Sweet vs. Salty Former Food Products in Post-Weaning Piglets: Effects on Growth, Apparent Total Tract Digestibility and Blood Metabolites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Experimental Diets
2.3. Growth Performance
2.4. Apparent Total Tract Digestibility (ATTD) of Dry Matter
2.5. Blood Samples and Metabolic Profile
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Apparent Total Tract Digestibility of Dry Matter
3.2. Blood Samples and Metabolic Profile
4. Discussion
4.1. FFPs Use in Post-Weaning Pig Diets and Composition
4.2. Growth Performance
4.3. Apparent Total Tract Digestibility (ATTD) of Dry Matter
4.4. Blood Metabolic Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global food losses and food waste. In Proceedings of the Save Food Congress, Dusseldorf, Germany, 16 May 2011. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2019. Moving forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 5 September 2020).
- Gasco, L.; Acuti, G.; Bani, P.; Zotte, A.D.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 2017/1017 Amending Reg. (EU) no 68/2013 on the Catalogue of Feed Materials; European Commission: Brussels, Belgium, 2017; pp. 48–119. [Google Scholar]
- EFFPA–European Former Foodstuff Processor Association. What Are Former Foodstuffs? Available online: https://www.effpa.eu/what-are-former-foodstuffs/ (accessed on 12 October 2020).
- Luciano, A.; Tretola, M.; Ottoboni, M.; Baldi, A.; Cattaneo, D.; Pinotti, L. Potentials and Challenges of Former Food Products (Food Leftover) as Alternative Feed Ingredients. Animals 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottoboni, M.; Tretola, M.; Luciano, A.; Giuberti, G.; Gallo, A.; Pinotti, L. Carbohydrate digestion and predicted glycemic index of bakery/confectionary ex-food intended for pig nutrition. Ital. J. Anim. Sci. 2019, 18, 838–849. [Google Scholar] [CrossRef]
- Tretola, M.; Luciano, A.; Ottoboni, M.; Baldi, A.; Pinotti, L. Influence of Traditional vs Alternative Dietary Carbohydrates Sources on the Large Intestinal Microbiota in Post-Weaning Piglets. Animals 2019, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yin, J.; Xu, K.; Li, T.; Yin, Y. What Is the Impact of Diet on Nutritional Diarrhea Associated with Gut Microbiota in Weaning Piglets: A System Review. BioMed Res. Int. 2019, 2019, 6916189. [Google Scholar] [CrossRef] [PubMed]
- Casas, G.A.; Jaworski, N.W.; Htoo, J.K.; Stein, H.H. Ileal digestibility of amino acids in selected feed ingredients fed to young growing pigs1. J. Anim. Sci. 2018, 96, 2361–2370. [Google Scholar] [CrossRef] [PubMed]
- Casas, G.; Almeida, J.; Stein, H. Amino acid digestibility in rice co-products fed to growing pigs. Anim. Feed. Sci. Technol. 2015, 207, 150–158. [Google Scholar] [CrossRef]
- European Commission. Council Directive (EC) No 120/2008 of 18 December 2008 Laying Down Minimum Standards for the Protection of Pigs; European Commission: Brussels, Belgium, 2008; pp. 147–155. [Google Scholar]
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed; European Commission: Brussels, Belgium, 2009; pp. 3–132. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Kavanagh, S.; Lynch, P.; O’Mara, F.; Caffrey, P. A comparison of total collection and marker technique for the measurement of apparent digestibility of diets for growing pigs. Anim. Feed. Sci. Technol. 2001, 89, 49–58. [Google Scholar] [CrossRef]
- Prawirodigdo, S.; Gannon, N.J.; Leury, B.J.; Dunshea, F.R. Acid-insoluble ash is a better indigestible marker than chromic oxide to measure apparent total tract digestibility in pigs. Anim. Nutr. 2021, 7, 64–71. [Google Scholar] [CrossRef]
- Liu, Y.; Jha, R.; Stein, H.H.; Adedokun, S.A.; Adeola, O.; Azain, M.J.; Baidoo, S.K.; Carter, S.D.; Crenshaw, T.D.; Dilger, R.; et al. Nutritional composition, gross energy concentration, and in vitro digestibility of dry matter in 46 sources of bakery meals. J. Anim. Sci. 2018, 96, 4685–4692. [Google Scholar] [CrossRef] [PubMed]
- Kaltenegger, A.; Humer, E.; Stauder, A.; Zebeli, Q. Feeding of bakery by-products in the replacement of grains enhanced milk performance, modulated blood metabolic profile, and lowered the risk of rumen acidosis in dairy cows. J. Dairy Sci. 2020, 103, 10122–10135. [Google Scholar] [CrossRef]
- Rojas, O.J.; Liu, Y.; Stein, H.H. Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn coproducts, and bakery meal fed to growing pigs1. J. Anim. Sci. 2013, 91, 5326–5335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.Y.; Phillips, C.E.; Coffey, M.T.; Kim, S.W. Efficacy of a supplemental candy coproduct as an alternative carbohydrate source to lactose on growth performance of newly weaned pigs in a commercial farm condition. J. Anim. Sci. 2015, 93, 5304–5312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luciano, A.; Espinosa, C.D.; Pinotti, L.; Stein, H.H. Standardized total tract digestibility of phosphorus in bakery meal fed to pigs and effects of bakery meal on growth performance of weanling pigs. Anim. Feed. Sci. Technol. 2021, 115148. [Google Scholar] [CrossRef]
- Klopfenstein, T. Increasing the Nutritive Value of Crop Residues by Chemical Treatment; CRC Press: Boca Raton, FL, USA, 2018; pp. 39–60. [Google Scholar]
- Giuberti, G.; Gallo, A.; Masoero, F.; Ferraretto, L.; Hoffman, P.C.; Shaver, R.D. Factors affecting starch utilization in large animal food production system: A review. Starch-Stärke 2014, 66, 72–90. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.; Maskan, M. Effect of Extrusion Cooking on Functional Properties andin vitroStarch Digestibility of Barley-Based Extrudates from Fruit and Vegetable By-Products. J. Food Sci. 2009, 74, E77–E86. [Google Scholar] [CrossRef]
- Noblet, J.; Le Goff, G. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed. Sci. Technol. 2001, 90, 35–52. [Google Scholar] [CrossRef]
- Southgate, D.A. Digestion and metabolism of sugars. Am. J. Clin. Nutr. 1995, 62, 203S–210S. [Google Scholar] [CrossRef]
- Hellström, J.K.; Törrönen, A.R.; Mattila, P.H. Proanthocyanidins in Common Food Products of Plant Origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef]
- Girard, M.; Bee, G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal 2020, 14, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etim, N.N.; Williams, M.E.; Akpabio, U.; Offiong, E.E.A. Haematological Parameters and Factors Affecting Their Values. Agric. Sci. 2014, 2, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Olabanji, R.O.; Farinu, G.O.; Akinlade, J.A.; Ojebiyi, O.O. Growth performance and haematological characteristics of weaner rabbits fed cyanide in processed cassava peel meals on haematological and biochemical indices of growing rabbits. In Proceedings of the 35th Annual Conference of the Nigerian Society for Animal Production, Ibadan, Nigeria, 14–17 March 2010; p. 212. [Google Scholar]
Item | Pure FFPs-C 1 | Pure FFPs-B 2 |
---|---|---|
DM | 91.0 | 87.7 |
DE (MJ/kg) | 19.6 | 19.4 |
CP | 10.0 | 11.0 |
Ash | 2.10 | 2.10 |
Crude Fats (after hydrolysis) | 9.59 | 7.50 |
CF | 1.60 | 2.20 |
Starch | 42.5 | 50.5 |
NFE | 67.80 | 64.9 |
TS (expressed in sucrose) | 21.0 | 10.5 |
Fe (mg/kg) | 41.7 | 95.0 |
Sodium chloride | 0.2 | 0.15 |
Amino acids | ||
Arg | 0.48 | 0.20 |
His | 0.19 | 0.17 |
Ile | 0.33 | 0.27 |
Leu | 0.59 | 0.68 |
Lys | 0.26 | 0.18 |
Met | 0.05 | 0.13 |
Phe | 0.40 | 0.50 |
Thr | 0.25 | 0.31 |
Val | 0.40 | 0.27 |
Ala | 0.29 | 0.66 |
Asp | 0.48 | 0.40 |
Cys | 0.10 | 0.10 |
Glu | 2.44 | 2.87 |
Gly | 0.32 | 0.48 |
Pro | 0.80 | 1.34 |
Ser | 0.40 | 0.54 |
Tyr | 0.22 | 0.19 |
Total | 8 | 9.29 |
Ingredients | CRT 1 | FFPs-C 2 | FFPs-B 3 |
---|---|---|---|
Wheat | 25 | 25 | 17 |
Pure FFPs-C | - | 30 | - |
Pure FFPs-B | - | - | 30 |
Wheat flaked and hulled | 10 | - | - |
Barley flaked and hulled | 10 | - | - |
Barley | 14.1 | 6.1 | 10 |
Sweet whey | 8 | 8 | 8 |
Whole soybeans flaked and ground | 6.2 | 1 | 4 |
Wheat Bran | 5 | 14 | 11 |
Fermented soy protein concentrate | 5 | 3 | 5 |
Rice flakes | 5 | - | 5 |
Vitamin pre-mix including flavor | 2.7 | 2.7 | 2.2 |
Fish Meal | 2 | 2 | 2 |
Soybean Meal 47% | 1.4 | 4.9 | - |
Soybean Oil | 1.3 | - | 1.7 |
Sucrose | 1 | - | 1 |
L-Lysine | 0.7 | 0.8 | 0.9 |
Monocalcium phosphate | 0.5 | 0.4 | 0.8 |
Calcium carbonate | 0.5 | 0.5 | 0.5 |
Sodium chloride 4 | 0.5 | 0.5 | 0.5 |
L-threonine | 0.3 | 0.4 | 0.4 |
DL-methionine | 0.3 | 0.4 | 0.5 |
B vitamins | 0.2 | 0.2 | 0.2 |
L-valine | 0.2 | 0.3 | 0.3 |
L-tryptophan | 0.1 | 0.1 | 0.1 |
Item | CTR 1 | FFPs-C 2 | FFPs-B 3 |
---|---|---|---|
DM | 90.1 | 90.2 | 88.9 |
CP | 19.1 | 19.1 | 19.0 |
NSC | 57.6 | 59.1 | 58.4 |
Ash | 6.11 | 6.10 | 6.19 |
Crude fat | 3.90 | 3.99 | 3.71 |
Starch | 39.9 | 38.0 | 39.7 |
NDF | 11.2 | 10.7 | 9.7 |
ADF | 3.71 | 3.42 | 3.23 |
Simple Sugar | 4.69 | 6.60 | 4.70 |
Ca | 0.7 | 0.7 | 0.7 |
P | 0.6 | 0.6 | 0.6 |
Lys | 1.5 | 1.5 | 1.5 |
Met | 0.6 | 0.6 | 0.8 |
ME (MJ/kg) | 14.0 | 14.0 | 14.0 |
Item | CTR 1 | FFPs-C 2 | FFPs-B 3 | SEM | p-Value |
---|---|---|---|---|---|
Week 1 (0–7 d) | |||||
Initial body weight (kg) | 6.85 | 6.64 | 6.62 | 0.25 | 0.65 |
ADFI (kg) | 0.23 | 0.21 | 0.18 | 0.02 | 0.55 |
ADG (kg) | 0.18 | 0.18 | 0.13 | 0.02 | 0.62 |
FCR (kg/kg) | 1.63 | 1.45 | 1.63 | 0.23 | 0.62 |
ATTD of DM (g/100 g DM) | 82.3 | 80.7 | 82.1 | 2.27 | 0.76 |
Week 5 (35–42 d) | |||||
Final body weight (kg) | 26.2 | 24.8 | 24.5 | 1.17 | 0.54 |
ADFI (kg) | 1.08 | 1.01 | 1.03 | 0.06 | 0.70 |
ADG (kg) | 0.75 | 0.75 | 0.74 | 0.04 | 0.99 |
FCR (kg/kg) | 1.48 | 1.44 | 1.39 | 0.09 | 0.79 |
ATTD of DM (g/100 g DM) | 89.4 a | 86.1 b | 90.3 a | 1.11 | 0.002 |
Overall mean (0–42 d) | |||||
Body weight (kg) | 14.9 | 13.8 | 14.1 | 0.43 | 0.56 |
ADFI (kg) | 0.69 | 0.64 | 0.63 | 0.02 | 0.59 |
ADG (kg) | 0.47 | 0.44 | 0.45 | 0.01 | 0.62 |
FCR (kg/kg) | 1.49 | 1.50 | 1.48 | 0.02 | 0.96 |
ATTD of DM (g/100 g DM) | 86.3 | 86.7 | 84.4 | 0.46 | 0.10 |
Item | CTR 1 | FFPs-C 2 | FFPs-B 3 | SEM | p-Value |
---|---|---|---|---|---|
Total proteins (g/L) | 46.8 | 47.2 | 46.9 | 1.29 | 0.94 |
Albumin (g/L) | 27.8 | 26.3 | 26.6 | 0.99 | 0.31 |
Globulins (g/L) | 19.2 | 20.9 | 20.4 | 1.22 | 0.36 |
Urea (mmol/L) | 1.63 | 1.91 | 1.76 | 0.24 | 0.50 |
ALT-GPT(IU/L) | 46.4 | 47.3 | 46.9 | 3.91 | 0.97 |
AST-GOT (IU/L) | 56.7 | 50.0 | 59.4 | 5.38 | 0.21 |
ALP (mmol/L) | 229 | 204 | 226 | 22.2 | 0.49 |
Bilirubin (mmol/L) | 1.64 | 1.69 | 1.64 | 0.12 | 0.88 |
Glucose (mmol/L) | 6.34 | 6.17 | 5.79 | 0.27 | 0.13 |
Cholesterol (mmol/L) | 2.06 | 2.07 | 2.04 | 0.13 | 0.96 |
Calcium (mmol/L) | 2.84 | 2.82 | 2.75 | 0.07 | 0.41 |
Phosphorus (mmol/L) | 3.13 | 3.06 | 3.06 | 0.11 | 0.76 |
Magnesium (mmol/L) | 0.97 | 0.94 | 0.96 | 0.02 | 0.47 |
Amylase (mmol/L) | 2092 | 1663 | 1598 | 89.7 | 0.06 |
Triglycerides (mmol/L) | 0.43 | 0.50 | 0.47 | 0.01 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciano, A.; Tretola, M.; Mazzoleni, S.; Rovere, N.; Fumagalli, F.; Ferrari, L.; Comi, M.; Ottoboni, M.; Pinotti, L. Sweet vs. Salty Former Food Products in Post-Weaning Piglets: Effects on Growth, Apparent Total Tract Digestibility and Blood Metabolites. Animals 2021, 11, 3315. https://doi.org/10.3390/ani11113315
Luciano A, Tretola M, Mazzoleni S, Rovere N, Fumagalli F, Ferrari L, Comi M, Ottoboni M, Pinotti L. Sweet vs. Salty Former Food Products in Post-Weaning Piglets: Effects on Growth, Apparent Total Tract Digestibility and Blood Metabolites. Animals. 2021; 11(11):3315. https://doi.org/10.3390/ani11113315
Chicago/Turabian StyleLuciano, Alice, Marco Tretola, Sharon Mazzoleni, Nicoletta Rovere, Francesca Fumagalli, Luca Ferrari, Marcello Comi, Matteo Ottoboni, and Luciano Pinotti. 2021. "Sweet vs. Salty Former Food Products in Post-Weaning Piglets: Effects on Growth, Apparent Total Tract Digestibility and Blood Metabolites" Animals 11, no. 11: 3315. https://doi.org/10.3390/ani11113315
APA StyleLuciano, A., Tretola, M., Mazzoleni, S., Rovere, N., Fumagalli, F., Ferrari, L., Comi, M., Ottoboni, M., & Pinotti, L. (2021). Sweet vs. Salty Former Food Products in Post-Weaning Piglets: Effects on Growth, Apparent Total Tract Digestibility and Blood Metabolites. Animals, 11(11), 3315. https://doi.org/10.3390/ani11113315