Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of FGP and Chemical Analysis
2.2. Animals and Diets
2.3. Performance, Carcass Characteristics, Meat and Liver Quality
2.4. Serum GPx, SOD, and CAT Levels
2.5. Meat MDA Level
2.6. Histologic Analysis of the Ileum
2.7. Enumeration of Bacteria Population in the Cecum
2.8. Statistical Analysis
3. Results
3.1. Solid-State Fermentation
3.2. Growth Performance
3.3. Carcass Characteristics
3.4. Meat and Liver Quality
3.5. Antioxidant Status
3.6. Intestinal Bacterial Species
3.7. Intestinal Morphology
4. Discussion
4.1. Solid-State Fermentation
4.2. Growth Performance
4.3. Carcass Characteristics, Meat and Liver Quality
4.4. Antioxidant Activity
4.5. Intestinal Bacterial Species
4.6. Intestinal Morphology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, H.; Decuypere, E.; Buyse, J. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 144, 11–17. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Goni, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebole, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef]
- Saito, M.; Sakagami, H.; Fujisawa, S. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Anticancer Res. 2003, 23, 4693–4701. [Google Scholar] [PubMed]
- Nieva-Echevarría, B.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. 2,6-Di-tert-butyl-hydroxytoluene and its metabolites in foods. Compr. Rev. Food Sci. Food Saftey 2015, 14, 67–80. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en (accessed on 10 November 2020).
- Makri, S.; Kafantaris, I.; Stagos, D.; Chamokeridou, T.; Petrotos, K.; Gerasopoulos, K.; Mpesios, A.; Goutzourelas, N.; Kokkas, S.; Goulas, P. Novel feed including bioactive compounds from winery wastes improved broilers’ redox status in blood and tissues of vital organs. Food Chem. Toxicol. 2017, 102, 24–31. [Google Scholar] [CrossRef]
- El Gengaihi, S.; Ella, F.A.; Hassan, E.M.; Shalaby, E.A.; Baker, D.A. Phytochemical investigation and radical scavenging activity of wastes of some grape varieties grown in Egypt. Glob. J. Pharmacol. 2013, 7, 465–473. [Google Scholar]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.D.S.S.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia Jr, A.; Smânia, E.F.; Maraschin, M.; Ferreira, S.R. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Ebrahimzadeh, S.; Navidshad, B.; Farhoomand, P.; Aghjehgheshlagh, F.M. Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. S. Afr. J. Anim. Sci. 2018, 48, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Vashan, S.J.; Safdari-Rostamabad, M.; Piray, A.H.; Sarir, H. The growth performance, plasma biochemistry indices, immune system, antioxidant status, and intestinal morphology of heat-stressed broiler chickens fed grape (Vitis vinifera) pomace. Anim. Feed Sci. Technol. 2020, 259, 114343. [Google Scholar] [CrossRef]
- Sugiharto, S.; Ranjitkar, S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Gungor, E.; Erener, G. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on digestibility, intestinal morphology and caecal microflora in broiler chickens. Poult. Sci. 2020, 99, 471–478. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Z.; Wang, G.; Li, Y.; Qi, Y. Effects of feed supplemented with fermented pine needles (Pinus ponderosa) on growth performance and antioxidant status in broilers. Poult. Sci. 2015, 94, 1138–1144. [Google Scholar] [CrossRef]
- Harimurti, S.; Hadisaputro, W. Probiotics in poultry. In Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas; Liong, M.T., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–19. [Google Scholar]
- Zhang, X.; Sun, Z.; Cao, F.; Ahmad, H.; Yang, X.; Zhao, L.; Wang, T. Effects of dietary supplementation with fermented ginkgo leaves on antioxidant capacity, intestinal morphology and microbial ecology in broiler chicks. Br. Poult. Sci. 2015, 56, 370–380. [Google Scholar] [CrossRef]
- Wu, L.; Chen, C.; Cheng, C.; Dai, H.; Ai, Y.; Lin, C.; Chung, Y. Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. Biomed. Res. Int. 2018, 2018, 5201786. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Makkar, H.; Blümmel, M.; Becker, K. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 1995, 73, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, X.; Yu, W.; Zhao, L.; Wang, T. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult. Sci. 2012, 91, 1210–1221. [Google Scholar] [CrossRef]
- Altop, A.; Gungor, E.; Erener, G. Aspergillus niger may improve nutritional quality of grape seed and its usability in animal nutrition through solid-state fermentation. Int. Adv. Res. Eng. J. 2018, 2, 273–277. [Google Scholar]
- Dhillon, G.S.; Kaur, S.; Brar, S.K.; Verma, M. Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind. Crops. Prod. 2012, 38, 6–13. [Google Scholar] [CrossRef]
- Raimbault, M. General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechn. 1998, 1, 26–27. [Google Scholar] [CrossRef]
- Beauvais, A.; Fontaine, T.; Aimanianda, V.; Latgé, J.-P. Aspergillus cell wall and biofilm. Mycopathologia 2014, 178, 371–377. [Google Scholar] [CrossRef]
- Papagianni, M. Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007, 25, 244–263. [Google Scholar] [CrossRef]
- Gungor, E.; Altop, A.; Erener, G. Improvement in the nutritional composition and nutrient digestibility of pomegranate (Punica granatum L.) seed by Bacillus subtilis and Aspergillus niger solid-state fermentation. Anadolu J. Agric. Sci. 2020, 35, 268–273. [Google Scholar]
- Akiyama, H.; Fujii, K.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother. 2001, 48, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Meini, M.-R.; Ricardi, L.L.; Romanini, D. Novel routes for valorisation of grape pomace through the production of bioactives by Aspergillus niger. Waste Biomass Valorization 2019, 11, 6047–6055. [Google Scholar] [CrossRef]
- Bhanja, T.; Kumari, A.; Banerjee, R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour. Technol. 2009, 100, 2861–2866. [Google Scholar] [CrossRef]
- Altop, A.; Coskun, I.; Filik, G.; Kucukgul, A.; Bekiroglu, Y.G.; Cayan, H.; Gungor, E.; Sahin, A.; Erener, G. Amino acid, mineral, condensed tannin, and other chemical contents of olive leaves (Olea europaea L.) processed via solid-state fermentation using selected Aspergillus niger strains. Cienc. Investig. Agrar. 2018, 45, 220–230. [Google Scholar] [CrossRef]
- Lichovnikova, M.; Kalhotka, L.; Adam, V.; Klejdus, B.; Anderle, V. The effects of red grape pomace inclusion in grower diet on amino acid digestibility, intestinal microflora, and sera and liver antioxidant activity in broilers. Turk. J. Vet. Anim. Sci. 2015, 39, 406–412. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goni, I.; Centeno, C.; Sáyago-Ayerdy, S.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef]
- Aditya, S.; Ohh, S.J.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broilers diet and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 2018, 4, 210–214. [Google Scholar] [CrossRef]
- Pascariu, S.; Pop, I.; Simeanu, D.; Pavel, G.; Solcan, C. Effects of wine by-products on growth performance, complete blood count and total antioxidant status in broilers. Rev. Bras. Cienc. Avic. 2017, 19, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Sáyago-Ayerdi, S.; Brenes, A.; Viveros, A.; Goñi, I. Antioxidative effect of dietary grape pomace concentrate on lipid oxidation of chilled and long-term frozen stored chicken patties. Meat Sci. 2009, 83, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimzadeh, S.; Navidshad, B.; Farhoomand, P.; Mirzaei Aghjehgheshlagh, F. The metabolizable energy content and effect of grape pomace with or without tannase enzyme treatment in broiler chickens. Iran. J. Appl. Anim. Sci. 2017, 7, 479–486. [Google Scholar]
- Kumanda, C.; Mlambo, V.; Mnisi, C.M. From landfills to the dinner table: Red grape pomace waste as a nutraceutical for broiler chickens. Sustainability 2019, 11, 1931. [Google Scholar] [CrossRef] [Green Version]
- Kumanda, C.; Mlambo, V.; Mnisi, C.M. Valorization of red grape pomace waste using polyethylene glycol and fibrolytic enzymes: Physiological and meat quality responses in broilers. Animals 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Wan, X.; Zhang, L.; Wang, C.; He, J.; Bai, K.; Zhang, X.; Zhao, L.; Wang, T. Effect of different doses of fermented Ginkgo biloba leaves on serum biochemistry, antioxidant capacity hepatic gene expression in broilers. Anim. Feed Sci. Technol. 2019, 248, 132–140. [Google Scholar] [CrossRef]
- Niu, Y.; Wan, X.; Zhang, X.; Zhao, L.; He, J.; Zhang, J.; Zhang, L.; Wang, T. Effect of supplemental fermented Ginkgo biloba leaves at different levels on growth performance, meat quality, and antioxidant status of breast and thigh muscles in broiler chickens. Poult. Sci. 2017, 96, 869–877. [Google Scholar] [CrossRef]
- Jazi, V.; Boldaji, F.; Dastar, B.; Hashemi, S.; Ashayerizadeh, A. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br. Poult. Sci. 2017, 58, 402–408. [Google Scholar] [CrossRef]
- Gungor, E.; Erener, G. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on growth performance, carcass traits, and meat quality in broiler chickens. Poult. Sci. 2020, 99, 301–309. [Google Scholar] [CrossRef]
- Chamorro, S.; Romero, C.; Brenes, A.; Sánchez-Patán, F.; Bartolomé, B.; Viveros, A.; Arija, I. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food Funct. 2019, 10, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, H.; Wang, J.; Wu, S.; Yue, H.; Jiang, X.; Qi, G. Effects of dietary grape proanthocyanidins on the growth performance, jejunum morphology and plasma biochemical indices of broiler chicks. Animal 2017, 11, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Trampel, D.; Sell, J.; Ahn, D.; Sebranek, J. Preharvest feed withdrawal affects liver lipid and liver color in broiler chickens. Poult. Sci. 2005, 84, 137–142. [Google Scholar] [CrossRef]
- Young, J.F.; Stagsted, J.; Jensen, S.K.; Karlsson, A.; Henckel, P. Ascorbic acid, alpha-tocopherol, and oregano supplements reduce stress-induced deterioration of chicken meat quality. Poult. Sci. 2003, 82, 1343–1351. [Google Scholar] [CrossRef]
- Qiao, M.; Fletcher, D.; Smith, D.; Northcutt, J. The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity. Poult. Sci. 2001, 80, 676–680. [Google Scholar] [CrossRef]
- Surai, P. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Arija, I.; Romero, C.; Alvarez, I.; Rey, A.; Brenes, A. Addition of exogenous enzymes to diets containing grape pomace: Effects on intestinal utilization of catechins and antioxidant status of chickens. Food Res. Int. 2017, 96, 226–234. [Google Scholar] [CrossRef]
- Gogol, D.; Koreleski, J.; Żyła, K. Effects of an Aspergillus niger mycelium, antibiotic and probiotic on growth performance, P and Ca retention and Clostridium perfringens ileal counts in broiler chickens. J. Anim. Feed Sci. 2005, 14, 151–160. [Google Scholar] [CrossRef]
- Abu Hafsa, S.; Ibrahim, S. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. J. Anim. Physiol. Anim. Nutr. 2018, 102, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Ashayerizadeh, A.; Dastar, B.; Shargh, M.S.; Mahoonak, A.S.; Zerehdaran, S. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest. Sci. 2018, 216, 183–190. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Cao, F.; Sun, D.; Wang, T.; Wang, G. Effect of dietary supplementation with fermented Ginkgo-leaves on performance, egg quality, lipid metabolism and egg-yolk fatty acids composition in laying hens. Livest. Sci. 2013, 155, 77–85. [Google Scholar] [CrossRef]
- Altop, A. The effects of diets supplemented with fermented or non-fermented cherry kernels (Prunus avium L.) on growth performance, ileal histology, caecum microflora, and some meat quality parameters in broiler chickens. Eur. Poult. Sci. 2019, 83, 1–15. [Google Scholar]
- Xu, Z.; Hu, C.; Xia, M.; Zhan, X.; Wang, M. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef]
- Chee, S.H.; Iji, P.; Choct, M.; Mikkelsen, L.L.; Kocher, A. Characterisation and response of intestinal microflora and mucins to manno-oligosaccharide and antibiotic supplementation in broiler chickens. Br. Poult. Sci. 2010, 51, 368–380. [Google Scholar] [CrossRef]
Ingredients, g/kg | Starter (Days 1–11) | Grower 1 (Days 12–21) | Grower 2 (Days 22–35) | Finisher (Days 36–42) |
---|---|---|---|---|
Corn | 197.0 | 244.0 | 217.0 | 257.5 |
Maize germ meal (9%) | 230.0 | 230.0 | 230.0 | 230.0 |
Soybean meal (45%) | 339.0 | 149.0 | 143.0 | 103.0 |
Full-fat soybean (35%) | 100.0 | 125.0 | 80.0 | 80.0 |
Red dog (16%) | 90.0 | 90.0 | 90.0 | 90.0 |
Maize germ (16%) | - | - | 75.0 | 75.0 |
Sunflower meal (36%) | - | 60.0 | 65.0 | 65.0 |
Chicken viscera (55%) | - | 50.0 | 50.0 | 50.0 |
Meat and bone meal (35%) | - | 25.0 | 25.0 | 25.0 |
Monocalcium phosphate (22.7% Ca) | 12.4 | 3.9 | 1.5 | 1.5 |
Marble dust (36% Ca) | 14.9 | 6.4 | 6.3 | 6.3 |
Salt | 2.6 | 1.9 | 2.4 | 2.4 |
Liquid-Methionine (88%) | 4.0 | 3.0 | 2.8 | 2.8 |
L-Lysine sulphate (55%) | 4.6 | 6.8 | 7.0 | 7.0 |
L-Threonine (98%) | 1.2 | 1.0 | 1.0 | 1.0 |
Vitamin and mineral premix 1 | 2.5 | 2.5 | 2.5 | 2.5 |
Sodium sulphate | 1.2 | 1.0 | 1.0 | 1.0 |
Anticoccidial | 0.6 | 0.5 | 0.5 | - |
Analyzed composition, g/kg, as fed | ||||
Crude protein | 243.0 | 228.0 | 213.7 | 190.7 |
Ether extract | 56.9 | 59.2 | 72.9 | 70.2 |
Crude fiber | 62.5 | 61.9 | 73.3 | 68.3 |
Ash | 33.3 | 32.9 | 48.1 | 41.2 |
Calculated composition, g/kg, as fed | ||||
Metabolic energy, MJ/kg | 12.56 | 12.90 | 13.15 | 13.27 |
Lysine | 15.8 | 14.8 | 14.3 | 13.3 |
Methionine | 6.7 | 5.9 | 5.8 | 5.6 |
Methionine and cystine | 11.0 | 10.3 | 10.3 | 9.9 |
Threonine | 10.2 | 9.2 | 9.2 | 8.6 |
Tryptophan | 3.0 | 2.6 | 2.5 | 2.3 |
Ca | 9.6 | 11.2 | 10.8 | 10.6 |
Total P | 7.4 | 8.3 | 8.0 | 7.9 |
Available P | 4.9 | 5.7 | 5.1 | 5.1 |
Na | 2.5 | 2.7 | 3.0 | 3.0 |
Item (%, Dry Matter Basis) | GP | FGP | SEM | p-Value |
---|---|---|---|---|
Crude protein | 12.6 | 28.3 | 3.51 | <0.001 |
Ether extract | 5.9 | 3.8 | 0.55 | 0.029 |
Ash | 4.1 | 8.5 | 1.00 | <0.001 |
Nitrogen-free extract | 58.6 | 37.0 | 4.80 | <0.001 |
Crude fiber | 18.8 | 22.2 | 0.75 | <0.001 |
Condensed tannin | 10.4 | 12.8 | 0.55 | 0.641 |
Radical scavenging activity (DPPH) | 94.3 | 68.6 | 6.14 | 0.006 |
Item | Day | CON | AO | GP | FGP | SEM | p-Value |
---|---|---|---|---|---|---|---|
BW, g | 0 | 38.86 | 38.92 | 38.84 | 38.44 | 0.151 | 0.696 |
21 | 983 | 1020 | 1020 | 1020 | 8.3 | 0.292 | |
42 | 3131 c | 3298 a | 3178 bc | 3229 ab | 18.2 | 0.003 | |
FI, g | 1–21 | 1197 | 1231 | 1247 | 1237 | 10.6 | 0.398 |
21–42 | 3764 | 3782 | 3718 | 3698 | 23.7 | 0.597 | |
1–42 | 5002 | 5029 | 4940 | 4920 | 30.1 | 0.571 | |
FCR, g:g | 1–21 | 1.27 | 1.25 | 1.27 | 1.26 | 0.007 | 0.808 |
21–42 | 1.72 | 1.68 | 1.75 | 1.70 | 0.009 | 0.053 | |
1–42 | 1.58 ab | 1.55 b | 1.60 a | 1.57 ab | 0.006 | 0.045 |
Item | CON | AO | GP | FGP | SEM | p-Value |
---|---|---|---|---|---|---|
Day 1 | ||||||
pH | 6.33 | 6.26 | 6.36 | 6.36 | 0.020 | 0.249 |
L* | 30.76 b | 33.03 a | 30.69 b | 31.46 ab | 0.336 | 0.032 |
a* | 16.12 | 16.48 | 16.11 | 16.90 | 0.233 | 0.618 |
b* | 6.88 | 8.22 | 6.83 | 7.59 | 0.258 | 0.181 |
Day 5 | ||||||
pH | 6.15 | 6.08 | 6.19 | 6.18 | 0.018 | 0.109 |
L* | 31.20 | 33.28 | 30.86 | 31.33 | 0.377 | 0.084 |
a* | 16.21 | 15.48 | 15.55 | 15.94 | 0.264 | 0.773 |
b* | 7.37 | 8.55 | 7.19 | 7.48 | 0.290 | 0.365 |
Day 11 | ||||||
pH | 6.15 a | 6.01 b | 6.16 a | 6.19 a | 0.024 | 0.030 |
L* | 32.07 b | 35.76 a | 31.95 b | 32.10 b | 0.578 | 0.034 |
a* | 15.28 | 15.59 | 14.22 | 14.14 | 0.340 | 0.337 |
b* | 6.93 b | 8.95 a | 7.12 b | 6.62 b | 0.307 | 0.017 |
Item, U/mL | CON | AO | GP | FGP | SEM | p-Value |
---|---|---|---|---|---|---|
GPx | 256.0 b | 261.6 b | 368.2 a | 297.6 ab | 16.36 | 0.031 |
SOD | 328.9 b | 314.1 b | 376.5 a | 302.4 b | 9.70 | 0.021 |
CAT | 144.4 b | 134.1 b | 141.8 b | 169.8 a | 4.77 | 0.032 |
Item, log10 CFU g−1 | CON | AO | GP | FGP | SEM | p-Value |
---|---|---|---|---|---|---|
Lactobacillus spp. | 9.27 | 9.09 | 8.82 | 8.85 | 0.160 | 0.759 |
Enterococcus spp. | 7.93 | 8.04 | 7.96 | 8.17 | 0.084 | 0.782 |
Escherichia coli | 8.97 | 8.51 | 8.85 | 8.86 | 0.134 | 0.680 |
Campylobacter jejuni | 6.12 | 6.23 | 6.20 | 6.42 | 0.073 | 0.552 |
Staphylococcus aureus | 6.09 | 5.63 | 6.16 | 5.98 | 0.157 | 0.619 |
Clostridium perfringens | 7.05 a | 7.02 a | 7.34 a | 5.95 b | 0.191 | 0.033 |
Item | CON | AO | GP | FGP | SEM | p-Value |
---|---|---|---|---|---|---|
Villus height, μm | 687.2 b | 951.2 a | 740.7 b | 724.9 b | 21.55 | <0.001 |
Crypt depth, μm | 73.4 | 79.2 | 80.6 | 79.2 | 2.64 | 0.803 |
Villus height:crypt depth, μm:μm | 9.4 b | 12.2 a | 9.4 b | 9.3 b | 0.43 | 0.041 |
Lamina muscularis thickness, μm | 129.1 ab | 123.7 ab | 151.6 a | 102.8 b | 5.59 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gungor, E.; Altop, A.; Erener, G. Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks. Animals 2021, 11, 364. https://doi.org/10.3390/ani11020364
Gungor E, Altop A, Erener G. Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks. Animals. 2021; 11(2):364. https://doi.org/10.3390/ani11020364
Chicago/Turabian StyleGungor, Emrah, Aydin Altop, and Guray Erener. 2021. "Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks" Animals 11, no. 2: 364. https://doi.org/10.3390/ani11020364
APA StyleGungor, E., Altop, A., & Erener, G. (2021). Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks. Animals, 11(2), 364. https://doi.org/10.3390/ani11020364