Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Phenotypic Measurement and Sample Collection
2.3. Quantitative PCR Analysis
2.4. 16S rDNA Sequencing Analysis
2.5. Data Analysis
3. Results
3.1. Effects of Dietary Probiotics on Production Performance of Geese
3.2. Effects of Dietary Probiotics on Intestinal Growth Index of Geese
3.3. Effects of Dietary Probiotics on Intestinal Antioxidative Capacity
3.4. Effects of Dietary Probiotics on Intestinal Histomorphology
3.5. Effects of Dietary Probiotics on the mRNA Expression of Inflammatory and Tight Junction Related Genes in Intestinal Tissues
3.6. Effects of Dietary Probiotics on the Alpha Diversity of Intestinal Microflora
3.7. Effects of Dietary Probiotics on the Composition of Intestinal Microflora
3.8. The Effects of Dietary Probiotics on the Functions of Intestinal Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GSH-PX | Glutathione peroxidase |
T-SOD | Total superoxide dismutase |
T-AOC | Total antioxidative capacity |
Il-1β | Interleukin-1β |
Il-6 | Interleukin-6 |
Il-10 | Interleukin-10 |
TNFAIP3 | Tumor necrosis factor alpha induced protein 3 |
OCLN | Occludin |
TJP1 | Tight junction protein 1 |
References
- Azad, M.; Kalam, A.; Sarker, M.; Li, T.; Yin, J. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res. Int. 2018, 2018, 9478630. [Google Scholar] [CrossRef] [Green Version]
- Huyghebaert, G.; Ducatelle, R.; Van Immerseel, F. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Y.; Zhang, Y.; Dong, H.; Wang, Y.; Zhang, J. Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. J. Therm. Biol. 2017, 66, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Musa, B.B.; Duan, Y.; Khawar, H.; Sun, Q.; Ren, Z.; Elsiddig Mohamed, M.A.; Abbasi, I.H.R.; Yang, X. Bacillus subtilis B21 and Bacillus licheniformis B26 improve intestinal health and performance of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1039–1049. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, I. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult. Sci. 2014, 93, 364–370. [Google Scholar] [CrossRef]
- Zeng, X.; Li, Q.; Yang, C.; Yu, Y.; Fu, Z.; Wang, H.; Fan, X.; Yue, M.; Xu, Y. Effects of Clostridium butyricum- and Bacillus spp.-Based Potential Probiotics on the Growth Performance, Intestinal Morphology, Immune Responses, and Caecal Microbiota in Broilers. Antibiotics 2021, 10, 624. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Abd-Allah, S.M.S.; Hassanein, K.M.A. The effects of prebiotic, probiotic and synbiotic supplementation on intestinal microbial ecology and histomorphology of broiler chickens. Int. J. Agro Vet. Med. Sci. 2012, 6, 277–289. [Google Scholar]
- Li, Y.; Xu, Q.; Huang, Z.; Lv, L.; Liu, X.; Yin, C.; Yan, H.; Yuan, J. Effect of Bacillus subtilis CGMCC 1.1086 on the growth performance and intestinal microbiota of broilers. J. Appl. Microbiol. 2016, 120, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Yu, Y.-H. Bacillus licheniformis–fermented products improve growth performance and the fecal microbiota community in broilers. Poult. Sci. 2020, 99, 1432–1443. [Google Scholar] [CrossRef]
- Gadde, U.D.; Oh, S.; Lee, Y.; Davis, E.; Zimmerman, N.; Rehberger, T.; Lillehoj, H.S. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Res. Vet. Sci. 2017, 114, 236–243. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Guo, Y.; Long, F. Effects of dietary lipids and Clostridium butyricum on the performance and the digestive tract of broiler chickens. Arch. Anim. Nutr. 2011, 65, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, I. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult. Sci. 2014, 93, 3097–3103. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Jiao, S.; Dai, Y.; An, J.; Lv, J.; Yan, X.; Wang, J.; Han, B. Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Front. Microbiol. 2018, 9, 2006. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; Zhao, F.; Liu, W.; Lv, R.; Khine, W.W.T.; Han, J.; Sun, Z.; Lee, Y.-K.; Zhang, H. Probiotic-directed modulation of gut microbiota is basal microbiome dependent. Gut Microbes 2020, 12, 1736974. [Google Scholar] [CrossRef] [Green Version]
- Rizzatti, G.; Lopetuso, L.; Gibiino, G.; Binda, C.; Gasbarrini, A. Proteobacteria: A common factor in human diseases. BioMed Res. Int. 2017, 2017, 9351507. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, W.; Zhang, H.; Wang, J.; Zhang, W.; Gao, J.; Wu, S.; Qi, G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci. Rep. 2018, 8, 15358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trias Mansilla, R.; Bañeras Vives, L.; Montesinos Seguí, E.; Badosa Romañó, E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 2008, 11, 231–236. [Google Scholar]
- Coda, R.; Rizzello, C.G.; Pinto, D.; Gobbetti, M. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl. Environ. Microbiol. 2012, 78, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Leo, E.E.M.; Fernández, J.J.A.; Campos, M.R.S. Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed. Pharm. 2016, 83, 816–826. [Google Scholar]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Favilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front Immunol. 2021, 26, 578386. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Zhan, X.; Zeng, X.; Zhou, L.; Cao, G.; Chen, A.; Yang, C. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. J. Anim. Sci. Biotechnol. 2016, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Li, R.; Liu, Y.; Ma, L.; Zha, J.; Qiao, X.; Chai, T.; Wu, B. Benefit of dietary supplementation with Bacillus subtilis BYS2 on growth performance, immune response, and disease resistance of broilers. Probiotics Antimicrob. Proteins 2020, 12, 1385–1397. [Google Scholar] [CrossRef]
- Liao, S.F.; Nyachoti, M. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Huang, L.; Xia, Z. A Discovery of Relevant Hepatoprotective Effects and Underlying Mechanisms of Dietary Clostridium butyricum Against Corticosterone-Induced Liver Injury in Pekin Ducks. Microorganisms 2019, 7, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Li, S.; Zheng, J.; Li, W.; Jiang, X.; Zhao, X.; Li, J.; Che, L.; Lin, Y.; Xu, S. Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide. J. Anim. Sci. Biotechnol. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, C.M.; Hilbe, M.; Ackermann, M.; Aguilar, C.; Eichwald, C. Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm. Microb. Cell. Fact. 2018, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rajput, I.; Li, L.; Xin, X.; Wu, B.; Juan, Z.; Cui, Z.; Yu, D.; Li, W. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult. Sci. 2013, 92, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarpour, H.; Chamani, M.; Rahimi, G.; Sadeghi, A.; Qujeq, D. The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 1285. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, S.; Nakagawa, T.; Nishiyama, Y.; Benno, Y.; Uchimura, T.; Komagata, K.; Kozaki, M.; Niimura, Y. Effect of oxygen on the growth of Clostridium butyricum (type species of the genus Clostridium), and the distribution of enzymes for oxygen and for active oxygen species in clostridia. J. Ferment. Bioeng. 1998, 86, 368–372. [Google Scholar] [CrossRef]
- Liu, J.; Fu, Y.; Zhang, H.; Wang, J.; Zhu, J.; Wang, Y.; Guo, Y.; Wang, G.; Xu, T.; Chu, M. The hepatoprotective effect of the probiotic Clostridium butyricum against carbon tetrachloride-induced acute liver damage in mice. Food Funct. 2017, 8, 4042–4052. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.-i.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Heng, C.; Zhou, X.; Cao, G.; Jiang, L.; Wang, J.; Li, K.; Wang, D.; Zhan, X. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br. J. Nutr. 2021, 125, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, C.; Qu, X.; Guo, S.; Chen, J.F.; He, C.; Zhou, X.; Zhu, S. Effects of Bacillus subtilis C-3102 on production, hatching performance, egg quality, serum antioxidant capacity and immune response of laying breeders. J. Anim. Physiol. Anim. Nutr. 2019, 103, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yan, C.; Liu, T.; Xu, C.; Wen, K.; Liu, L.; Zhao, M.; Zhang, J.; Geng, T.; Gong, D. Research Note: Increase of bad bacteria and decrease of good bacteria in the gut of layers with vs. without hepatic steatosis. Poult. Sci. 2020, 99, 5074–5078. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.; Zhang, H.; Wu, S.; Hui, Q.; Yang, C.; Fang, R.; Qi, G. Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Front. Physiol. 2019, 9, 1968. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′–3′) | Genbank Accession Number |
---|---|---|
IL-6 | F: AACCTCAACCTCCCCAA | XM_013171777. 1 |
R:CAGCGACTCAACTTTTT | ||
IL-10 | F: CATCAAGAACAGCGAGC | XM_013189578. 1 |
R: CATCCTTTTCAAACGTC | ||
IL-1β | F: CCGCTTCATCTTCTACCG | XM_013199176. 1 |
R: TGTAGGTGGCGATGTTGAC | ||
TNFAIP3 | F:GAATGAACCCTCCTCCG | XM_013175522. 1 |
R:ATCTGGTAACAGGAAGG | ||
TJP1 | F:ACGCTGTTGAATGTCCC | XM_013177396. 1 |
R:TCGAAGACTGCCGTTGC | ||
OCLN | F:GGAGCAGCCCAGGAAAG | XM_013199669. 1 |
R:GCTTGAGGTCGGTGTCG | ||
GAPDH | F:GCCATCAATGATCCCTTCAT | XM_013199522. 1 |
R:CTGGGGTCACGCTCCTG |
Group | A | B | C | D | p Value | |
---|---|---|---|---|---|---|
1 d | Body Weight (BW) | 95.28 ± 3.40 | 95.28 ± 1.95 | 91.94 ± 4.40 | 93.33 ± 1.82 | 0.206 |
28 d | BW | 1450.18 ± 100.00b | 1472.88 ± 76.71a | 1567.33 ± 32.02a | 1532.16 ± 115.73a | 0.011 |
70 d | BW | 3369.88 ± 198.21b | 3705.15 ± 201.35a | 3853.92 ± 196.43a | 3781.33 ± 367.51a | 0.017 |
1–28 d | ADG | 48.39 ± 3.64 | 49.20 ± 3.73 | 52.69 ± 1.14 | 51.39 ± 4.15 | 0.099 |
ADFI | 109.48 ± 6.31 | 110.43 ± 5.69 | 115.80 ± 5.23 | 113.47 ± 7.80 | 0.318 | |
F/G | 2.27 ± 0.15 | 2.25 ± 0.19 | 2.20 ± 0.10 | 2.22 ± 0.21 | 0.883 | |
29–70 d | ADG | 45.71 ± 2.88b | 53.15 ± 5.75a | 54.44 ± 5.14a | 53.55 ± 7.16a | 0.042 |
ADFI | 246.74 ± 10.68c | 262.16 ± 7.99b | 278.81 ± 14.29a | 271.67 ± 15.55ab | 0.002 | |
F/G | 5.41 ± 0.24 | 4.97 ± 0.40 | 5.17 ± 0.69 | 5.15 ± 0.81 | 0.633 | |
1–70 d | ADG | 46.78 ± 2.85b | 51.57 ± 2.87a | 53.74 ± 2.82a | 52.69 ± 5.26a | 0.016 |
ADFI | 191.84 ± 8.44c | 201.46 ± 5.82bc | 213.61 ± 8.26a | 208.39 ± 11.18ab | 0.002 | |
F/G | 4.11 ± 0.18 | 3.91 ± 0.18 | 3.99 ± 0.31 | 3.99 ± 0.52 | 0.784 |
Group | A | B | C | D | p Value | |
---|---|---|---|---|---|---|
Length (cm) | duodenum | 34.5 ± 3.53 | 36 ± 3.14 | 36.67 ± 1.24 | 35.54 ± 2.71 | 0.399 |
jejunum | 83.88 ± 2.67 | 83.88 ± 4.72 | 83.58 ± 3.70 | 86.58 ± 2.97 | 0.450 | |
ileum | 77.21 ± 3.83 | 77.13 ± 3.65 | 77.46 ± 2.60 | 80.58 ± 4.52 | 0.333 | |
cecum | 41.33 ± 3.65 | 40.38 ± 2.54 | 41.38 ± 4.54 | 42.04 ± 2.96 | 0.875 | |
Weight (g) | duodenum | 12.04 ± 1.30b | 14.67 ± 1.91a | 15.38 ± 1.36a | 15.46 ± 2.08a | 0.007 |
jejunum | 28.83 ± 4.38 | 33.79 ± 2.93 | 33.88 ± 5.27 | 33.25 ± 2.73 | 0.676 | |
ileum | 27.29 ± 5.30 | 29.96 ± 3.31 | 29.79 ± 4.82 | 28.04 ±2.86 | 0.631 | |
cecum | 6.71 ± 1.22 | 8.08 ± 1.19 | 7.42 ± 1.28 | 6.92 ± 0.52 | 0.118 | |
W/L (g/cm) | duodenum | 0.35 ± 0.02 | 0.41 ± 0.01 | 0.42 ± 0.01 | 0.44 ± 0.04 | 0.051 |
jejunum | 0.34 ± 0.02b | 0.40 ± 0.01a | 0.40 ± 0.02a | 0.38 ± 0.01b | 0.047 | |
ileum | 0.35 ± 0.02 | 0.39 ± 0.01 | 0.38 ± 0.02 | 0.35 ± 0.01 | 0.227 | |
cecum | 0.16 ± 0.01b | 0.20 ± 0.01a | 0.18 ± 0.01ab | 0.16 ± 0.01b | 0.009 |
Intestines | Group | Observed Species | Shannon | Simpson | Chao1 | ACE |
---|---|---|---|---|---|---|
Jejunum | A | 2014 ± 212.61a | 3.53 ± 0.60 | 0.49 ± 0.07 | 2803.92 ± 377.12a | 3099.14 ± 410.91a |
B | 731 ± 97.47b | 3.73 ± 0.74 | 0.66 ± 0.13 | 1015.09 ± 161.16b | 1057.89 ± 200.14b | |
C | 847 ± 161.85b | 3.37 ± 0.49 | 0.61 ± 0.09 | 1124.53 ± 149.85b | 1210.56 ± 170.31b | |
D | 849 ± 186.34b | 3.85 ± 0.60 | 0.73 ± 0.09 | 1147.94 ± 263.51b | 1247.34 ± 301.05b | |
p value | <0.001 | 0.944 | 0.446 | <0.001 | <0.001 | |
Ileum | A | 805.67 ± 109.18 | 3.90 ± 0.61 | 0.66 ± 0.09 | 1184.02 ± 193.79 | 1255.22 ± 201.18 |
B | 778.17 ± 100.71 | 3.89 ± 0.52 | 0.69 ± 0.09 | 1089.46 ± 156.84 | 1170.38 ± 171.21 | |
C | 1134.40 ± 240.61 | 5.03 ± 0.41 | 0.87 ± 0.03 | 1708.25 ± 504.40 | 1908.66 ± 570.60 | |
D | 891.00 ± 315.99 | 3.88 ± 0.94 | 0.68 ± 0.15 | 1462.91 ± 644.19 | 1663.77 ± 799.07 | |
p value | 0.520 | 0.484 | 0.399 | 0.625 | 0.581 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Dong, B.; Zhao, M.; Liu, L.; Geng, T.; Gong, D.; Wang, J. Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition. Animals 2021, 11, 3174. https://doi.org/10.3390/ani11113174
Yu J, Dong B, Zhao M, Liu L, Geng T, Gong D, Wang J. Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition. Animals. 2021; 11(11):3174. https://doi.org/10.3390/ani11113174
Chicago/Turabian StyleYu, Jie, Biao Dong, Minmeng Zhao, Long Liu, Tuoyu Geng, Daoqing Gong, and Jian Wang. 2021. "Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition" Animals 11, no. 11: 3174. https://doi.org/10.3390/ani11113174
APA StyleYu, J., Dong, B., Zhao, M., Liu, L., Geng, T., Gong, D., & Wang, J. (2021). Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition. Animals, 11(11), 3174. https://doi.org/10.3390/ani11113174