 4.23 | 0.695 | 0.391 |
c13- | 1.16 | 1.05 | 0.35 | 1.75 | 1.34 | 0.289 | 0.268 | 0.180 |
t16-, t14- | 12.5 | 15.8 | 14.3 | 16.9 | 18.3 | 2.75 | 0.028 | 0.951 |
c16- | 2.99 | 3.29 | 3.09 | 2.92 | 3.39 | 0.678 | 0.634 | 0.736 |
Sum | 654 | 607 | 522 | 544 | 593 | 153.2 | 0.371 | 0.227 |
18:2 isomers | ||||||||
t9,t12- | 9.47 | 6.33 | 5.34 | 4.18 | 3.47 | 0.677 | <0.001 | 0.080 |
c9,t12- | 17.1 | 13.4 | 11.0 | 8.69 | 6.86 | 2.33 | <0.001 | 0.543 |
t11,c15- | 1.27 | 1.33 | 1.07 | 1.11 | 0.62 | 0.343 | 0.101 | 0.437 |
c9,t11- | 8.02 | 3.83 | 0.26 | 0.57 | 1.39 | 2.178 | 0.022 | 0.092 |
CLA tt | 12.3 | 12.7 | 10.8 | 11.9 | 14.9 | 3.18 | 0.536 | 0.336 |
t9,c12- | 21.5 | 15.4 | 12.9 | 10.3 | 9.36 | 2.80 | <0.001 | 0.047 |
Sum | 69.0 | 53.0 | 41.4 | 36.8 | 36.5 | 8.83 | <0.001 | 0.018 |
Oxo FA | ||||||||
10-oxo-18:0 | 147 | 180 | 175 | 163 | 162 | 17.9 | 0.819 | 0.280 |
13-oxo-18:0 | 24.1 | 30.6 | 30.0 | 30.8 | 31.8 | 5.09 | 0.019 | 0.192 |
Sum | 171 | 210 | 205 | 194 | 194 | 19.9 | 0.354 | 0.273 |
Total gain | 1663 | 1613 | 1420 | 1512 | 1572 | 259.4 | 0.544 | 0.364 |
C. ladanifer CT, g/kg Dry Matter | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | Linear | Quadratic | ||
FA | ||||||||
12:0 | −99.8 | −96.7 | −146 | −79.7 | −103 | 34.67 | 0.921 | 0.619 |
14:0 | 190 | 181 | 85.3 | 98.6 | 62.0 | 26.6 | <0.001 | 0.591 |
16:0 | 1456 | 1274 | 316 | 785 | 329 | 347.1 | 0.021 | 0.507 |
Cyclo-17:0 | 37.0 | 54.9 | 23.2 | 10.4 | −10.2 | 13.10 | 0.003 | 0.252 |
20:0 | 50.6 | 47.3 | 13.3 | 37.4 | 22.4 | 13.69 | 0.141 | 0.207 |
20:1 | −7.38 | −6.85 | −18.8 | −10.7 | −11.3 | 4.524 | 0.423 | 0.307 |
21:0 | 0.94 | 3.03 | 0.34 | −0.80 | 3.64 | 1.32 | 0.707 | 0.213 |
22:0 | 43.9 | 37.1 | -3.93 | 21.0 | 14.0 | 15.99 | 0.149 | 0.056 |
23:0 | 9.74 | 5.80 | 2.30 | 6.50 | 4.99 | 2.708 | 0.316 | 0.229 |
24:0 | 39.1 | 34.3 | 10.4 | 25.5 | 10.4 | 10.03 | 0.050 | 0.629 |
26:0 | 164 | 112 | 72.0 | 87.5 | 69.1 | 17.32 | <0.001 | 0.073 |
28:0 | 8.38 | 10.8 | 0.44 | 0.06 | 10.5 | 3.151 | 0.521 | 0.039 |
c7-16:1 | −1.77 | −1.45 | −11.82 | −5.74 | −5.67 | 4.276 | 0.063 | 0.041 |
c9-17:1 | 1.51 | −0.80 | −2.24 | 1.69 | −2.36 | 2.006 | 0.417 | 0.805 |
OBCFAs | ||||||||
13:0 | 15.8 | 7.50 | 9.09 | 4.30 | 7.48 | 2.093 | 0.005 | 0.036 |
i-14:0 | 28.9 | 26.6 | 19.9 | 16.1 | 14.0 | 5.33 | 0.027 | 0.879 |
i-15:0 | 64.4 | 45.5 | 24.7 | 21.6 | 9.42 | 5.06 | <0.001 | 0.062 |
a-15:0 | 139 | 124 | 75.1 | 71.2 | 50.7 | 9.13 | <0.001 | 0.334 |
15:0 | 130 | 111 | 58.0 | 61.6 | 43.8 | 13.5 | <0.001 | 0.251 |
i-16:0 | 44.2 | 47.8 | 32.2 | 26.7 | 20.2 | 5.36 | <0.001 | 0.558 |
i-17:0 | 46.8 | 35.8 | 22.7 | 30.6 | 18.6 | 5.36 | 0.001 | 0.322 |
a-17:0 | 72.5 | 58.1 | 38.0 | 42.3 | 20.8 | 9.61 | <0.001 | 0.739 |
17:0 | 73.4 | 52.3 | 31.4 | 33.8 | 23.5 | 10.14 | 0.001 | 0.228 |
Total | 615 | 508 | 311 | 308 | 209 | 52.4 | <0.001 | 0.301 |
DMAs | ||||||||
12:0 | 16.2 | 17.2 | 11.1 | 6.46 | 2.93 | 2.774 | <0.001 | 0.327 |
i-14:0 | 18.5 | 13.3 | 0.63 | 3.00 | −2.44 | 3.587 | <0.001 | 0.254 |
14:0 | 31.0 | 23.3 | 11.3 | 5.47 | −6.31 | 5.258 | <0.001 | 0.911 |
i-15:0 | 10.2 | 13.1 | 5.94 | 3.58 | −0.41 | 2.528 | <0.001 | 0.300 |
a-15:0 | 528 | 392 | 260 | 183 | 221 | 54.79 | <0.001 | 0.051 |
15:0 | 9.53 | 8.36 | 2.64 | 1.83 | 0.51 | 2.235 | 0.002 | 0.588 |
16:0 | 68.5 | 55.9 | 40.7 | 37.0 | 18.4 | 6.28 | <0.001 | 0.983 |
18:0 | 9.80 | 4.18 | 4.59 | 3.28 | 3.80 | 1.864 | 0.018 | 0.087 |
18:1 | 29.3 | 19.3 | 6.46 | 18.4 | 16.8 | 3.45 | 0.020 | 0.003 |
Total | 721 | 546 | 343 | 262 | 255 | 58.6 | <0.001 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerreiro, O.; Alves, S.P.; Costa, M.; Duarte, M.F.; Jerónimo, E.; Bessa, R.J.B. Effects of Increasing Doses of Condensed Tannins Extract from Cistus ladanifer L. on In Vitro Ruminal Fermentation and Biohydrogenation. Animals 2021, 11, 761. https://doi.org/10.3390/ani11030761
Guerreiro O, Alves SP, Costa M, Duarte MF, Jerónimo E, Bessa RJB. Effects of Increasing Doses of Condensed Tannins Extract from Cistus ladanifer L. on In Vitro Ruminal Fermentation and Biohydrogenation. Animals. 2021; 11(3):761. https://doi.org/10.3390/ani11030761
Chicago/Turabian StyleGuerreiro, Olinda, Susana P. Alves, Mónica Costa, Maria F. Duarte, Eliana Jerónimo, and Rui J. B. Bessa. 2021. "Effects of Increasing Doses of Condensed Tannins Extract from Cistus ladanifer L. on In Vitro Ruminal Fermentation and Biohydrogenation" Animals 11, no. 3: 761. https://doi.org/10.3390/ani11030761
APA StyleGuerreiro, O., Alves, S. P., Costa, M., Duarte, M. F., Jerónimo, E., & Bessa, R. J. B. (2021). Effects of Increasing Doses of Condensed Tannins Extract from Cistus ladanifer L. on In Vitro Ruminal Fermentation and Biohydrogenation. Animals, 11(3), 761. https://doi.org/10.3390/ani11030761