Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Origin of Milk OBCFAs in Dairy Cows
3. Dietary Factors Influencing Milk OBCFAs
4. Milk OBCFAs and Human Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bainbridge, M.L.; Cersosimo, L.M.; Wright, A.D.G.; Kraft, J. Content and composition of branched-chain fatty acids in bovine milk are affected by lactation stage and breed of dairy cow. PLoS ONE 2016, 11, e0150386. [Google Scholar] [CrossRef] [Green Version]
- Polidori, P.; Maggi, G.L.; Moretti, V.M.; Valfre, F.; Navarotto, P.A. Note on the effect of use of bovine somatotropin on the fatty acid composition of the milk fat in dairy cows. Anim. Sci. 1993, 57, 319–322. [Google Scholar] [CrossRef]
- Rojas, A.; López-Bote, C.; Rota, A.; Martin, L.; Rodriguez, P.L.; Tovar, J.J. Fatty acid composition of Verata goat kids fed either goat milk or commercial milk replacer. Small Rumin. Res. 1994, 14, 61–66. [Google Scholar] [CrossRef]
- Jenkins, T.C. Butylsoyamide protects soybean oil from ruminal biohydrogenation: Effects of butylsoyamide on plasma fatty acids and nutrient digestion in sheep. J. Anim. Sci. 1995, 73, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Fievez, V.; Colman, E.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd-and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Keeney, M.; Katz, I.; Allison, M.J. On the probable origin of some milk fat acids in rumen microbial lipids. J. Am. Oil Chem. Soc. 1962, 39, 198–201. [Google Scholar] [CrossRef]
- Kaneda, T. Iso-and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Mol. Biol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Sanderson, R.; Dhanoa, M.S.; Dewhurst, R.J. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation. Int. J. Dairy Sci. 2005, 88, 3220–3230. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Hao, X.; Li, Y.; Luo, G.; Zhang, Y.; Xin, H. The relationship between odd-and branched-chain fatty acids and microbial nucleic acid bases in rumen. Asian-Australas. J. Anim. Sci. 2017, 30, 1590. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck, B.; Dufour, C.; Van Vuuren, A.M.; Cabrita, A.M.R.; Dewhurst, R.J.; Demeyer, D.; Fievez, V. Potential of odd and branched chain fatty acids as microbial markers: Evaluation in rumen contents and milk. J. Dairy Sci. 2005, 88, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Warensjö, E.; Jansson, J.-H.; Berglund, L.; Boman, K.; Ahren, B.; Weinehall, L.; Vessby, B. Estimated intake of milk fat is negatively associated with cardiovascular risk factors and does not increase the risk of a first acute myocardial infarction. A prospective case—Control study. Br. J. Nutr. 2004, 91, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Wolk, A.; Vessby, B.; Ljung, H.; Barrefors, P. Evaluation of a biological marker of dairy fat intake. Am. J. Clin. Nutr. 1998, 68, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Fontecha, J.M.; Rodriguez-Alcala, L.V.; Calvo, M.; Juárez, M. Bioactive milk lipids. Curr. Nutr. Food Sci. 2011, 7, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.; Ross, R.P.; Hill, C.; Fitzgerald, G.F.; Stanton, C. Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 2011, 21, 377–401. [Google Scholar] [CrossRef]
- Vazirigohar, M.; Dehghan-Banadaky, M.; Rezayazdi, K.; Nejati-Javaremi, A.; Mirzaei-Alamouti, H.; Patra, A.K. Short communication: Effects of diets containing supplemental fats on ruminal fermentation and milk odd-and branched-chain fatty acids in dairy cows. J. Dairy Sci. 2018, 101, 6133–6141. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, B.; West, J.; Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules 2015, 20, 2425–2444. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Ma, T.; Xu, Y.; Chen, G.; Chen, Y.; Villot, C.; Steele, M.A. Characterization of fecal branched-chain fatty acid profiles and their associations with fecal microbiota in diarrheic and healthy dairy calves. J. Dairy Sci. 2021, 104, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Diedrich, M.; Henschel, K.-P. The natural occurrence of unusual fatty acids. Part 1. Odd numbered fatty acids. Food/Nahrung. 1990, 34, 935–943. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Moorby, J.M.; Vlaeminck, B.; Fievez, V. Apparent recovery of duodenal odd-and branched-chain fatty acids in milk of dairy cows. J. Dairy Sci. 2007, 90, 1775–1780. [Google Scholar] [CrossRef] [Green Version]
- Horning, M.G.; Martin, D.B.; Karmen, A.; Vagelos, P.R. Fatty acid synthesis in adipose tissue. J. Biol. Chem 1961, 236, 669–672. [Google Scholar] [CrossRef]
- Eaton, S.; Bartlett, K.B.; Pourfarzam, M. Mammalian mitochondrial β-oxidation. Biochem. J. 1996, 320, 345–357. [Google Scholar] [CrossRef]
- Foulon, V.; Sniekers, M.; Huysmans, E.; Asselberghs, S.; Mahieu, V.; Mannaerts, G.P.; Casteels, M. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-coa lyase a revised pathway for the $α$-oxidation of straight chain fatty acids. J. Biol. Chem. 2005, 280, 9802–9812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Hornemann, S.; Petzke, K.J.; Schulze, M.B.; Klaus, S. Odd-chain fatty acids as a biomarker for dietary fiber intake: A novel pathway for endogenous production from propionate. Am. J. Clin. Nutr. 2017, 105, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Fievez, V.; Van Looveren, J.; Wanzele, W.; Vlaeminck, B.; Van Straalen, W.; Wade, K.; Lacroix, R. Knowledge discovery in milk fatty acid databases applied to suboptimal milk production. In Proceedings of the 5th Conference of the European Federation for Information Technology in Agriculture, Food Environment (EFITA), Vila Real, Portugal, 25–28 July 2005; Universidade de Tras-os-Montes e Alto Douro: Vila Real, Portugal, 2005; pp. 1019–1023. [Google Scholar]
- Vlaeminck, B.; Gervais, R.; Rahman, M.M.; Gadeyne, F.; Gorniak, M.; Doreau, M.; Fievez, V. Postruminal synthesis modifies the odd-and branched-chain fatty acid profile from the duodenum to milk. J. Dairy Sci. 2015, 98, 4829–4840. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Demeyer, D.; Dewhurst, R.J. Effect of forage: Concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. J. Dairy Sci. 2006, 89, 2668–2678. [Google Scholar] [CrossRef]
- Bessa, R.J.B.; Maia, M.R.G.; Jerónimo, E.; Belo, A.T.; Cabrita, A.R.J.; Dewhurst, R.J.; Fonseca, A.J.M. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Anim. Feed Sci. Technol. 2009, 150, 197–206. [Google Scholar] [CrossRef]
- Mackie, R.I.; White, B.A.; Bryant, M.P. Lipid metabolism in anaerobic ecosystems. Crit. Rev. Microbiol. 1991, 17, 449–479. [Google Scholar] [CrossRef]
- Kay, J.K.; Weber, W.J.; Moore, C.E.; Bauman, D.E.; Hansen, L.B.; Chester-Jones, H.; Crooker, B.A.; Baumgard, L.H. Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows. J. Dairy Sci. 2005, 88, 3886–3893. [Google Scholar] [CrossRef] [Green Version]
- Smith, S. The animal fatty acid synthase: One gene, one polypeptide, seven enzymes. FASEB J. 1994, 8, 1248–1259. [Google Scholar] [CrossRef]
- Croom, W.J., Jr.; Bauman, D.E.; Davis, C.L. Methylmalonic acid in low-fat milk syndrome. J. Dairy Sci. 1981, 64, 649–654. [Google Scholar] [CrossRef]
- Dodds, P.F.; Guzman, M.G.; Chalberg, S.C.; Anderson, G.J.; Kumar, S. Acetoacetyl-CoA reductase activity of lactating bovine mammary fatty acid synthase. J. Biol. Chem. 1981, 256, 6282–6290. [Google Scholar] [CrossRef]
- Massart-Leën, A.M.; Roets, E.; Peeters, G.; Verbeke, R. Propionate for fatty acid synthesis by the mammary gland of the lactating goat. J. Dairy Sci. 1983, 66, 1445–1454. [Google Scholar] [CrossRef]
- Crown, S.B.; Marze, N.; Antoniewicz, M.R. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd- Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PLoS ONE 2015, 10, e0145850. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck, B.; Fievez, V.; Tamminga, S.; Dewhurst, R.J.; Van Vuuren, A.; De Brabander, D.; Demeyer, D. Milk Odd- and Branched-Chain Fatty Acids in Relation to the Rumen Fermentation Pattern. J. Dairy Sci. 2006, 89, 3954–3964. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ohajuruka, O.A.; Palmquist, D.L. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. J. Dairy Sci. 1991, 74, 3025–3034. [Google Scholar] [CrossRef]
- Noble, R.C. Digestion, absorption and transport of lipids in ruminant animals. Lipid. Met. Rumin. Anim. 1981, 2, 57–93. [Google Scholar]
- Huhtanen, P.; Rinne, M.; Mäntysaari, P.; Nousiainen, J. Integration of the effects of animal and dietary factors on total dry matter intake of dairy cows fed silage-based diets. Animal 2011, 5, 691–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef]
- Lock, A.L.; Bauman, D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Enjalbert, F.; Ferlay, A.; Schmidely, P. Recent data on the effects of feeding factors on cow milk fatty acid composition. Sci. Aliment. 2008, 28, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P.; Samková, E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci. 2010, 55, 521–537. [Google Scholar] [CrossRef] [Green Version]
- Flachowsky, G.; Erdmann, K.; Hüther, L.; Jahreis, G.; Möckel, P.; Lebzien, P. Influence of roughage/concentrate ratio and linseed oil on the concentration of trans-fatty acids and conjugated linoleic acid in duodenal chyme and milk fat of late lactating cows. Arch. Anim. Nutr. 2006, 60, 501–511. [Google Scholar] [CrossRef]
- Berthelot, V.; Albarello, H.; Broudiscou, L.P. Effect of extruded linseed supplementation, grain source and pH on dietary and microbial fatty acid outflows in continuous cultures of rumen microorganisms. Anim. Feed Sci. Technol. 2019, 249, 76–87. [Google Scholar] [CrossRef]
- Isenberg, B.J.; Soder, K.J.; Pereira, A.B.D.; Standish, R.; Brito, A.F. Production, milk fatty acid profile, and nutrient utilization in grazing dairy cows supplemented with ground flaxseed. J. Dairy Sci. 2019, 102, 1294–1311. [Google Scholar] [CrossRef] [Green Version]
- Resende, T.L.; Kraft, J.; Soder, K.J.; Pereira, A.B.D.; Woitschach, D.E.; Reis, R.B.; Brito, A.F. Incremental amounts of ground flaxseed decrease milk yield but increase n-3 fatty acids and conjugated linoleic acids in dairy cows fed high-forage diets1. J. Dairy Sci. 2015, 98, 4785–4799. [Google Scholar] [CrossRef] [PubMed]
- Lock, A.L.; Preseault, C.L.; Rico, J.E.; DeLand, K.E.; Allen, M.S. Feeding a C16: 0-enriched fat supplement increased the yield of milk fat and improved conversion of feed to milk. J. Dairy Sci. 2013, 96, 6650–6659. [Google Scholar] [CrossRef]
- Baumann, E.; Chouinard, P.Y.; Lebeuf, Y.; Rico, D.E.; Gervais, R. Effect of lipid supplementation on milk odd-and branched-chain fatty acids in dairy cows. J. Dairy Sci. 2016, 99, 6311–6323. [Google Scholar] [CrossRef]
- Jenkins, T.C.; Jenny, B.F. Nutrient digestion and lactation performance of dairy cows fed combinations of prilled fat and canola oil. J. Dairy Sci. 1992, 75, 796–803. [Google Scholar] [CrossRef]
- Emmanuel, B. The relative contribution of propionate, and long-chain even-numbered fatty acids to the production of long-chain odd-numbered fatty acids in rumen bacteria. Biochim. Biophys. Acta 1978, 528, 239–246. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livest. Prod. Sci. 2001, 70, 15–29. [Google Scholar] [CrossRef]
- French, E.A.; Bertics, S.J.; Armentano, L.E. Rumen and milk odd-and branched-chain fatty acid proportions are minimally influenced by ruminal volatile fatty acid infusions. J. Dairy Sci. 2012, 95, 2015–2026. [Google Scholar] [CrossRef] [Green Version]
- Cívico, A.; Sánchez, N.N.; Gómez-Cortés, P.; Angel, M.; Fuente, D.; Blanco, F.P.; Angel, M. Odd-and branched-chain fatty acids in goat milk as indicators of the diet composition. Ital. J. Anim. Sci. 2017, 16, 68–74. [Google Scholar] [CrossRef]
- Prado, L.A.; Schmidely, P.; Nozière, P.; Ferlay, A. Milk saturated fatty acids, odd-and branched-chain fatty acids, and isomers of C18: 1, C18: 2, and C18: 3n-3 according to their duodenal flows in dairy cows: A meta-analysis approach. J. Dairy Sci. 2019, 102, 3053–3070. [Google Scholar] [CrossRef] [Green Version]
- Saliba, L.; Gervais, R.; Lebeuf, Y.; Chouinard, P.Y. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 1. Production performance and milk fat content of biohydrogenation intermediates of [alpha]-linolenic acid. J. Dairy Res. 2014, 81, 1–82. [Google Scholar] [CrossRef]
- Bayat, A.R.; Tapio, I.; Vilkki, J.; Shingfield, K.J.; Leskinen, H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci. 2018, 101, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Abu Ghazaleh, A.A. Effect of fish oil and sunflower oil supplementation on milk conjugated linoleic acid content for grazing dairy cows. Anim. Feed. Sci. Technol. 2008, 141, 220–232. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Boisclair, Y.R.; Bauman, D.E. Recent advances in the regulation of milk fat synthesis. Animals 2009, 3, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Morsy, T.A.; Abdo, M.M. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed Sci. Technol. 2018, 244, 66–75. [Google Scholar] [CrossRef]
- Mach, N.; Zom, R.L.G.; Widjaja, H.C.A.; Van Wikselaar, P.G.; Weurding, R.E.; Goselink, R.M.A.; Van Vuuren, A.M. Dietary effects of linseed on fatty acid composition of milk and on liver, adipose and mammary gland metabolism of periparturient dairy cows. J. Anim. Physiol. Anim. Nutr. 2013, 97, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Bonnet, M.M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef] [PubMed]
- Loor, J.J.; Ferlay, A.; Ollier, A.; Doreau, M.; Chilliard, Y. Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. J. Dairy Sci. 2005, 88, 726–740. [Google Scholar] [CrossRef] [Green Version]
- Loor, J.J.; Doreau, M.; Chardigny, J.M.; Ollier, A.; Sebedio, J.L.; Chilliard, Y. Effects of ruminal or duodenal supply of fish oil on milk fat secretion and profiles of trans-fatty acids and conjugated linoleic acid isomers in dairy cows fed maize silage. Anim. Feed Sci. Technol. 2005, 119, 227–246. [Google Scholar] [CrossRef]
- Singh, A.P.; Avramis, C.A.; Kramer, J.K.G.; Marangoni, A.G. Algal meal supplementation of the cows’ diet alters the physical properties of milk fat. J. Dairy Res. 2004, 71, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 2007, 91, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Lampi, A.-M.; Toivonen, V.; Shingfield, K.J.; Vanhatalo, A. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diets based on red clover silage. J. Dairy Sci. 2011, 94, 4413–4430. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Avila, A.R.; Baumann, E.; Charbonneau, É.; Chouinard, P.Y.; Tremblay, G.F.; Gervais, R. Interaction of potassium carbonate and soybean oil supplementation on performance of early-lactation dairy cows fed a high-concentrate diet. J. Dairy Sci. 2017, 100, 9007–9019. [Google Scholar] [CrossRef]
- Patel, M.; Wredle, E.; Bertilsson, J. Effect of dietary proportion of grass silage on milk fat with emphasis on odd-and branched-chain fatty acids in dairy cows. J. Dairy Sci. 2013, 96, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.S.; Sejrsen, K.; Andersen, H.R.; Lund, P.; Straarup, E.M. Effect of silage type and energy concentration on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Anim. Feed Sci. 2004, 13, 697–700. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Reynolds, C.K.; Lupoli, B.; Toivonen, V.; Yurawecz, M.P.; Delmonte, P.; Beever, D.E. Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Anim. Sci. 2005, 80, 225–238. [Google Scholar] [CrossRef]
- Morales-Almaráz, E.; la Roza-Delgado, B.; González, A.; Soldado, A.; Rodriguez, M.L.; Peláez, M.; Vicente, F. Effect of feeding system on unsaturated fatty acid level in milk of dairy cows. Renew. Agric. Food Syst. 2011, 26, 224–229. [Google Scholar] [CrossRef]
- Bougouin, A.; Martin, C.; Doreau, M.; Ferlay, A. Effects of starch-rich or lipid-supplemented diets that induce milk fat depression on rumen biohydrogenation of fatty acids and methanogenesis in lactating dairy cows. Animal 2019, 13, 1421–1431. [Google Scholar] [CrossRef]
- Westreicher-Kristen, E.; Castro-Montoya, J.; Hasler, M.; Susenbeth, A. Relationship of milk odd-and branched-chain fatty acids with urine parameters and ruminal microbial protein synthesis in dairy cows fed different proportions of maize silage and red clover silage. Animals 2020, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Pi, Y.; Ma, L.; Pierce, K.M.; Wang, H.R.; Xu, J.C.; Bu, D.P. Rubber seed oil and flaxseed oil supplementation alter digestion, ruminal fermentation and rumen fatty acid profile of dairy cows. Animal 2019, 13, 2811–2820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, K.; Hao, X.; Xin, H. The relationships between odd-and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate. J. Anim. Physiol. Anim. Nutr. 2016, 101, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, N.; Bomberger, R.; Matamoros, C.; Harvatine, K.J. Effect of dietary supplementation of sodium acetate and calcium butyrate on milk fat synthesis in lactating dairy cows. J. Dairy Sci. 2019, 102, 5172–5181. [Google Scholar] [CrossRef]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Civico, A.; de la Fuente, M.A.; Sánchez, N.N.; Blanco, F.P.; Marin, A.L.M. Effects of dietary concentrate composition and linseed oil supplementation on the milk fatty acid profile of goats. Animal 2018, 12, 2310–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, I.; da Fonseca, C.E.M.; Lopes, F.C.F.; Morenz, M.J.F.; da Gama, M.A.S.; de Souza, V.C.; da Silva, A.B. Milk fatty acid composition of dairy goats fed increasing levels of Flemingia macrophylla hay. Semin. Cienc. Agrar. 2019, 40, 293–310. [Google Scholar]
- Bainbridge, M.L.; Egolf, E.; Barlow, J.W.; Alvez, J.P.; Roman, J.; Kraft, J. Milk from cows grazing on cool-season pastures provides an enhanced profile of bioactive fatty acids compared to those grazed on a monoculture of pearl millet. Food Chem. 2017, 217, 750–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samková, E.; Špička, J.; Pešek, M.; Pelikánová, T.; Hanuš, O. Animal factors affecting fatty acid composition of cow milk fat: A review. S. Afr. J. Anim. Sci. 2012, 42, 83–100. [Google Scholar]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care 2012, 35, 2402–2411. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, T.A.; Railo, M.; Lepäntalo, M.; Gylling, H. Plant sterols in serum and in atherosclerotic plaques of patients undergoing carotid endarterectomy. J. Am. Coll. Cardiol. 2005, 45, 1794–1801. [Google Scholar] [CrossRef]
- Manninen, V.; Tenkanen, L.; Koskinen, P.; Huttunen, J.K.; Mänttäri, M.; Heinonen, O.P.; Frick, M.H. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 1992, 85, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Reitz, C.; Tang, M.-X.; Luchsinger, J.; Mayeux, R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch. Neurol. 2004, 61, 705–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, E.; Spiegelman, D.; Hunter, D.J.; Chen, W.Y.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Premenopausal fat intake and risk of breast cancer. J. Natl. Cancer Inst. 2003, 95, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, C.H.; Kwan, M.L.; Sweeney, C.; Castillo, A.; Caan, B.J. High-and low-fat dairy intake, recurrence, and mortality after breast cancer diagnosis. J. Natl. Cancer Inst. 2013, 105, 616–623. [Google Scholar] [CrossRef] [Green Version]
- Kurotani, K.; Sato, M.; Yasuda, K.; Kashima, K.; Tanaka, S.; Hayashi, T. Even-and odd-chain saturated fatty acids in serum phospholipids are differentially associated with adipokines. PLoS ONE 2017, 12, e0178192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Sun, Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: Two prospective longitudinal cohort studies. Br. Med. J. 2016, 355, i5796. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Je, Y. Dairy consumption and risk of metabolic syndrome: A meta-analysis. Diabetic Med. 2016, 33, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Bhupathi, V.; Mazariegos, M.; Rodriguez, J.B.C.; Deoker, A. Dairy intake and risk of cardiovascular disease. Curr. Cardiol. Rep. 2020, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Mitri, J.; Yusof, B.-N.M.; Maryniuk, M.; Schrager, C.; Hamdy, O.; Salsberg, V. Dairy intake and type 2 diabetes risk factors: A narrative review. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2879–2887. [Google Scholar] [CrossRef] [PubMed]
- White, M.J.; Armstrong, S.C.; Kay, M.C.; Perrin, E.M.; Skinner, A. Associations between milk fat content and obesity, 1999 to 2016. Pediatric Obes. 2020, 15, e12612. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ma, J.; Campos, H.; Hu, F.B. Plasma and erythrocyte biomarkers of dairy fat intake and risk of ischemic heart disease. Am. J. Clin. Nutr. 2007, 86, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.; Hu, F.B. Dairy products, dairy fatty acids, and the prevention of cardiometabolic disease: A review of recent evidence. Curr. Atheroscler. Rep. 2018, 20, 1–9. [Google Scholar] [CrossRef]
- Yakoob, M.Y.; Shi, P.; Willett, W.C.; Rexrode, K.M.; Campos, H.; Orav, E.J.; Mozaffarian, D. Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among men and women in the United States in two large prospective cohorts. Circulation 2016, 133, 1645–1654. [Google Scholar] [CrossRef] [Green Version]
- Santaren, I.D.; Watkins, S.M.; Liese, A.D.; Wagenknecht, L.E.; Rewers, M.J.; Haffner, S.M.; Hanley, A.J. Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders. Am. J. Clin. Nutr. 2014, 100, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in US adults: A cohort study. Ann. Intern. Med. 2010, 153, 790–799. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Otto, M.C.; Nettleton, J.A.; Lemaitre, R.N.; Steffen, M.L.; Kromhout, D.; Rich, S.S.; Tsai, M.Y.; Jacobs, D.R.; Mozaffarian, D. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2013, 2, e000092. [Google Scholar] [CrossRef] [Green Version]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: Could it be essential? Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Aglago, E.K.; Biessy, C.; Torres-Mejia, G.; Angeles-Llerenas, A.; Gunter, M.J.; Romieu, I.; Chajès, V. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. J. Lipid Res. 2017, 58, 1462–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Lin, J.S.; Aris, I.M.; Yang, G.; Chen, W.Q.; Li, L.J. Circulating saturated fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Nutrients 2019, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Cepeda, A.; Dávila-Said, G.; Orea-Tejeda, A.; González-Islas, D.; Elizondo-Montes, M.; Pérez-Cortes, G. Dietary intake of fatty acids and its relationship with FEV1/FVC in patients with chronic obstructive pulmonary disease. Clin. Nutr. ESPEN 2019, 29, 92–96. [Google Scholar] [CrossRef]
- Liu, S.; van der Schouw, Y.T.; Soedamah-Muthu, S.S.; Spijkerman, A.M.W.; Sluijs, I. Intake of dietary saturated fatty acids and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort: Associations by types, sources of fatty acids and substitution by macronutrients. Eur. J. Nutr. 2019, 58, 1125–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matejcic, M.; Lesueur, F.; Biessy, C.; Renault, A.L.; Mebirouk, N.; Yammine, S. Circulating plasma phospholipid fatty acids and risk of pancreatic cancer in a large European cohort. Int. J. Cancer. 2018, 143, 2437–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, A.L.; Torres-Gonzalez, M.; Kraft, J. Dairy fat consumption and the risk of metabolic syndrome: An examination of the saturated fatty acids in dairy. Nutrients 2019, 11, 2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villamor, E.; Villar, L.A.; Lozano-Parra, A.; Herrera, V.M.; Herrán, O.F. Serum fatty acids and progression from dengue fever to dengue haemorrhagic fever/dengue shock syndrome. Br. J. Nutr. 2018, 120, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Yoo, W.; Gjuka, D.; Stevenson, H.L.; Song, X.; Shen, H.; Yoo, S.Y. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS ONE 2017, 12, e0189965. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Tsai, M.Y.; Sun, Q.; Hinkle, S.N.; Rawal, S.; Mendola, P.; Zhang, C. A prospective and longitudinal study of plasma phospholipid saturated fatty acid profile in relation to cardiometabolic biomarkers and the risk of gestational diabetes. Am. J. Clin. Nutr. 2018, 107, 1017–1026. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.T.; Johnson, S.B.; Kokmen, E. Deficiencies of polyunsaturated fatty acids and replacement by nonessential fatty acids in plasma lipids in multiple sclerosis. Proc. Natl. Acad. Sci. USA 1989, 86, 4720–4724. [Google Scholar] [CrossRef] [Green Version]
- Kurotani, K.; Karunapema, P.; Jayaratne, K.; Sato, M.; Hayashi, T.; Kajio, H. Circulating odd-chain saturated fatty acids were associated with arteriosclerosis among patients with diabetes, dyslipidemia, or hypertension in Sri Lanka but not Japan. Nutr. Res. 2018, 50, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Fonteh, A.N.; Cipolla, M.; Chiang, J.; Arakaki, X.; Harrington, M.G. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS ONE 2014, 9, e100519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Sinclair, A.J.; Makrides, M.; Gibson, R.A.; Giles, G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid. Am. J. Clin. Nutr. 2007, 86, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Meikle, P.J.; Wong, G.; Barlow, C.K.; Weir, J.M.; Greeve, M.A.; MacIntosh, G.L. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS ONE 2013, 8, e74341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaw, K.-T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012, 9, e1001255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestel, P.J.; Straznicky, N.; Mellett, N.A.; Wong, G.; De Souza, D.P.; Tull, D.L.; Meikle, P.J. Specific plasma lipid classes and phospholipid fatty acids indicative of dairy food consumption associate with insulin sensitivity. Am. J. Clin. Nutr. 2013, 99, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mock, D.M.; Johnson, S.B.; Holman, R.T. Effects of biotin deficiency on serum fatty acid composition: Evidence for abnormalities in humans. J. Nutr. 1988, 118, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Moser, H.W.; Moser, A.B.; Frayer, K.K.; Chen, W.; Schulman, J.D.; O’Neill, B.P.; Kishimoto, Y. Adrenoleukodystrophy: Increased plasma content of saturated very long chain fatty acids. Neurology 1981, 31, 1241. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.T.; Adams, C.E.; Nelson, R.A.; Grater, S.J.E.; Jaskiewicz, J.A.; Johnson, S.B.; Erdman, J.W., Jr. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J. Nutr. 1995, 125, 901–907. [Google Scholar] [PubMed]
- Coker, M.; De Klerk, J.B.C.; Poll-The, B.T.; Huijmans, J.G.M.; Duran, M. Plasma total odd-chain fatty acids in the monitoring of disorders of propionate, methylmalonate and biotin metabolism. J. Inherit. Metab. Dis. 1996, 19, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, I.; Baeten, V.; Abbas, O.; Colman, E.; Vlaeminck, B.; De Baets, B.; Fievez, V. Analysis of milk odd-and branched-chain fatty acids using Fourier transform (FT)-Raman spectroscopy. J. Agric. Food Chem. 2010, 58, 10804–10811. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, S.; Chen, X.; Chen, H.; Huang, M.; Zheng, J. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Res. 2000, 60, 505–509. [Google Scholar]
- Cai, Q.; Huang, H.; Qian, D.; Chen, K.; Luo, J.; Tian, Y.; Lin, T.; Lin, T. 13-Methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3. PLoS ONE 2013, 8, e65308. [Google Scholar] [CrossRef] [PubMed]
- Ran-Ressler, R.R.; Khailova, L.; Arganbright, K.M.; Adkins-Rieck, C.K.; Jouni, Z.E.; Koren, O.; Dvorak, B. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS ONE 2011, 6, e29032. [Google Scholar] [CrossRef] [Green Version]
- Wongtangtintharn, S.; Oku, H.; Iwasaki, H.; Toda, T. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J. Nutr. Sci. Vitaminol. 2004, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Kraft, J.; Jetton, T.; Satish, B.; Gupta, D. Dairy-derived bioactive fatty acids improve pancreatic ß-cell function. FASEB J. 2015, 29, 608–625. [Google Scholar] [CrossRef]
- Kuhajda, F.P. Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition 2000, 16, 202–208. [Google Scholar] [CrossRef]
- Astrup, A.; Geiker, N.R.W.; Magkos, F. Effects of full-fat and fermented dairy products on cardiometabolic disease: Food is more than the sum of its parts. Adv. Nutr. 2019, 10, 924S–930S. [Google Scholar] [CrossRef] [PubMed]
- Kratz, M.; Baars, T.; Guyenet, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur. J. Nutr. 2013, 52, 1–24. [Google Scholar] [CrossRef] [PubMed]
References | Amounts of Lipid Supplements or Forage Ratio | Animal Breed | Observed Effects on Rumen OBCFAs |
---|---|---|---|
[46] | 10% of DM of LW(extruded linseed and wheat) or LC (extruded linseed and corn) | Holstein cows | LW: OCFAs↓, iso FA↑, anteiso FA↓. LC: OBCFAs ↓. |
[76] | 4% RSO (rubber seed oil), 4% FSO or RFO (rubber seed oil + flaxseed oil) | Holstein cows | RSO: C15:0↓, C17:0↓. FSO: C15:0↓, C17:0↓. RFO: C15:0↓, C17:0↓. |
[77] | 30:70, 50:50 and 70:30 forage: concentrate ratio (F:C) | Holstein cows | 70:30: C11:0↑, C13:0↑, iso C15:0↑, iso C16:0↑, iso C17:0↑ and C17:0↑ 70:30: anteiso C15:0↓, C15:0↓and total OBCFAs↓ |
[54] | Infusion of 18.8 mol of AC (acetate), PR (propionate), IV (isovalerate) and AIV (anteisovalerate) | Holstein cows | AIV: iso C15:0↑ and C17:0↑ in rumen liquid AIV: anteiso C15:0↑ and anteiso C17:0↑ in rumen solid IV: iso C15:0↑ in rumen solids |
References | Concentrationsor Amounts of Lipid Supplement | Animal Breeds | Observed Effects on Milk OBCFAs |
---|---|---|---|
[47] | GFS (Ground flaxseed) 10% of TMR (total mixed ration) | Jersey cows | 11:0↓, 13:0↓, 15:0↓, 17:0↓, iso 14:0↓, iso 15:0↓, anteiso15:0↓, iso 16:0↓, iso 17:0↑, anteiso 17:0↓ (ΣOBCFAs↓). |
[78] | 2.9% sodium AC (acetate) and 2.5% calcium BU (butyrate) in a diet. | Holstein cows | Acetate: ΣOBCFAs↓. Butyrate: ΣOBCFAs (↔). |
[79] | 22 g oil/kg diet DM (Dry matter) of EL (Extruded linseed), CPLO (calcium salts of palm and linseed) or MR (milled rapeseed) | Holstein Friesian cows | EL: 13:0↓, iso13:0↔, anteiso13:0↓, iso14:0↓, 15:0↓, anteiso15:0↓, iso16:0↓, 17:0↓, iso17:0↑, iso18:0↑. CPLO: 13:0↓, iso13:0↔, anteiso13:0↓, iso14:0↓, 15:0↓, anteiso15:0↓, iso16:0↓, 17:0↓, iso17:0↓, iso18:0↑. MR: 13:0↓, iso13:0↔, anteiso13:0↓, iso14:0↔, 15:0↓, anteiso15:0↓, iso16:0↓, 17:0↓, iso17:0↓, iso18:0↑. |
[16] | 30 g/kg of Prilled palm fat (PPF)/+ Sunflower oil (SO) | Holstein cows | SO: anteiso13:0↓, anteiso15:0↓, 15:0↓, 17:0↓, cis-9 15:1↓, and cis917:1↓; PPF+SO: iso14:0↑ and iso16:0↑ |
[80] | 30 g/day of LO: linseed oil (S/LO: high starch plus linseed oil and F/LO: high non-forage plus linseed oil treatments). | Malagueña goats | S/LO: Total odd↑, Total iso↓, Total anteiso↑. F/LO: Total odd↓, Total iso↓, Total anteiso↓. |
[69] | 2% of Soybean oil (SBO) | Holstein cows | iso 13:0↑, 11:0↓, anteiso 13:0↔, 13:0↓, iso 14:0↓, iso 15:0↓, anteiso 15:0↓, 15:0↓, iso 16:0↑, iso 17:0↑, anteiso 17:0↓, 17:0↓, cis-7 17:0↓, cis-8 17:1↓, cis-9 17:1↓, iso 18:0↓, 19:0↓. |
[69] | 2% SBO (Soybean oil) +1.5% Potassium carbonate (K2CO3) | Holstein cows | iso 13:0↑, 11:0↓, anteiso 13:0↓, 13:0↓, iso 14:0↓, iso 15:0↓, anteiso 15:0↓, 15:0↓, iso 16:0↓, iso 17:0↓, anteiso 17:0↑, 17:0↓, cis-7 17:0↓, cis-8 17:1↓, cis-9 17:1↓, iso 18:0↓, 19:0↑. |
[50] | 450 g/d of CTL (lipid free emulsion medium injected into the rumen), RSO (lipid free emulsion medium injected into the rumen), RSF (saturated fatty acids injected into the rumen), ASF (saturated fatty acids injected into the abomasum) | Holstein cows | RSO: OCFAs↓, ECisoFAs↔ RSF: 17:0+cis-9 17:1↑ RSF and ASF: OBCFAs ↔ |
[48] | 0, 5, 10 and 15% of GFS (Ground flaxseed) | Jersey cows | GFS: OBCFAs↓ linearly |
[54] | An Infusion of 18.8 mol of AC (acetate), PR (propionate), IV (isovalerate) and AIV (anteisovalerate) | Holstein cows | PR: C15:0↑ and C17:0↑; IV: iso C15:0↑; AIV: C15:0↑ |
[68] | 29g/kg of Plant oils | Ayrshire cows | OBCFAs↓ |
Reference | Type or Amount of Forage in g/Kg or % | Species or Breed of Animal | Observed Effects on Milk OBCFAs |
---|---|---|---|
[81] | IA (incremental amount) of FMH (Flemingia macrophylla hay): 0, 80, 160, 240 and 320 g kg-1 DM (dry matter) | Saanen x Boer goats | 80: Σ OBCFAs↓ 160: Σ OBCFAs↑, 240: Σ OBCFAs↓, 320: ΣOBCFAs↑ |
[16] | F:C (forage: concentrate ratio) 39:61, 44:56, or 48:52 | Holstein cows | Forage: OBCFAs↑ |
[82] | A 0.5 ha paddock of CSP and two 0.25 ha paddocks 22.4 kg/ha with PM | Holstein cows | PM: OBCFAs↑ |
[70] | With incremental amount of grass silage: 50, 70 and 85% | The Swedish Red Breed of cows | C15:0↑, C17:0↑, iso C15:0↑ and total OBCFAs↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoul-Aziz, S.K.A.; Zhang, Y.; Wang, J. Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health. Animals 2021, 11, 3210. https://doi.org/10.3390/ani11113210
Abdoul-Aziz SKA, Zhang Y, Wang J. Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health. Animals. 2021; 11(11):3210. https://doi.org/10.3390/ani11113210
Chicago/Turabian StyleAbdoul-Aziz, Sidi Ka Amar, Yangdong Zhang, and Jiaqi Wang. 2021. "Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health" Animals 11, no. 11: 3210. https://doi.org/10.3390/ani11113210
APA StyleAbdoul-Aziz, S. K. A., Zhang, Y., & Wang, J. (2021). Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health. Animals, 11(11), 3210. https://doi.org/10.3390/ani11113210