Histochemical Characterisation and Gene Expression Analysis of Skeletal Muscles from Maremmana and Aubrac Steers Reared on Grazing and Feedlot Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Muscle Sampling
2.3. Histochemical Analysis
2.4. Image Analysis
2.5. Gene Expression Analyses
2.6. Statistical Analysis
3. Results and Discussion
3.1. Type I, IIA, IIB Fibre Frequencies
3.2. Cross-Sectional Area (CSA) of Type I, IIA, IIB Fibre
3.3. Percentage of Cross-Sectional Areas
3.4. Gene Expression in SM Muscle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooke, M.H.; Kaiser, K.K. Muscle Fiber Types: How Many and What Kind? Arch. Neurol. 1970, 23, 369–379. [Google Scholar] [CrossRef]
- Pette, D.; Staron, R.S. Cellular and Molecular Diversities of Mammalian Skeletal Muscle Fibers. Rev. Physiol. Biochem. Pharmacol. 1990, 116, 1–76. [Google Scholar] [CrossRef] [PubMed]
- Bottinelli, R.; Reggiani, C. Human Skeletal Muscle Fibres: Molecular and Functional Diversity. Prog. Biophys. Mol. Biol. 2000, 73, 195–262. [Google Scholar] [CrossRef]
- Choi, Y.M.; Kim, B.C. Muscle Fiber Characteristics, Myofibrillar Protein Isoforms, and Meat Quality. Livest. Sci. 2009, 122, 105–118. [Google Scholar] [CrossRef]
- Lee, S.H.; Joo, S.T.; Ryu, Y.C. Skeletal Muscle Fiber Type and Myofibrillar Proteins in Relation to Meat Quality. Meat Sci. 2010, 86, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, L. A Second Look into Fibre Typing—Relation to Meat Quality. Meat Sci. 2010, 84, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Picard, B.; Gagaoua, M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. J. Agric. Food Chem. 2020, 68, 6021–6039. [Google Scholar] [CrossRef]
- Lefaucheur, L.; Gerrard, D. Muscle Fiber Plasticity in Farm Mammals. J. Anim. Sci. 2000, 77, 1. [Google Scholar] [CrossRef]
- Rehfeldt, C.; Fiedler, I.; Dietl, G.; Ender, K. Myogenesis and Postnatal Skeletal Muscle Cell Growth as Influenced by Selection. Livest. Prod. Sci. 2000, 66, 177–188. [Google Scholar] [CrossRef]
- Serra, A.; Conte, G.; Giannessi, E.; Casarosa, L.; Lenzi, C.; Baglini, A.; Ciucci, F.; Cappucci, A.; Mele, M. Histological Characteristics, Fatty Acid Composition of Lipid Fractions, and Cholesterol Content of Semimembranosus and Triceps Brachii Muscles in Maremmana and Limousine Bovine Breeds. Front. Vet. Sci. 2017, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, G.; Ceccobelli, S.; Perini, F.; Demir, E.; Mastrangelo, S.; Conte, G.; Abeni, F.; Marletta, D.; Ciampolini, R.; Cassandro, M.; et al. The Genetics of Phenotypic Plasticity in Livestock in the Era of Climate Change: A Review. Ital. J. Anim. Sci. 2020, 19, 997–1014. [Google Scholar] [CrossRef]
- Klont, R.E.; Brocks, L.; Eikelenboom, G. Muscle Fibre Type and Meat Quality. Meat Sci. 1998, 49 (Suppl. 1), S219–S229. [Google Scholar] [CrossRef]
- Kirchofer, K.S.; Calkins, C.R.; Gwartney, B.L. Fiber-Type Composition of Muscles of the Beef Chuck and Round. J. Anim. Sci. 2002, 80, 2872–2878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of Fresh Meat Quality through Manipulation of Muscle Fiber Characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef]
- Wyckelsma, V.L.; Perry, B.D.; Bangsbo, J.; McKenna, M.J. Inactivity and Exercise Training Differentially Regulate Abundance of Na+-K+-ATPase in Human Skeletal Muscle. J. Appl. Physiol. 2019, 127, 905–920. [Google Scholar] [CrossRef]
- Hundal, H.S.; Maxwell, D.L.; Ahmed, A.; Darakhshant, F.; Mitsumotoi, Y.; Klip, A. Subcellular Distribution and Immunocytochemical Localization of Na,K-ATPase Subunit Isoforms in Human Skeletal Muscle. Mol. Membr. Biol. 1994, 11, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.B.; Dorup, I.; Ahn, J.; Leong, P.K.K.; Mcdonough, A.A. Glucocorticoids Increase Sodium Pump A2- and Β1-Subunit Abundance and MRNA in Rat Skeletal Muscle. Am. J. Physiol. 2001, 28, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Sánchez, N.; Rueda, J.; Carabaño, M.J.; Reverter, A.; McWilliam, S.; González, C.; Díaz, C. Skeletal Muscle Specific Genes Networks in Cattle. Funct. Integr. Genomics 2010, 10, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, D.; Li, H.; Zhou, X.; Wang, G. A Novel SNP of the ATP1A1 Gene Is Associated with Heat Tolerance Traits in Dairy Cows. Mol. Biol. Rep. 2011, 38, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Terlouw, C.; Picard, B. The Associations between Proteomic Biomarkers and Beef Tenderness Depend on the End-Point Cooking Temperature, the Country Origin of the Panelists and Breed. Meat Sci. 2019, 157, 107871. [Google Scholar] [CrossRef]
- Brooke, M.H.; Kaiser, K.K. Three “Myosin Adenosine Triphosphatase” Systems: The Nature of Their PH Lability and Sulfhydryl Dependence. J. Histochem. Cytochem. 1970, 18, 670–672. [Google Scholar] [CrossRef]
- Costa, P.; Simões, J.A.; Alves, S.P.; Lemos, J.P.C.; Alfaia, C.M.; Lopes, P.A.; Prates, J.A.M.; Hocquette, J.F.; Calkins, C.R.; Vleck, V.; et al. Beef Palatability and Its Relationship with Protein Degradation and Muscle Fibre Type Profile in Longissimus Thoracis in Alentejana Breed from Divergent Growth Pathways. Animal 2017, 11, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Jurie, C.; Martin, J.F.; Listrat, A.; Jailler, R.; Culioli, J.; Picard, B. Effects of Age and Breed of Beef Bulls on Growth Parameters, Carcass and Muscle Characteristics. Anim. Sci. 2005, 80, 257–263. [Google Scholar] [CrossRef]
- Jurie, C.; Martin, J.F.; Listrat, A.; Jailler, R.; Culioli, J.; Picard, B. Carcass and Muscle Characteristics of Beef Cull Cows between 4 and 9 Years of Age. Anim. Sci. 2006, 82, 415–421. [Google Scholar] [CrossRef]
- Picard, B.; Duris, M.P.; Jurie, C. Classification of Bovine Muscle Fibres by Different Histochemical Techniques. Histochem. J. 1998, 30, 473–477. [Google Scholar] [CrossRef]
- McGilchrist, P.; Greenwood, P.L.; Pethick, D.W.; Gardner, G.E. Selection for Increased Muscling in Angus Cattle Did Not Increase the Glycolytic Potential or Negatively Impact PH Decline, Retail Colour Stability or Mineral Content. Meat Sci. 2016, 114, 8–17. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Kim, G.D.; Jeong, J.Y.; Hur, S.J.; Joo, S.T. The Relationship between Muscle Fiber Characteristics and Meat Quality Traits of Highly Marbled Hanwoo (Korean Native Cattle) Steers. Meat Sci. 2010, 86, 456–461. [Google Scholar] [CrossRef]
- Fry, A.C. The Role of Resistance Exercise Intensity on Muscle Fibre Adaptations. Sport. Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Gangnat, I.D.M.; Leiber, F.; Dufey, P.A.; Silacci, P.; Kreuzer, M.; Berard, J. Physical Activity, Forced by Steep Pastures, Affects Muscle Characteristics and Meat Quality of Suckling Beef Calves. J. Agric. Sci. 2017, 155, 348–359. [Google Scholar] [CrossRef]
- Vestergaard, M.; Oksbjerg, N.; Henckel, P. Influence of Feeding Intensity, Grazing and Finishing Feeding on Muscle Fibre Characteristics and Meat Colour of Semitendinosus, Longissimus Dorsi and Supraspinatus Muscles of Young Bulls. Meat Sci. 2000, 54, 177–185. [Google Scholar] [CrossRef]
- Brandstetter, A.M.; Picard, B.; Geay, Y. Muscle Fibre Characteristics in Four Muscles of Growing Male Cattle II. Effect of Castration and Feeding Level. Livest. Prod. Sci. 1998, 53, 25–36. [Google Scholar] [CrossRef]
- Maltin, C.A.; Lobley, G.E.; Grant, C.M.; Miller, L.A.; Kyle, D.J.; Morgan, G.W.; Matthews, K.R.; Sinclair, K.D. Factors Influencing Beef Eating Quality 2. Effects of Nutritional Regimen and Genotype on Muscle Fibre Characteristics. Anim. Sci. 2001, 72, 279–287. [Google Scholar] [CrossRef]
- Cassar-Malek, I.; Hocquette, J.F.; Jurie, C.; Listrat, A.; Jailler, R.; Bauchart, D.; Briand, Y.; Picard, B. Muscle-Specific Metabolic, Histochemical and Biochemical Responses to a Nutritionally Induced Discontinuous Growth Path. Anim. Sci. 2004, 79, 49–59. [Google Scholar] [CrossRef]
- Francisco, C.L.; Jorge, A.M.; Dal-Pai-Silva, M.; Carani, F.R.; Cabeço, L.C.; Silva, S.R. Muscle Fiber Type Characterization and Myosin Heavy Chain (MyHC) Isoform Expression in Mediterranean Buffaloes. Meat Sci. 2011, 88, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Wegner, J.; Albrecht, E.; Fiedler, I.; Teuscher, F.; Papstein, H.J.; Ender, K. Growth- and Breed-Related Changes of Muscle Fiber Characteristics in Cattle. J. Anim. Sci. 2000, 78, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, N.M.; Garcia, F.; Jurie, C.; Agabriel, J.; Micol, D.; Bauchart, D.; Listrat, A.; Picard, B. Meta-Analysis of the Effect of Animal Maturity on Muscle Characteristics in Different Muscles, Breeds, and Sexes of Cattle. J. Anim. Sci. 2008, 86, 2872–2887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picard, B.; Jurie, C.; Duris, M.P.; Renand, G. Consequences of Selection for Higher Growth Rate on Muscle Fibre Development in Cattle. Livest. Sci. 2006, 102, 107–120. [Google Scholar] [CrossRef]
- Das, R.; Gupta, I.D.; Verma, A.; Singh, S.; Chaudhari, M.V.; Sailo, L.; Verma, N.; Kumar, R. Single Nucleotide Polymorphisms in ATP1A1 Gene and Their Association with Thermotolerance Traits in Sahiwal and Karan Fries Cattle. Indian J. Anim. Res. 2017, 51, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.T.; Petersen, A.C.; Goodman, C.; Gong, X.; Leppik, J.A.; Garnham, A.P.; Cameron-Smith, D.; Snow, R.J.; McKenna, M.J. Prolonged Submaximal Exercise Induces Isoform-Specific Na +-K+-ATPase MRNA and Protein Responses in Human Skeletal Muscle. Am. J. Physiol. 2006, 290, 414–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mberema, C.H.H.; Lietz, G.; Kyriazakis, I.; Sparagano, O.A.E. The Effects of Gender and Muscle Type on the MRNA Levels of the Calpain Proteolytic System and Beef Tenderness during Post-Mortem Aging. Livest. Sci. 2016, 185, 123–130. [Google Scholar] [CrossRef]
- Thomson, B.C.; Muir, P.D.; Dobbie, P.M. Effect of Growth Path and Breed on the Calpain System in Steers Finished in a Feedlot. J. Agric. Sci. 1999, 133, 209–215. [Google Scholar] [CrossRef]
- Coria, M.S.; Reineri, P.S.; Pighin, D.; Barrionuevo, M.G.; Carranza, P.G.; Grigioni, G.; Palma, G.A. Feeding Strategies Alter Gene Expression of the Calpain System and Meat Quality in the Longissimus Muscle of Braford Steers. Asian-Australas. J. Anim. Sci. 2020, 33, 753–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Bradley, J.S.; McCoski, S.R.; Gonzalez, J.M.; Ealy, A.D.; Johnson, S.E. Reduced Skeletal Muscle Fiber Size Following Caloric Restriction Is Associated with Calpain-Mediated Proteolysis and Attenuation of IGF-1 Signaling. Am. J. Physiol. 2017, 312, R806–R815. [Google Scholar] [CrossRef] [PubMed]
Fibre Types | Type I/SO | Type II A/FOG | Type II B/FG |
---|---|---|---|
Morphological Features | |||
Cross-sectional area | small | intermediate | large |
Mitochondrial number | high | high | low |
Intramuscular fat | high | low | low |
Metabolic Features | |||
Contraction speed | low | high | high |
Fatigue resistance | high | intermediate | low |
ATP production pathway | aerobic | aerobic/Anaerobic | anaerobic |
Mitochondrial ATPase activity | high | low/high | low |
Myoglobin content | high | intermediate | low |
Glycogen | low | intermediate | high |
Contractile Features | |||
Myosin ATPase activity | low | high | high |
MyHC-II isoforms | MyHC-I | MyHC-IIA | MyHC-IIX |
Histochemical Analysis | |||
m-ATPase, pH 9.4 | white | dark | dark |
m-ATPase, pH 4.5 | red | white | medium dark |
Item | MA | AU | SE | B | R | B × R | ||
---|---|---|---|---|---|---|---|---|
Feedlot | Pasture | Feedlot | Pasture | |||||
TB | ||||||||
% I | 25.56 | 29.94 | 22.97 | 19.55 | 3.36 | 0.06 | 0.89 | 0.26 |
% IIA | 28.65 | 30.26 | 18.57 | 25.00 | 2.28 | 0.002 | 0.09 | 0.30 |
% IIB | 45.76 | 39.79 | 58.51 | 55.52 | 3.90 | <0.001 | 0.26 | 0.71 |
CSA mean | 2827.34 | 2961.24 | 2844.89 | 3571.70 | 295.18 | 0.30 | 0.16 | 0.33 |
CSA I | 1630.81 | 1817.82 | 1659.49 | 2072.68 | 186.51 | 0.45 | 0.12 | 0.55 |
CSA IIA | 2621.28 | 2863.98 | 2229.42 | 2664.62 | 277.79 | 0.30 | 0.23 | 0.73 |
CSA IIB | 3800.73 | 4045.38 | 3514.66 | 4556.24 | 427.06 | 0.79 | 0.14 | 0.36 |
% CSA I | 14.89 | 17.89 | 13.69 | 11.22 | 2.04 | 0.07 | 0.90 | 0.19 |
% CSA IIA | 26.31 | 28.74 | 14.49 | 19.84 | 2.91 | 0.001 | 0.19 | 0.62 |
% CSA IIB | 58.81 | 53.39 | 71.84 | 69.50 | 3.63 | <0.001 | 0.30 | 0.68 |
SM | ||||||||
% I | 27.24 | 32.82 | 19.83 | 20.39 | 5.01 | 0.06 | 0.55 | 0.62 |
% IIA | 29.87 | 28.08 | 22.83 | 23.78 | 2.79 | 0.06 | 0.88 | 0.63 |
% IIB | 42.91 | 39.10 | 57.37 | 55.82 | 5.86 | 0.01 | 0.65 | 0.85 |
CSA Mean | 3207.09 | 3938.77 | 3704.33 | 3886.22 | 312.43 | 0.49 | 0.16 | 0.39 |
CSA I | 1973.15 | 2504.12 | 2199.13 | 2310.86 | 268.23 | 0.95 | 0.25 | 0.44 |
CSA IIA | 2999.54 | 3555.29 | 2928.75 | 3028.32 | 375.46 | 0.44 | 0.39 | 0.55 |
CSA IIB | 4069.74 | 5316.97 | 4484.07 | 4791.39 | 416.30 | 0.90 | 0.08 | 0.27 |
% CSA I | 18.00 | 21.91 | 11.68 | 13.34 | 4.21 | 0.09 | 0.52 | 0.79 |
% CSA IIA | 28.28 | 25.28 | 19.01 | 19.07 | 3.49 | 0.04 | 0.68 | 0.67 |
% CSA IIB | 53.72 | 52.79 | 69.33 | 67.58 | 6.80 | 0.04 | 0.85 | 0.95 |
Gene Expression | ||||||||
atp1a1 | 3.75 | 3.14 | 0.60 | 1.21 | 0.43 | <0.001 | 0.99 | 0.15 |
mt-atp6 | 3.60 A | 1.59 B | 0.68 B | 0.50 B | 0.31 | <0.001 | 0.001 | 0.006 |
capn1 | 0.51 | 0.46 | 1.02 | 0.99 | 0.12 | <0.001 | 0.74 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foggi, G.; Ciucci, F.; Conte, M.; Casarosa, L.; Serra, A.; Giannessi, E.; Lenzi, C.; Salvioli, S.; Conte, G.; Mele, M. Histochemical Characterisation and Gene Expression Analysis of Skeletal Muscles from Maremmana and Aubrac Steers Reared on Grazing and Feedlot Systems. Animals 2021, 11, 656. https://doi.org/10.3390/ani11030656
Foggi G, Ciucci F, Conte M, Casarosa L, Serra A, Giannessi E, Lenzi C, Salvioli S, Conte G, Mele M. Histochemical Characterisation and Gene Expression Analysis of Skeletal Muscles from Maremmana and Aubrac Steers Reared on Grazing and Feedlot Systems. Animals. 2021; 11(3):656. https://doi.org/10.3390/ani11030656
Chicago/Turabian StyleFoggi, Giulia, Francesca Ciucci, Maria Conte, Laura Casarosa, Andrea Serra, Elisabetta Giannessi, Carla Lenzi, Stefano Salvioli, Giuseppe Conte, and Marcello Mele. 2021. "Histochemical Characterisation and Gene Expression Analysis of Skeletal Muscles from Maremmana and Aubrac Steers Reared on Grazing and Feedlot Systems" Animals 11, no. 3: 656. https://doi.org/10.3390/ani11030656
APA StyleFoggi, G., Ciucci, F., Conte, M., Casarosa, L., Serra, A., Giannessi, E., Lenzi, C., Salvioli, S., Conte, G., & Mele, M. (2021). Histochemical Characterisation and Gene Expression Analysis of Skeletal Muscles from Maremmana and Aubrac Steers Reared on Grazing and Feedlot Systems. Animals, 11(3), 656. https://doi.org/10.3390/ani11030656