Antimicrobial Resistance in Equine Reproduction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Development of Antimicrobial Resistance
3. Bacteria in the Equine Uterus
4. Antimicrobial Resistance in the Mare’s Reproductive Tract
5. Bacteria in Semen
5.1. Effects of Bacteria on Sperm Quality
5.2. Effects of Antibiotics in Semen Extenders on Bacteria
5.3. Effects of Antibiotics in Semen Extenders on Sperm Quality
6. Effects of Antibiotics in Semen Extenders on the Mare
7. Alternatives to Addition of Conventional Antibiotics to Semen Extenders
7.1. Antimicrobial Peptides
7.2. Nanoparticles
7.3. Physical Removal of Bacteria
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Antimicrobial resistance. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 13 June 2021).
- WHO. Antibiotic resistance. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 13 June 2021).
- Plackett, B. Why big pharma has abandoned antibiotics. Nature 2020, 586, S50–S52. [Google Scholar] [CrossRef]
- American Veterinary Medical Association. Available online: https://www.avma.org/Policies/Pages/Judicious-Therapeutic-Use-of-Antimicrobials.aspx (accessed on 13 June 2021).
- Wright, G.D. Antibiotic resistance in the environment: A link to the clinic? Curr. Opin. Microbiol. 2010, 13, 589–594. [Google Scholar] [CrossRef]
- Johansson, A.; Greko, C.; Engström, B.E.; Karlsson, M. Antimicrobial susceptibility of Swedish, Norwegian and Danish isolates of Clostridium perfringens from poultry, and distribution of tetracycline resistance genes. Vet. Microbiol. 2004, 99, 251–257. [Google Scholar] [CrossRef]
- Divala, T.H.; Corbett, E.L.; Stagg, H.R.; Nliwasa, M.; Sloan, D.J.; French, N.; Fielding, K.L. Effect of the duration of antimicrobial exposure on the development of antimicrobial resistance (AMR) for macrolide antibiotics: Protocol for a systematic review with a network meta-analysis. Sys. Rev. 2018, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.L.; Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 2011, 35, 768–789. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.L. Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens. Front. Microbiol. 2012, 2, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Webb, V. Biomedical Research Reports: Emerging Infections; Krause, R.M., Ed.; Academic Press: New York, NY, USA, 1998; Antibiotic resistance in bacteria; pp. 239–273. [Google Scholar]
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal Gene Transfer and the Genomics of Enterococcal Antibiotic Resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello-López, J.M.; Cabrero-Martínez, O.A.; Ibáñez-Cervantes, G.; Hernández-Cortez, C.; Pelcastre-Rodríguez, L.I.; Luis, U.; Gonzalez-Avila, L.U.; Castro-Escarpulli, G. Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. Microorganisms 2019, 7, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørum, H.; L’Abée-Lund, T.M. Antibiotic resistance in food-related bacteria—A result of interfering with the global web of bacterial genetics. Int. J. Food Microbiol. 2002, 78, 43–56. [Google Scholar] [CrossRef]
- Andersson, D.I.; Levin, B.R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 1999, 2, 489–493. [Google Scholar] [CrossRef]
- Martínez, J.L.; Coque, T.M.; Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 2015, 13, 116–123. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.R. Occurrence of multiple drug Resistant (MDR) Aerobic Bacteria in Vaginal Swabs of Mares and Their Association with Infertility. Indian J. Comp. Micobiol. Immunol. Infect. Dis. 2009, 30, 105–112. [Google Scholar]
- Kenney, R.M.; Bergman, R.V.; Cooper, W.L.; Morse, G.W. Minimal contamination techniques for breeding mares: Techniques and preliminary findings. In Proceedings of the 21st Annual Convention of the American Association of Equine Practitioners, Boston, MA, USA, 1–3 December 1975; pp. 327–335. [Google Scholar]
- Albihn, A.; Baverud, V.; Magnusson, U. Uterine microbiology and antimicrobial susceptibility in isolated bacteria from mares with fertility problems. Acta Vet. Scand. 2003, 44, 121–129. [Google Scholar] [CrossRef]
- Rota, A.; Calicchio, E.; Nardoni, S.; Fratini, F.; Ebani, V.V.; Sgorbini, M.; Panzani, D.; Camillo, F.; Mancianti, F. Presence and distribution of fungi and bacteria in the reproductive tract of healthy stallions. Theriogenology 2011, 76, 464–470. [Google Scholar] [CrossRef]
- European Council Directive 92/65/EEC. 1992. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01992L0065-20190716&qid=1634831824015 (accessed on 21 October 2021).
- Klug, E. Routine AI application in the Hannoverian Sport Horse Breeding Association. Anim. Reprod. Sci. 1992, 28, 39–44. [Google Scholar] [CrossRef]
- Holyoak, G.; Lyman, C.C. The Equine Endometrial Microbiome: A Brief Review. Am. J. Biomed. Sci. Res. 2021, 11, 532–534. [Google Scholar] [CrossRef]
- Al-Kass, Z.; Guo, Y.; Vinnere Pettersson, O.; Niazi, A.; Morrell, J.M. Metagenomic analysis of bacteria in stallion semen. Anim. Reprod. Sci. 2020, 221, 106568. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, M.M.; Causey, R.C. Clinical and Subclinical Endometritis in the Mare: Both Threats to Fertility. Reprod. Domest. Anim. 2009, 44 (Suppl. S3), 10–22. [Google Scholar] [CrossRef]
- Davis, H.A.; Stanton, M.B.; Thungrat, K.; Boothe, D.M. Uterine bacterial isolates from mares and their resistance to antimicrobials: 8,296 cases (2003–2008). J. Am. Vet. Med. Assoc. 2013, 242, 977–983. [Google Scholar] [CrossRef]
- Cerny, K.L.; Little, T.V.; Scoggin, C.F.; Coleman, R.J.; Troedsson, M.H.T. Presence of Bacteria on the External Genitalia of Healthy Stallions and its Transmission to the Mare at the Time of Breeding by Live Cover. J. Eq. Vet. Sci 2014, 34, 369–374. [Google Scholar] [CrossRef]
- Christoffersen, M.; Troedsson, M. Inflammation and fertility in the mare. Reprod. Domest. Anim. 2017, 52 (Suppl. S3), 14–20. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.L.; Kenny, R.M.; Timony, P.J. Venereal disease. Vet. Clin. North. Amer. Eq. Pract. 1992, 8, 191–203. [Google Scholar] [CrossRef]
- Parlevliet, J.M.; Samper, J.C. Disease transmission through semen. In Equine Breeding Management and Artificial Insemination; W.B. Saunders Co.: Philadelphia, PA, USA, 2000; pp. 133–140. [Google Scholar]
- Samper, J.C.; Tibary, A. Disease transmission in horses. Theriogenology 2006, 66, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, J.; Kirchhoff, H.; Petzoldt, K.; Sonnenschein, B. Isolation of acholeplasmas and mycoplasmas from aborted horse fetuses. Vet. Rec. 1979, 104, 350. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, H.; Heitmann, J.; Bisping, W. Mycoplasmas isolated from the genital tract of mares. Zbl. Bakt. Mikrobiol. Hyg. 1980, 246, 228–235. [Google Scholar]
- Pasolini, M.; Prete, C.; Del Fabbri, S.; Auletta, L. Bacterial endometritis that is refractory to traditional antimicrobial treatment is a significant challenge in the equine breeding industry. In Genital Infections and Infertility; Chapter 15; Darwish, A., Ed.; Intech.: London, UK, 2016; Available online: https://www.intechopen.com/books/genital-infections-and-infertility/endometritis-and-infertility-in-the-mare-the-challenge-in-equine-breeding-industry-a-review (accessed on 13 June 2021).
- Morris, L.; McCue, P.M.; Aurich, C. Equine endometritis: A review of challenges and new approaches. Reproduction 2020, 160, R95–R110. [Google Scholar] [CrossRef] [PubMed]
- Witte, T.S.; Bergwerff, A.A.; Scherpenisse, P.; Drillich, M.; Heuwieser, W. Ceftiofur derivates in serum and endometrial tissue after intramuscular administration in healthy mares. Theriogenology 2010, 74, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Davolli, G.M.; Beavers, K.N.; Medina, V.; Sones, J.; Pinto, C.R.; Paccamonti, D.L.; Causey, R.C. Concentrations of sulfadiazine and trimethoprim in blood and endometrium of mares after administration of an oral suspension. J. Equine Vet. Sci. 2018, 67, 27–30. [Google Scholar] [CrossRef]
- González, C.; Moreno, L.; Fumuso, E.; García, J.; Rivulgo, M.; Confalonieri, A.; Sparo, M.; Sánchez Bruni, S. Enrofloxacin-based therapeutic strategy for the prevention of endometritis in susceptible mares. J. Vet. Pharmacol. Ther. 2010, 33, 287–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, J.S.; Han, S.; Nielsen, S.; Pearson, L.K.; Gay, J.M.; Tibary, A. Consequences of intrauterine enrofloxacin infusion on mare endometrium. J. Equine Vet. Sci. 2012, 32, 106–111. [Google Scholar] [CrossRef]
- Trundell, D.A.; Ferris, R.A.; Hennet, M.R.; Wittenburg, L.A.; Gustafson, D.L.; Borlee, B.R.; McCue, P.M. Pharmacokinetics of Intrauterine Ciprofloxacin in the Mare and Establishment of Minimum Inhibitory Concentrations for Equine Uterine Bacterial Isolates. J. Equine Vet. Sci. 2017, 54, 54–59. [Google Scholar] [CrossRef]
- Boyd, B.E.; Allen, W.E. Absorption of neomycin from the equine uterus: Effect of bacterial and chemical endometritis. Vet. Rec. 1988, 122, 37–39. [Google Scholar] [CrossRef]
- Jeremejeva, J.; Orro, T.; Waldmann, A.; Arend, A.; Kask, K. Treatment of dairy cows with PGF2α or NSAID, in combination with antibiotics, in cases of postpartum uterine inflammation. Acta Vet. Scand. 2012, 54, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mileva, R.; Karadaev, M.; Fasulkov, I.; Petkova, T.; Rusenova, N.; Vasilev, N.; Milanova, A. Oxytetracycline Pharmacokinetics After Intramuscular Administration in Cows with Clinical Metritis Associated with Trueperella Pyogenes Infection. Antibiotics 2020, 9, 392. [Google Scholar] [CrossRef]
- Pisello, L.; Rampacci, E.; Stefanetti, V.; Beccati, F.; Hyatt, D.R.; Passamonti, F. Temporal efficacy of antimicrobials against aerobic bacteria isolated from equine endometritis: An Italian retrospective analysis (2010–2017). Vet. Rec. 2019, 185, 105413. [Google Scholar] [CrossRef] [Green Version]
- Dabernat, H.J.; Delmas, C.F.; Tainturier, D.J.; Lareng, M.B. In vitro susceptibility of Haemophilus equigenitalis, the causative organism of contagious equine metritis 1977, to antimicrobial agents. Antimicrob. Agents Chemother. 1980, 18, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Berwal, S.S.; Bugalia, N.S.; Kapoor, P.K.; Garg, D.N.; Monga, D.P.; Batra, M. Cytological and microbiological evaluation of uterine flush of fertile and repeat breeder mares and post-treatment fertility. Haryana Vet. 2006, 45, 15–17. [Google Scholar]
- Frontoso, R.; De Carlo, E.; Pasolini, M.P.; van der Meulen, K.; Pagnini, U.; Iovane, G.; De Martino, L. Retrospective study of bacterial isolates and their antimicrobial susceptibilities in equine uteri during fertility problems. Res. Vet. Sci. 2008, 84, 1–6. [Google Scholar] [CrossRef]
- Goncagül, G.; Seyrek-İntas, K. Antimicrobial Susceptibility of Bacteria Isolated from Uteri of Thoroughbred Mares with Fertility Problems. Kafkas Univ. Vet. Fak. Derg. 2013, 19, A105–A109. [Google Scholar] [CrossRef]
- Benko, T.; Boldizar, M.; Novotny, F.; Hura, V.; Valocki, I.; Dudrikova, K.; Karamanova, M.; Petrovic, V. Incidence of bacterial pathogens in equine uterine swabs, their antibiotic resistance patterns, and selected reproductive indices in English thoroughbred mares during the foal heat cycle. Veterinární Med. 2015, 60, 613–620. [Google Scholar] [CrossRef]
- Goncagul, G.; Gocmen, H.; Yendim, S.K.; Yilmaz, K.; Intas, K.S. Bacteriologic and cytologic examination results of mares with pneumovagina in bursa region. Inter. J. Vet. Sci. 2016, 5, 295–298. [Google Scholar]
- Nocera, F.P.; Papulino, C.; Del Prete, C.; Palumbo, V.; Pasolini, M.P.; De Martino, L. Endometritis associated with Enterococcus casseliflavus in a mare: A case report. Asian Pac. J. Trop. Biomed. 2017, 7, 760–762. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, M.S.; Palomares, R. Aerobic uterine isolates and antimicrobial susceptibility in mares with post-partum metritis. Equine Vet. J. 2018, 50, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, K.; Subapriya, S.; Dinesh, N.M.; Partheban, P. Antibiotic sensitivity test on pathogens causing reproductive tract infection in thoroughbred mares. J. Entomol. Zool. Stud. 2020, 8, 913–915. [Google Scholar]
- Picket, B.W.; Voss, J.L.; Jones, R.L. Control of bacteria in stallions and their semen. J. Equine vet. Sci. 1999, 19, 424–441. [Google Scholar] [CrossRef]
- Clement, F.; Vidament, M.; Guerin, B. Microbial contamination of stallion semen. Biol. Reprod. 1995, 1, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Neto, C.R.; da Silva, Y.F.R.S.; Resende, H.L.; Guasti, P.N.; Monteiro, G.A.; Papa, P.M.; Dell’aqua Júnior, J.A.; Filho, J.N.P.P.; Alvarena, M.A.; Papa, F.O. Control Methods and Evaluation of Bacterial Growth on Fresh and Cooled Stallion Semen. J. Equine Vet. Sci 2015, 35, 277–282. [Google Scholar] [CrossRef]
- Pasing, S.; Aurich, C.; von Lewinski, M.; Wulf, M.; Kruger, M.; Aurich, J.E. Development of the genital microflora in stallions used for artificial insemination throughout the breeding season. Anim. Reprod. Sci. 2013, 139, 53–61. [Google Scholar] [CrossRef]
- Aurich, J.; Aurich, C. Developments in European horse breeding and consequences for veterinarians in equine reproduction. Reprod. Domest. Anim. 2006, 41, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.G. Therapy of Endometritis in Mares. J. Am. Vet. Med. Assoc. 1986, 188, 1390–1392. [Google Scholar] [PubMed]
- Ortega-Ferrusola, C.; González-Fernández, L.; Muriel, A.; Macías-García, B.; Rodríguez-Martínez, H.; Tapia, J.A.; Peña, F.J. Does the microbial flora in the ejaculate affect the freezeability of stallion sperm? Reprod. Domest. Anim. 2009, 44, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Yaniz, J.L.; Marco-Aguado, M.A.; Mateos, J.A.; Santolaria, P. Bacterial contamination of ram semen, antibiotic sensitivities, and effects on sperm quality during storage at 15 degrees C. Anim. Reprod. Sci. 2010, 122, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Onemu, S.O.; Ibeh, I.N. Studies on the significance of positive bacterial semen cultures in male infertility in Nigeria. Int. J. Fertil. Womens Med. 2001, 46, 210–214. [Google Scholar] [PubMed]
- Hernández-Avilés, C.; Serafini, R.; Love, C.C.; Teague, S.R.; LaCaze, K.A.; Lawhon, S.D.; Wu, J.; Blanchard, T.L.; Varner, D.D. The effects of antibiotic type and extender storage method on sperm quality and antibacterial effectiveness in fresh and cooled-stored stallion semen. Theriogenology 2018, 122, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Silva, A.R. Current and alternative trends in antibacterial agents used in mammalian semen technology. Anim. Reprod. 2020, 17, e20190111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varner, D.D.; Scanlan, C.M.; Thompson, J.A.; Brumbaugh, G.W.; Blanchard, T.L.; Carlton, C.M.; Johnson, L. Bacteriology of preserved stallion semen and antibiotics in semen extenders. Theriogenology 1998, 50, 559–573. [Google Scholar] [CrossRef]
- Aurich, C.; Spergser, J. Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa. Theriogenology 2007, 67, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Al-Kass, Z.; Spergser, J.; Aurich, C.; Kuhl, J.; Schmidt, K.; Morrell, J.M. Effect of presence or absence of antibiotics and use of modified single layer centrifugation on bacteria in pony stallion semen. Reprod. Domest. Anim. 2018, 54, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Avilés, C.; Love, C.C.; Serafini, R.; Ramírez-Agámez, L.; Kelley, D.E.; de Andino, E.M.; Teague, S.R.; LaCaze, K.A.; Brinsko, S.P.; Varner, D.D. Inclusion of supplemental antibiotics (amikacin—penicillin) in a commercial extender for stallion semen: Effects on sperm quality, bacterial growth, and fertility following cooled storage. Theriogenology 2020, 158, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Malaluang, P.; Wilén, E.; Hansson, I.; Lindahl, J.; Morrell, J.M. Antibiotic resistance in vaginal flora of inseminated mares. 2021; in press. [Google Scholar]
- Anwar, M.; Iqbal, Q.; Saleem, F. Improper disposal of unused antibiotics: An often overlooked driver of antimicrobial resistance. Expert Rev. Antibiot. Ther. 2020, 18, 697–699. [Google Scholar] [CrossRef] [Green Version]
- Vickram, A.S.; Kuldeep, D.; Archana, K.; Parameswari, R.; Ramesh Pathy, M.; Iqbal, H.M.N.; Sridharan, T.B. Antimicrobial peptides in semen extenders: A valuable replacement option for antibiotics in cryopreservation—a prospective review. J. Exp. Biol. Agric. Sci. 2017, 5, 578–588. [Google Scholar]
- Hall-Stoodley, L.; Stoodley, P.; Kathju, S.; Hoiby, N.; Moser, C.; Costerton, W.J.; Bjarnsholt, T. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol. Medic. Microbiol. 2012, 65, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Coelho, M.L.; Duarte, A.F.S.; Bastos, M.C.F. Bacterial labionin-containing peptides and sactibiotics: Unusual types of antimicrobial peptides with potential use in clinical settings (a review). Curr. Top. Med. Chem. 2017, 17, 1–22. [Google Scholar]
- Bourgeon, F.; Evrard, B.; Brillard-Bourdet, M.; Colleu, D.; Jegou, B.; Pineau, C. Involvement of semenogelin-derived peptides in the antibacterial activity of human seminal plasma. Biol. Reprod. 2004, 70, 768–774. [Google Scholar] [CrossRef]
- Hirt, H.; Gorr, S.U. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 4903–4910. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.; Junkes, C.; Müller, P.; Speck, S.; Rüdiger, K.; Dathe, M.; Müller, K. Effects of cationic antimicrobial peptides on liquid-preserved boar spermatozoa. PLoS ONE 2014, 9, e100490. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.; Dathe, M.; Waberski, D.; Müller, K. Liquid storage of boar semen: Current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders. Theriogenology 2016, 85, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, I.A.; Samaras, T.; Anastasiadou, S.; Basioura, A.; Ntemka, A.; Michos, I.; Simeonidis, K.; Karagiannis, I.; Tsousis, G.; Angelakeris, M.; et al. Iron Oxide Nanoparticles as an Alternative to Antibiotics Additive on Extended Boar Semen. Nanomaterials 2020, 10, 1568. [Google Scholar] [CrossRef]
- Barone, F.; Ventrella, D.; Zannoni, A.; Forni, M.; Bacci, M.L. Can microfiltered seminal plasma preserve the morphofunctional characteristics of porcine spermatozoa in the absence of antibiotics? A preliminary study. Reprod. Domest. Anim. 2016, 51, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Klein, C.; Lundeheim, N.; Erol, E.; Troedsson, M.H.T. Removal of bacteria from stallion semen by colloid centrifugation. Anim. Reprod. Sci. 2014, 145, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Nunes, M.M. Practical guide to Single Layer Centrifugation of stallion semen. Equine Vet. Educ. 2018, 30, 392–398. [Google Scholar] [CrossRef]
- Morrell, J.M.; Nunez-Gonzalez, A.; Crespo-Felez, I.; Martinez-Martinez, S.; Martinez Alborcia, M.J.; Fernandez-Alegre, E.; Dominguez, J.C.; Gutierrez-Martin, C.B.; Martinez-Pastor, F. Removal of bacteria from boar semen using a low-density colloid. Theriogenology 2019, 126, 272–278. [Google Scholar] [CrossRef] [PubMed]
Country and Source | Material Used and Susceptibility/Resistance Results |
---|---|
France [45] | Taylorella equigenitalis isolates from cervical swabs of mares with acute endometritis or cervicitis; the isolates were resistant to streptomycin, clindamycin, lincomycin, and metronidazole. |
Sweden [19] | 135 bacterial isolates from uterine swabs from mares with fertility problems; ß-haemolytic Streptococcus was resistant to gentamicin, neomycin, oxytetracycline, and trimethoprim-sulfamethoxazole out of the 11 tested antibiotics. E. coli was resistant to 9 of 10 tested antibiotics, including ampicillin, cephalothin, chloramphenicol, gentamicin, neomycin, nitrofurantoin, oxytetracycline, streptomycin, and trimethoprim-sulfamethoxazole. |
India [46] | Bacteria from uterine flushes from three repeat breeder mares included Escherichia coli, Klebsiella spp. and Micrococcus spp. susceptible to amoxicillin, chloramphenicol, doxycycline and gentamicin and resistant to cloxacillin, metronidazole, penicillin, and sulphadiazine. |
Italy [47] | Isolates from uterus of mares with fertility problems: Str. group C were only susceptible to amoxicillin/clavulanic acid at 82.7%. E. coli showed high susceptibility to a significant number of drugs. |
India [17] | Bacteria in vaginal swabs of infertile and healthy mares showed resistance. All isolates belonging to Streptococcus spp. were highly resistant to amoxiclav, ampicillin, carbenicillin, cefotaxime, cephalexin, enrofloxacin, clindamycin, cloxacillin, co-trimoxazole, co-trimazine, erythromycin, gentamicin, oxacillin, and tetracycline. Enterococcus spp. and E. coli isolates from infertile mares were resistant to ß-lactam antibiotics and imipenem. Enterococcus spp. were highly resistant to ampicillin, carbenicillin, cefdinir, cefotaxime, cephalexin, chloramphenicol, enrofloxacin, clindamycin, cloxacillin, co-trim-oxazole, co-trimazine, erythromycin, gentamicin, norfloxacin, oxacillin, and vancomycin. |
US [26] | Uterine swab collected at pre-breeding examination or infertility investigation. E. coli was highly resistant to ampicillin and trimethoprim-sulfonamide, S. equi subsp. zooepidemicus was highly resistant to oxytetracycline and bacteria belonging to Enterobacteriaceae were highly resistant to ampicillin, cefazolin, penicillin, and polymyxin B. |
Germany [48] | Isolates from the uterus of mares with fertility problems showed that ß-hemolytic streptococci were resistant to colistin, whereas all E. coli strains were resistant to penicillin and erythromycin. |
Slovakia [49] | Bacterial pathogens in equine cervical swabs in English thoroughbred mares taken during the foal heat cycle. β-haemolytic streptococci and K spp. showed high resistance to penicillin. E. coli, Pseudomonas spp. were highly resistant to penicillin and sulfisoxazole, and Proteus spp. were highly resistance to penicillin, tetracycline and sulfisoxazole. |
Turkey [50] | Endometrial swabs taken from mares with pneumovagina and normal mares. E. coli was resistant to penicillin. S. equi subsp. zooepidemicus was highly resistant to tetracycline and colistin. Staphylococcus intermedius was resistant to penicillin, tetracycline, erythromycin, gentamicin, and colistin. Str. equinus was highly resistance to enrofloxacin, gentamicin, and colistin. Ent. faecium was resistant to ceftiofur and enrofloxacin. Gardnerella vaginalis was highly resistant to gentamicin, and sulfamethoxazole/trimethoprim. |
Italy [51] | Ent. casseliflavus isolates from a mare with endometritis were resistant or intermediate to 18 of the 23 tested antibiotics, including amikacin, kanamycin, neomycin, streptomycin, imipenem, meropenem, ceftiofur, ceftriaxone, ciprofloxacin, enrofloxacin, norfloxacin, clindamycin, erythromycin, amoxicillin-clavulanic acid, ampicillin, colistin sulfate, rifampicin, and trimethoprim-sulfamethoxazole. |
US [52] | Gram-positive bacteria from mares with postpartum metritis were highly resistant to ampicillin, clarithromycin, clindamycin, erythromycin, oxacillin, penicillin, rifampin, ticarcillin, and trimethoprim/sulfonamides. Str. zooepidemicus was highly resistant to amikacin, enrofloxacin, and orbifloxacin. |
Italy [44] | Isolates from uterine swabs of mares suffering from endometritis. E. coli was highly resistant to ampicillin, cefquinome, cefazolin, ceftiofur, penicillin, rifampin, and thiamphenicol. Str. zooepidemicus was highly resistant to amikacin, cefazolin, ceftiofur, enrofloxacin, gentamicin, and marbofloxacin. |
India [53] | Isolates from cervical swabs of mares presented at the clinic. E. coli was sensitive to ofloxacin, azithromycin, gentamicin and amikacin, and resistance to tetracycline, cefotaxime, amoxicillin+clavulanate, and amikacin. β-hemolytic streptococci had a high sensitivity to cefotaxime, amoxicillin+clavulanate and azithromycin, and high resistance against tetracycline, amikacin, and gentamicin. Both species, plus Staphylococcus spp., showed resistance to tetracycline. |
Reference | Antibiotics | Effect on Sperm Quality |
---|---|---|
[65] | Amikacin, gentamicin, potassium and sodium penicillin, polymixin B, streptomycin, and ticarcillin | Total motility, progressive motility and rapid motility were lower when polymixin B was added than for the other antibiotics |
[66] | Gentamicin | Adverse effect on sperm motility and velocity. These authors concluded that the presence of gentamicin could affect sperm function during cooled storage |
[67] | Llincomycin and spectinomycin | Sperm DNA fragmentation index was greater in the samples containing these antibiotics than in those without. Sperm motility, membrane integrity and mitochondrial membrane potential were not different between semen samples with and without lincomycin and spectinomycin |
[64] | Potassium penicillin G-amikacin disulfate, ticarcillin disodium-potassium clavulanate, piperacillin sodium/tazobactam sodium, or meropenem | Slight differences were detected for sperm motility and kinematics and in chromatin integrity when various antibiotic combinations were used |
[68] | Adding amikacin sulfate and potassium penicillin G to INRA-96® extender (already contains penicillin, gentamicin and amphoteracin-B) | Reported to increase the antimicrobial effect without having an adverse effect on sperm motility |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaluang, P.; Wilén, E.; Lindahl, J.; Hansson, I.; Morrell, J.M. Antimicrobial Resistance in Equine Reproduction. Animals 2021, 11, 3035. https://doi.org/10.3390/ani11113035
Malaluang P, Wilén E, Lindahl J, Hansson I, Morrell JM. Antimicrobial Resistance in Equine Reproduction. Animals. 2021; 11(11):3035. https://doi.org/10.3390/ani11113035
Chicago/Turabian StyleMalaluang, Pongpreecha, Elin Wilén, Johanna Lindahl, Ingrid Hansson, and Jane M. Morrell. 2021. "Antimicrobial Resistance in Equine Reproduction" Animals 11, no. 11: 3035. https://doi.org/10.3390/ani11113035
APA StyleMalaluang, P., Wilén, E., Lindahl, J., Hansson, I., & Morrell, J. M. (2021). Antimicrobial Resistance in Equine Reproduction. Animals, 11(11), 3035. https://doi.org/10.3390/ani11113035