Assessment of the Effectiveness of a Portable NIRS Instrument in Controlling the Mixer Wagon Tuning and Ration Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. NIRS Calibration and Internal Validation
2.2. Farm, TMR, and Mixer Wagon Data Collection
2.3. Statistical Analysis
3. Results
3.1. NIRS Calibration for Chemical and Physical Traits of TMR
3.2. Farm, TMR, and Feed Mixer Wagon Data Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sova, A.D.; LeBlanc, S.J.; McBride, B.W.; DeVries, T.J. Accuracy and precision of total mixed rations fed on commercial dairy farms. J. Dairy Sci. 2014, 97, 562–571. [Google Scholar] [CrossRef]
- Mertens, D.R. Creating a System for Meeting the Fiber Requirements of Dairy Cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Lammers, B.P.; Buckmaster, D.R.; Heinrichs, A.J. A Simple Method for the Analysis of Particle Sizes of Forage and Total Mixed Rations. J. Dairy Sci. 1996, 79, 922–928. [Google Scholar] [CrossRef]
- Kononoff, P.J.; Heinrichs, A.J.; Buckmaster, D.R. Modification of the Penn State Forage and total mixed ration particle separator and the effects of moisture content on its measurements. J. Dairy Sci. 2003, 86, 1858–1863. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Collier, R.J.; Bauman, D.E. A 100-Year Review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci. 2017, 100, 10353–10366. [Google Scholar] [CrossRef]
- Arzola-Álvarez, C.; Bocanegra-Viezca, J.A.; Murphy, M.R.; Salinas-Chavira, J.; Corral-Luna, A.; Romanos, A.; Ruíz-Barrera, O.; Rodríguez-Muela, C. Particle size distribution and chemical composition of total mixed rations for dairy cattle: Water addition and feed sampling effects. J. Dairy Sci. 2010, 93, 4180–4188. [Google Scholar] [CrossRef] [Green Version]
- Vegricht, J.; Miláček, P.; Ambrož, P.; MacHálek, A. Parametric analysis of the properties of selected mixing feeding wagons. Res. Agric. Eng. 2007, 53, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, A.J.; Buckmaster, D.R.; Lammers, B.P. Processing, mixing, and particle size reduction of forages for dairy cattle. J. Anim. Sci. 1999, 77, 180–186. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef]
- Buckmaster, D. Optimizing Performance of TMR Mixers. In Proceedings of the 18th Tri-State Dairy Nutrition Conference, Fort Wayne, Indiana, 21–22 April 2009; pp. 105–117. [Google Scholar]
- Leonardi, C.; Armentano, L.E. Short communication: Feed selection by dairy cows fed individually in a tie-stall or as a group in a free-stall barn. J. Dairy Sci. 2007, 90, 2386–2389. [Google Scholar] [CrossRef]
- Leonardi, C.; Armentano, L.E. Effect of quantity, quality, and length of alfalfa hay on selective consumption by dairy cows. J. Dairy Sci. 2003, 86, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Marchesini, G.; Cortese, M.; Ughelini, N.; Ricci, R.; Chinello, M.; Contiero, B.; Andrighetto, I. Effect of total mixed ration processing time on ration consistency and beef cattle performance during the early fattening period. Anim. Feed Sci. Technol. 2020, 262, 114421. [Google Scholar] [CrossRef]
- Michalski, T.; Grześ, Z.; Kowalik, I.; Rybacki, P. A comparison of quality of work of the feed mixer wagons with vertical and horizontal mixing systems. J. Res. Appl. Agric. Eng. 2018, 63, 124–128. [Google Scholar]
- Perricone, V.; Agazzi, A.; Costa, A.; Lazzari, M.; Calcante, A.; Tangorra, F.M. Chemical homogeneity and particle size distribution of dairy cow TMR along the feeding alley with different mixing times. Int. J. Health Anim. Sci. Food Saf. 2018, 5, 2013–2014. [Google Scholar] [CrossRef]
- Sirakaya, S.; Küçük, O. Deviations of feedstuffs loading in TMR preparation. Turk. J. Vet. Anim. Sci. 2019, 43, 364–371. [Google Scholar] [CrossRef]
- Heinrichs, J. The Penn State Particle Separator. DSE Penn State Ext. 2013, 186, 1–8. [Google Scholar]
- Costa, A.; Agazzi, A.; Perricone, V.; Savoini, G.; Lazzari, M.; Nava, S.; Maria Tangorra, F. Influence of different loading levels, cutting and mixing times on total mixed ration (TMR) homogeneity in a vertical mixing wagon during distribution: A case study. Ital. J. Anim. Sci. 2019, 18, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Barbi, A.; Ghiraldi, A.; Manzoli, M.; Berzaghi, P. Precision Feeding: NIR On Line For Improving TMR Consistency. In Proceedings of the The First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010. [Google Scholar]
- Mentink, R.L.; Hoffman, P.C.; Bauman, L.M. Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. J. Dairy Sci. 2006, 89, 2320–2326. [Google Scholar] [CrossRef]
- Ki, K.-S.; Kim, S.-B.; Lee, H.-J.; Yang, S.-H.; Lee, J.-S.; Jin, Z.-L.; Kim, H.-S.; Jeo, J.-M.; Koo, J.-Y.; Cho, J.-K. Prediction on the Quality of Total Mixed Ration for Dairy Cows by Near Infrared Reflectance Spectroscopy. J. Korean Soc. Grassl. Forage Sci. 2009, 29, 253–262. [Google Scholar] [CrossRef]
- Evangelista, C.; Basiricò, L.; Bernabucci, U. An overview on the use of near infrared spectroscopy (nirs) on farms for the management of dairy cows. Agriculture 2021, 11, 296. [Google Scholar] [CrossRef]
- Serva, L.; Marchesini, G.; Garbin, E.; Tenti, S.; Mirisola, S.; Segato, S.; Gerardi, G.; Andrighetto, I. Uso di uno strumento NIR portatile per la valutazione dell’omogeneità dell’unifeed distribuito in mangiatoia. In Proceedings of the 7th Simposio Italiano di Spettroscopia NIR, Milano, Italy, 12–14 October 2016; pp. 138–142. [Google Scholar]
- Blanco, M.; Peguero, A. An expeditious method for determining particle size distribution by near infrared spectroscopy: Comparison of PLS2 and ANN models. Talanta 2008, 77, 647–651. [Google Scholar] [CrossRef]
- Pasikatan, M.C.; Steele, J.L.; Spillman, C.K.; Haque, E. Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials. J. Near Infrared Spectrosc. 2001, 9, 153–164. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. AOAC, 2003. Official Methods of Analysise 2nd Revision, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Association of Official Analytical Chemists. AOAC, 2005. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemist: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Association of Official Analytical Chemists. AOAC, 2000. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- ANKOM Technology; Macedon, N. Method 13, 4/10/15: Neutral Detergent Fiber in Feeds—Filter Bag Technique (for A2000 and A2000I). Available online: https://www.ankom.com/sites/default/files/document-files/Method_13_NDF_A2000.pdf (accessed on 20 March 2016).
- Ferreira, G.; Mertens, D.R. Measuring detergent fibre and insoluble protein in corn silage using crucibles or filter bags. Anim. Feed Sci. Technol. 2007, 133, 335–340. [Google Scholar] [CrossRef]
- Schlau, N.; Mertens, D.R.; Taysom, K.; Taysom, D. Technical note: Effects of filter bags on neutral detergent fiber recovery and fiber digestion in vitro. J. Dairy Sci. 2021, 104, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- ANKOM Technology; Macedon, N. Method 12, 4/10/15: Acid Detergent Fiber in Feeds—Filter Bag Technique (for A2000 and A2000I). Available online: https://www.ankom.com/sites/default/files/document-files/Method_12_ADF_A2000.pdf (accessed on 20 March 2016).
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- ASABE. ASANSI/ASAE S424.1 MAR1992 (R2017) Method of Determining and Expressing Particle Size of Chopped Forage Materials by Screening; ASABE: St. Joseph, MI, USA, 2007. [Google Scholar]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Serva, L.; Magrin, L.; Andrighetto, I.; Marchesini, G. Short communication: The relationship between dietary particle size and undegraded neutral detergent fibre in lactating dairy cows: A prospective cohort observational study. Anim. Feed Sci. Technol. 2021, 279, 115017. [Google Scholar] [CrossRef]
- Twickler, P.; Büscher, W.; Maack, C.; Marquering, J.; Müller, M. Sensor controlled total-mixed-ration for nutrient optimized feeding of dairy cattle. In Proceedings of the 6th European Conference Precision Livestock Farming, ECPLF, Leuven, Belgium, 10–12 September 2013; pp. 698–703. [Google Scholar]
- Berzaghi, P.; Serva, L.; Piombino, M.; Mirisola, M.; Benozzo, F. Prediction performances of portable near infrared instruments for at farm forage analysis. Ital. J. Anim. Sci. 2005, 4, 145–147. [Google Scholar] [CrossRef]
- Berzaghi, P.; Cherney, J.H.; Casler, M.D. Prediction performance of portable near infrared reflectance instruments using preprocessed dried, ground forage samples. Comput. Electron. Agric. 2021, 182, 106013. [Google Scholar] [CrossRef]
- Parrini, S.; Acciaioli, A.; Franci, O.; Pugliese, C.; Bozzi, R. Near Infrared Spectroscopy technology for prediction of chemical composition of natural fresh pastures. J. Appl. Anim. Res. 2019, 47, 514–520. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’Brien, B.; O’Donovan, M.; Condon, T.; Murphy, M.D. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Inf. Process. Agric. 2021. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Galvez-Sola, L.; Martínez-Nicolás, J.J.; Muelas-Domingo, R.; Nieves, M. Using near-infrared spectroscopy in agricultural systems. In Developments in Near-Infrared Spectroscopy; Kyprianidis, K.G., Skvaril, J., Eds.; InTech: London, UK, 2017; pp. 97–127. [Google Scholar]
- Malley, D.F.; Martin, P.D.; Ben-Dor, E. Application in Analysis of Soils. In Near-Infrared Spectroscopy in Agricolture; ASA, CSSA, SSSA: Madison, WI, USA, 2004; pp. 729–784. [Google Scholar]
- Grant, R.; Smith, W.; Miller, M. Relationships between Fibre Digestibility and Particle Size for Lactating Dairy Cows. Adv. Dairy Technol. Proc. 2020 West. Can. Dairy Semin. 2020, 32, 47–57. [Google Scholar]
- Zucali, M.; Bacenetti, J.; Tamburini, A.; Nonini, L.; Sandrucci, A.; Bava, L. Environmental impact assessment of different cropping systems of home-grown feed for milk production. J. Clean. Prod. 2018, 172, 3734–3746. [Google Scholar] [CrossRef]
- Borreani, G.; Coppa, M.; Revello-Chion, A.; Comino, L.; Giaccone, D.; Ferlay, A.; Tabacco, E. Effect of different feeding strategies in intensive dairy farming systems on milk fatty acid profiles, and implications on feeding costs in Italy. J. Dairy Sci. 2013, 96, 6840–6855. [Google Scholar] [CrossRef] [Green Version]
- Bellingeri, A.; Cabrera, V.; Gallo, A.; Liang, D.; Masoero, F. A survey of dairy cattle management, crop planning, and forages cost of production in Northern Italy. Ital. J. Anim. Sci. 2019, 18, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Tabacco, E.; Comino, L.; Borreani, G. Production efficiency, costs and environmental impacts of conventional and dynamic forage systems for dairy farms in Italy. Eur. J. Agron. 2018, 99, 1–12. [Google Scholar] [CrossRef]
- Leonardi, C.; Giannico, F.; Armentano, L.E. Effect of water addition on selective consumption (sorting) of dry diets by dairy cattle. J. Dairy Sci. 2005, 88, 1043–1049. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Fustini, M.; Palmonari, A.; Heinrichs, A.J.; Formigoni, A. Effects of ad libitum or restricted access to total mixed ration with supplemental long hay on production, intake, and rumination. J. Dairy Sci. 2018, 101, 10922–10928. [Google Scholar] [CrossRef] [Green Version]
- Sova, A.D.; LeBlanc, S.J.; McBride, B.W.; DeVries, T.J. Associations between herd-level feeding management practices, feed sorting, and milk production in freestall dairy farms. J. Dairy Sci. 2013, 96, 4759–4770. [Google Scholar] [CrossRef]
p1 | Arbitrary Assignment Value |
---|---|
0.00 < p ≤ 0.01 | 1.0 |
0.01 < p ≤ 0.05 | 0.5 |
0.05 < p ≤ 0.10 | 0.4 |
0.10 < p ≤ 0.20 | 0.2 |
0.20 < p ≤ 0.50 | 0.1 |
p > 0.50 | 0.0 |
Model | Ncal | PC | OR | F-val | ISV | IRV | RMSEcv | R2cv | Nval | S | RMSEv | R2v | GH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemical Traits | |||||||||||||
Dry Matter | 110 | 5 | 0 | 366 | 1562 | 1828 | 1.38 | 0.93 | 53 | 0.89 | 1.85 | 0.91 | 0.98 |
Crude protein | 113 | 5 | 1 | 15.8 | −306 | 531 | 0.74 | 0.27 | 49 | 0.88 | 0.73 | 0.54 | 1.58 |
aNDF | 107 | 5 | 2 | 98.2 | −192 | 1444 | 1.47 | 0.78 | 51 | 1.14 | 1.44 | 0.86 | 1.06 |
ADF | 115 | 5 | 2 | 76.1 | 128 | 988 | 1.01 | 0.72 | 43 | 1.04 | 1.02 | 0.81 | 1.27 |
Starch | 115 | 5 | 0 | 34.4 | 1575 | 1369 | 1.36 | 0.50 | 47 | 0.96 | 1.16 | 0.67 | 0.93 |
Sieves | |||||||||||||
S1 (%) | 194 | 5 | 24 | 26.9 | 1140 | 1433 | 1.69 | 0.31 | 93 | 6.42 | 17.6 | 0.53 | 1.48 |
S2 (%) | 206 | 3 | 12 | 21.9 | 269 | 535 | 3.75 | 0.20 | 93 | 1.38 | 6.56 | 0.17 | 1.15 |
S3 (%) | 218 | 4 | 0 | 25.0 | 341 | 1588 | 5.27 | 0.24 | 93 | 1.06 | 5.51 | 0.33 | 1.02 |
S4 (%) | 217 | 5 | 1 | 56.1 | −4448 | 3854 | 6.65 | 0.50 | 93 | 0.97 | 6.61 | 0.46 | 0.91 |
S5 (%) | 216 | 5 | 2 | 58.0 | 1340 | 3077 | 3.41 | 0.52 | 93 | 0.89 | 3.50 | 0.49 | 1.03 |
Bottom (%) | 214 | 5 | 4 | 58.1 | 4437 | 4029 | 4.63 | 0.52 | 93 | 1.05 | 4.49 | 0.68 | 1.62 |
GMPL (mm) | 205 | 5 | 13 | 47.4 | −541 | 2027 | 2.00 | 0.48 | 93 | 1.66 | 4.04 | 0.53 | 1.27 |
Mean | SD | IQR | Min | I-Q | II-Q | III-Q | IV-Q | N | NA | |
---|---|---|---|---|---|---|---|---|---|---|
Herd pluriparous | ||||||||||
- cows (n) | 254 | 234 | 133 | 79.3 | 128 | 203 | 262 | 999 | 14 | 5 |
- dry matter intake (kg of the DM) | 23.2 | 1.59 | 1.20 | 19.7 | 22.7 | 23.3 | 23.9 | 25.8 | 17 | 2 |
- total intake (kg of the as-is of TMR) | 47.2 | 7.51 | 2.00 | 38.0 | 44.8 | 46.2 | 46.8 | 65.1 | 9 | 10 |
- average milking days | 175 | 17.6 | 22.0 | 140 | 164 | 174 | 186 | 215 | 17 | 2 |
- milk yield (kg/day) | 33.8 | 3.78 | 5.48 | 26.8 | 31.0 | 35.0 | 36.5 | 39.0 | 18 | 1 |
Total Mixed Ration | ||||||||||
- homogeneity index (%) | 76.7 | 9.76 | 10.24 | 55.9 | 74.0 | 78.9 | 84.3 | 86.7 | 18 | 1 |
- sorting index (pure number) | 0.25 | 0.13 | 0.16 | 0.04 | 0.17 | 0.27 | 0.33 | 0.50 | 17 | 2 |
- geometric mean particle length (mm) | 6.14 | 0.87 | 1.13 | 4.90 | 5.56 | 6.04 | 6.69 | 7.69 | 18 | 1 |
- dry matter (% of the DM) | 49.2 | 4.35 | 6.04 | 41.9 | 46.1 | 49.4 | 52.1 | 56.4 | 16 | 3 |
- crude protein (% of the DM) | 15.2 | 0.62 | 0.68 | 14.0 | 14.8 | 15.1 | 15.5 | 16.4 | 16 | 3 |
- starch (% of the DM) | 26.0 | 1.18 | 1.93 | 24.6 | 25.0 | 25.6 | 26.9 | 28.8 | 16 | 3 |
- aNDF (% of the DM) | 33.1 | 1.61 | 2.35 | 29.6 | 32.2 | 33.1 | 34.5 | 35.9 | 16 | 3 |
- peNDF (% of the DM) | 18.1 | 4.73 | 7.28 | 10.0 | 14.4 | 17.9 | 21.7 | 25.6 | 15 | 4 |
Auger speed on loading (RPM) | ||||||||||
- alfalfa | 22.3 | 8.16 | 11.50 | 10.0 | 17.3 | 24.5 | 28.8 | 30.0 | 6 | 13 |
- concentrate | 20.6 | 8.79 | 15.0 | 10.0 | 12.5 | 24.0 | 27.5 | 30.0 | 7 | 12 |
- maize silage | 20.0 | 6.96 | 9.50 | 10.0 | 15.0 | 20.0 | 24.5 | 30.0 | 7 | 12 |
- other silages | 18.7 | 6.98 | 6.50 | 10.0 | 15.0 | 17.5 | 21.5 | 30.0 | 6 | 13 |
- overall average | 22.7 | 4.47 | 5.00 | 15.0 | 20.0 | 23.0 | 25.0 | 30.0 | 9 | 10 |
Augers number | 1.00 | 2.00 | 2.00 | 19 | 0 | |||||
Loader speed (RPM) | ||||||||||
- alfalfa | 300 | 64.7 | 76.3 | 200 | 265 | 313 | 341 | 375 | 6 | 13 |
- concentrate | 212 | 17.0 | 12.0 | 200 | 206 | 212 | 218 | 224 | 2 | 17 |
- maize silage | 304 | 45.2 | 76.3 | 250 | 265 | 313 | 341 | 350 | 6 | 13 |
- other silages | 319 | 81.3 | 121 | 200 | 266 | 333 | 388 | 400 | 6 | 13 |
Loading speed (kg/s) | ||||||||||
- alfalfa | 2.99 | 0.53 | 0.26 | 2.50 | 2.68 | 2.94 | 2.94 | 4.00 | 6 | 13 |
- concentrate | 15.6 | 18.3 | 12.1 | 2.80 | 4.46 | 8.75 | 16.59 | 50.90 | 6 | 13 |
- maize silage | 15.3 | 2.23 | 2.38 | 12.1 | 13.8 | 15.9 | 16.2 | 18.9 | 7 | 12 |
- other silages | 9.23 | 3.58 | 4.54 | 4.00 | 7.50 | 8.89 | 12.0 | 13.5 | 6 | 13 |
Total loading time (s) | 1697 | 587 | 630 | 993 | 1200 | 1615 | 1830 | 3300 | 17 | 2 |
Operating total time (s) | 2192 | 529 | 760 | 1200 | 1800 | 2048 | 2560 | 3300 | 17 | 2 |
Mixing time (s) | 561 | 331 | 250 | 180 | 400 | 535 | 613 | 1600 | 15 | 4 |
Mixer wagon fullness (%) | 86.2 | 19.1 | 25.1 | 62.2 | 73.1 | 81.0 | 98.2 | 131 | 12 | 7 |
Mixer wagon volume (m3) | 25.2 | 4.83 | 9.00 | 16.3 | 20.0 | 26.0 | 29.0 | 33.0 | 19 | 0 |
Mixer wagon type | 0 | |||||||||
- self-propelled | 15 | |||||||||
- towed | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serva, L.; Magrin, L.; Marchesini, G.; Andrighetto, I. Assessment of the Effectiveness of a Portable NIRS Instrument in Controlling the Mixer Wagon Tuning and Ration Management. Animals 2021, 11, 3566. https://doi.org/10.3390/ani11123566
Serva L, Magrin L, Marchesini G, Andrighetto I. Assessment of the Effectiveness of a Portable NIRS Instrument in Controlling the Mixer Wagon Tuning and Ration Management. Animals. 2021; 11(12):3566. https://doi.org/10.3390/ani11123566
Chicago/Turabian StyleServa, Lorenzo, Luisa Magrin, Giorgio Marchesini, and Igino Andrighetto. 2021. "Assessment of the Effectiveness of a Portable NIRS Instrument in Controlling the Mixer Wagon Tuning and Ration Management" Animals 11, no. 12: 3566. https://doi.org/10.3390/ani11123566