Effect of Natural Sorbents in the Diet of Fattening Pigs on Meat Quality and Suitability for Processing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animal Diets
2.3. Sampling of Experimental Material
2.4. Physicochemical Measurements
2.5. Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- United States Department of Agriculture, Foreign Agricultural Service. United States Agricultural Export Yearbook; USDA Foreign Agricultural Service: Washington, DC, USA, 2019. [Google Scholar]
- Bonneau, M.; Lebret, B. Production systems and influence on eating quality of pork. Meat Sci. 2010, 84, 293–300. [Google Scholar] [CrossRef]
- Channon, H.A.; D’Souza, D.N.; Jarrett, R.G.; Lee, G.S.H.; Watling, R.J.; Jolley, J.Y.C.; Dunshea, F.R. Guaranteeing the quality and integrity of pork—an Australian case study. Meat Sci. 2018, 144, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Wever, M.; Wognum, N.; Trienekens, J.; Omta, O. Alignment between chain quality management and chain governance in EU pork supply chains: A Transaction-Cost-Economics perspective. Meat Sci. 2010, 84, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Elliott, C.T.; Connolly, L.; Kolawole, O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res. 2020, 36, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerre, P. Worldwide mycotoxins exposure in pig and poultry feed formulations. Toxins 2016, 8, 350. [Google Scholar] [CrossRef]
- Eurostat. International Trade in Goods. Available online: https://ec.europa.eu/eurostat/web/international-trade-in-goods/data/database (accessed on 22 May 2021).
- Cao, L.; Li, Z.; Xiang, S.; Huang, Z.; Ruan, R.; Liu, Y. Preparation and characteristics of bentonite-zeolite adsorbent and its application in swine wastewater. Bioresour. Technol. 2019, 284, 448–455. [Google Scholar] [CrossRef]
- Doroszewski, P.; Grabowicz, M.; Kaszkowiak, J.; Borowski, S. Safe climate and emission of greenhouse gases from livestock. Logistyka 2015, 5, 765–773. [Google Scholar]
- Li, H.; Zhang, T.; Tsang, D.C.W.; Li, G. Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw. Chemosphere 2020, 248, 125927. [Google Scholar] [CrossRef]
- Pratt, C.; Redding, M.; Hill, J.; Brown, G.; Westermann, M. Clays can decrease gaseous nutrient losses from soil-applied livestock manures. J. Environ. Qual. 2016, 45, 638–645. [Google Scholar] [CrossRef]
- Thieu, N.Q.; Ogle, B.; Pettersson, H. Efficacy of bentonite clay in ameliorating aflatoxicosis in piglets fed aflatoxin contaminated diets. Trop. Anim. Health Prod. 2008, 40, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef]
- Wlazło, Ł.; Nowakowicz-Dębek, B.; Kapica, J.; Kwiecień, M.; Pawlak, H. Removal of ammonia from poultry manure by aluminosilicates. J. Environ. Manag. 2016, 183, 722–725. [Google Scholar] [CrossRef]
- Schneider, A.F.; Zimmermann, O.F.; Gewehr, C.E. Zeolites in poultry and swine production. Ciência Rural 2017, 47, 1–8. [Google Scholar] [CrossRef] [Green Version]
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed). Scientific Opinion on the safety and efficacy of bentonite (dioctahedral montmorillonite) as feed additive for all species. EFSA J. 2011, 9, 2007. [Google Scholar]
- Aaslyng, M.D.; Hviid, M. Meat quality in the Danish pig population anno 2018. Meat Sci. 2020, 163, 108034. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th revised ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Nowakowicz-Dębek, B.; Wlazło, Ł.; Stasińska, B.; Kułażyński, M.; Ossowski, M.; Krzaczek, P.; Bis-Wencel, H. Emission of methane from intensive pig breeding. Przem. Chem. 2017, 96, 2353–2355. [Google Scholar]
- Wlazło, Ł.; Ossowski, M.; Nowakowicz-Dębek, B.; Krzaczek, P.; Kułażyński, M.; Maj, G. Evaluation of ammonia emission from a swine farm with the use of the measurement network. Przem. Chem. 2019, 98, 1075–1077. [Google Scholar]
- Council Regulation (EC) No 1/2005 of 22 December 2004 on the protection of animals during transport and related operations and amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32005R0001&from=EN (accessed on 15 May 2021).
- Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009R1099&from=EN (accessed on 15 May 2021).
- Commission Internationale de l’Eclairage (CIE). Colorimetry, 2nd ed.; Commission Internationale de l’Eclairage: Vienna, Austria, 1986. [Google Scholar]
- Hornsey, H.C. The colour of cooked cured pork I. Estimation of the nitrioxidehaem pigments. J. Sci. Food Agric. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Florek, M.; Junkuszew, A.; Bojar, W.; Skałecki, P.; Greguła-Kania, M.; Litwińczuk, A.; Gruszecki, T.M. Effect of vacuum ageing on instrumental and sensory textural properties of meat from Uhruska lambs. Ann. Anim. Sci. 2016, 16, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften 1953, 40, 29. (In German) [Google Scholar] [CrossRef]
- PN-ISO 1442:2000. Meat and Meat Products—Determination of Moisture Content (Reference Method); The Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- PN-ISO 936:2000. Meat and Meat Products—Determination of Total Ash; The Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- PN-75-A-04018:1975/Az3:2002. Agri-Food Products—Determination of Nitrogen Content by the Kjeldahl Method and the Conversion of Protein; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- PN-ISO 1444:2000. Meat and Meat Products—Determination of Free Fat Content; The Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Annex XIII Off. J. Eur. Union L 2011, 304, 18–63.
- Kim, J.H.; Kim, S.C.; Ko, Y.D. Effect of dietary zeolite treated on the performance and carcass characteristics in finishing pigs. J. J. Anim. Sci. Technol. 2005, 47, 555–564. [Google Scholar]
- Yu, D.Y.; Li, X.L.; Li, W.F. Effect of montmorillonite superfine composite on growth performance and tissue lead level in pigs. Biol. Trace Elem. Res. 2008, 125, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Tabasum, A.S.; Seong-Gyun, K.; Hong-Seok, M.; Chul-Ju, Y. Dietary effect of artificial zeolite on performance, immunity, faecal microflora concentration and noxious gas emissions in pigs. Ital. J. Anim. Sci. 2014, 13, 830–835. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.H.; Xu, Z.R.; Wang, C.Z.; Sun, Y. Efficacy of two different types of montmorillonite to reduce the toxicity of aflatoxin in pigs. N. Z. J. Agric. Res. 2007, 50, 473–478. [Google Scholar] [CrossRef]
- Shurson, G.C.; Ku, P.K.; Miller, E.R.; Yokoyama, M.T. Effects of zeolite a or clinoptilolite in diets of growing swine. J. Anim. Sci. 1984, 59, 1536–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieczkowska, H.; Koćwin-Podsiadła, M.; Antosik, K.; Krzęcio, E.; Zybert, A.; Korszeń, Ł. Quality of pig carcasses and meat of selected breed groups of fatteners. Roczniki Naukowe PTZ 2010, 6, 363–374. [Google Scholar]
- Wojtysiak, D.; Połtowicz, K. Carcass quality, physico-chemical parameters, muscle fibre traits and myosin heavy chain composition of m. Longissimus lumborum from Puławska and Polish Large White pigs. Meat Sci. 2014, 97, 395–403. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Baas, T.J.; Malek, M.; Dekkers, J.C.M.; Prusa, K.; Rothschild, M.F. Correlations among selected pork quality traits. J. Anim. Sci. 2002, 80, 617–662. [Google Scholar] [CrossRef] [Green Version]
- Warner, R.D.; Kauffman, R.G.; Greaser, M.L. Muscle protein changes post mortem in relation to pork quality traits. Meat Sci. 1997, 45, 339–352. [Google Scholar] [CrossRef]
- Florek, M.; Litwińczuk, A.; Skałecki, P.; Topyła, B. Influence of pH1 of fattenerns’ musculus Longissimus lumborum on the changes of its quality. Polish J. Food Nutr. Sci. 2004, 13, 53–56. [Google Scholar]
- Beriain, M.J.; Goñi, M.V.; Indurain, G.; Sarriés, M.V.; Insausti, K. Predicting Longissimus dorsi myoglobin oxidation in aged beef based on early post-mortem colour measurements on the carcass as a colour stability index. Meat Sci. 2009, 81, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Wojtysiak, D.; Połtowicz, K. Effect of ageing time on microstructure, rate of desmin degradation and meat quality of pig Longissimus lumborum and adductor muscles. Folia Biol. 2015, 63, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Min, B.; Nam, K.C.; Cordray, J.; Ahn, D.U. Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. J. Food Sci. 2008, 73, C439–C446. [Google Scholar] [CrossRef]
- Iwańska, E.; Mikołajczak, B.; Grześ, B.; Pospiech, E. Impact of post mortem aging of pork on changes in the isoelectric point of the proteins and tenderness. Med. Weter. 2016, 72, 458–462. [Google Scholar] [CrossRef] [Green Version]
Ingredient | Amount (%) | |
---|---|---|
Grower | Finisher | |
Barley, 12.2% CP | 32.5 | 39.8 |
Wheat, 12.1% CP | 24.0 | - |
Triticale, 11.4 % CP | 10.0 | 30.0 |
Soybean meal, min. 46.5% CP | 12.3 | 9.0 |
Maize, 9.46% CP | 10.0 | 10.0 |
Rapeseed meal, over 3% | 3.5 | 4.0 |
Mineral mixture 2.5% | 2.5 | 2.5 |
Soybean oil | 1.7 | 1.4 |
Chalk | 1.0 | 1.1 |
JRS Arbocel RC | 0.5 | 0.3 |
ULTRACID P4 PLUS Nutriade | 0.3 | 0.2 |
DSM RONOZYM WX VP | 0.1 | 0.1 |
MYCOFIX + 3E | 0.1 | 0.1 |
Sorbent A/B/D | 1.5/1.5/0.5 |
Nutrient | Content | Requirement | % Met | |||
---|---|---|---|---|---|---|
Grower | Finisher | Grower | Finisher | Grower | Finisher | |
Dry matter, g | 762 | 765 | - | - | - | - |
Metabolizable energy, MJ | 13.2 | 13.0 | 13.2 | 13.0 | 100 | 100 |
Lysine, g | 10.3 | 9.48 | 10.1 | 9.00 | 103 | 105 |
Methionine, g | 2.80 | 2.67 | 3.02 | 2.70 | 93 | 99 |
Methionine + cystine, g | 5.92 | 5.74 | 6.03 | 5.40 | 98 | 106 |
Tryptophan, g | 1.97 | 1.86 | 1.91 | 1.70 | 103 | 109 |
Threonine, g | 6.49 | 6.04 | 6.53 | 5.85 | 99 | 103 |
Crude protein, g | 168 | 157 | 168 | 155 | 100 | 101 |
Calcium, g | 8.10 | 8.32 | 8.12 | 8.00 | 100 | 104 |
Total phosphorus, g | 5.81 | 5.79 | 4.87 | 4.50 | 119 | 129 |
Digestible phosphorus, g | 1.47 | 1.45 | 2.64 | 2.00 | 56 | 72 |
Sodium, g | 1.79 | 1.78 | 1.73 | 1.70 | 104 | 105 |
Fiber, g | 43.8 | 46.8 | 43.1 | 43.0 | 102 | 109 |
Magnesium, g | 1.68 | 1.40 | 64.0 | 65.0 | 3 | 2 |
Manganese, mg | 98.6 | 98.1 | 40.0 | 40.0 | 246 | 245 |
Iodine, mg | 2.46 | 2.44 | 0.200 | 0.200 | 1232 | 1 220 |
Copper, mg | 23.5 | 23.3 | 17.5 | 17.5 | 134 | 133 |
Iron, mg | 172 | 169 | 80.0 | 80.0 | 215 | 211 |
Zinc, mg | 101 | 101 | 100 | 100 | 101 | 101 |
Selenium, mg | 0.520 | 0.505 | 0.100 | 0.100 | 520 | 505 |
Vitamin A, IU | 6 500 | 6 500 | 6 500 | 6 500 | 100 | 100 |
Vitamin D3, IU | 2 000 | 2 000 | 1 250 | 1 250 | 160 | 160 |
Vitamin E, mg | 90.1 | 91.2 | 80.0 | 80.0 | 113 | 114 |
Vitamin K3, mg | 2.33 | 2.33 | 1.25 | 1.25 | 186 | 186 |
Vitamin B1, mg | 6.34 | 6.37 | 1.00 | 1.00 | 634 | 637 |
Vitamin B2, mg | 7.73 | 7.51 | 4.00 | 4.00 | 193 | 188 |
Vitamin B6, mg | 8.40 | 8.14 | 2.25 | 2.25 | 373 | 362 |
Vitamin B12, mcg | 0.391 | 0.031 | 20.0 | 20.0 | 2 | - |
Biotin, mg | 0.232 | 0.231 | - | - | - | - |
Folic acid, mg | 1.43 | 1.47 | 0.75 | 0.75 | 190 | 196 |
Nicotinic acid, mg | 77.4 | 76.7 | 25.0 | 25.0 | 310 | 307 |
Pantothenic acid, mg | 24.1 | 23.6 | 14.0 | 14.0 | 172 | 168 |
Choline, mg | 1 466 | 1 355 | 150 | 150 | 977 | 903 |
Linoleic acid, mg | 2 663 | 3 260 | - | - | - | - |
Sugar, g | 33.9 | 33.3 | - | - | - | - |
June | MLL | MSM | ||
---|---|---|---|---|
C1 (n = 6) | Sorbent D | C1 (n = 6) | Sorbent D | |
(Biochar), (n = 6) | (Biochar), (n = 6) | |||
pH1 | 6.01 ± 0.32 | 5.92 ± 0.24 | 6.09 ± 0.40 | 6.03 ± 0.14 |
pH24 | 5.45 ± 0.03 | 5.44 ± 0.06 | 5.49 ± 0.06 | 5.50 ± 0.03 |
pH48 | 5.43 ± 0.03 | 5.46 ± 0.03 | 5.52 ± 0.06 | 5.53 ± 0.02 |
aW | 0.948 A ± 0.001 | 0.957 B ± 0.005 | 0.952 ± 0.005 | 0.954 ± 0.004 |
L* | 55.89 A ± 0.76 | 59.34 B ± 3.15 | 48.13 ± 3.07 | 48.74 ± 2.69 |
a* | 18.93 ± 0.58 | 18.30 ± 0.90 | 21.19 b ± 0.70 | 20.35 a ± 1.13 |
b* | 6.33 ± 1.23 | 7.02 ± 0.90 | 6.20 ± 1.43 | 5.40 ± 0.98 |
Pigments (µg/g) | 45.80 B ± 5.29 | 37.20 A ± 3.22 | 62.90 B ± 1.88 | 46.20 A ± 4.00 |
TBARS | 0.228 B ± 0.027 | 0.181 A ± 0.029 | 0.221 B ± 0.052 | 0.159 A ± 0.041 |
(mg MDA/kg) | ||||
W-B SF (N) | 27.40 A ± 9.20 | 37.90 B ± 6.30 | 37.30 A ± 7.40 | 57.50 B ± 14.90 |
W-B SE (mJ) | 93.00 a ± 31.50 | 117.30 b ± 28.40 | 117.70 A ± 31.70 | 220.70 B ± 85.50 |
Hardness (N) | 40.59 ± 12.87 | 55.93 ± 25.49 | 74.50 ± 24.05 | 68.87 ± 30.72 |
Springiness | 0.48 ± 0.06 | 0.46 ± 0.03 | 0.50 ± 0.04 | 0.50 ± 0.05 |
Gumminess | 14.77 ± 5.51 | 21.86 ± 11.86 | 26.47 ± 4.89 | 25.98 ± 9.43 |
Chewiness | 7.29 ± 3.11 | 9.81 ± 5.33 | 13.02 ± 2.04 | 12.60 ± 3.58 |
DL (%) | 5.64 ± 1.65 | 5.22 ± 0.82 | 3.09 ± 1.48 | 2.47 ± 1.14 |
CL (%) | 20.40 ± 2.93 | 18.51 ± 1.98 | 21.04 ± 2.11 | 19.23 ± 2.84 |
M/T×100 | 36.98 ± 1.64 | 36.45 ± 4.34 | 40.58 ± 4.51 | 45.08 ± 5.62 |
G-H (mg) | 59.65 ± 1.97 | 60.82 ± 5.98 | 57.57 ± 2.52 | 54.89 ± 9.11 |
Moisture (%) | 72.55 ± 0.18 | 72.38 ± 0.33 | 74.12 ± 0.52 | 74.49 ± 0.68 |
Protein (%) | 23.12 ± 0.75 | 22.87 ± 0.44 | 22.56 ± 1.11 | 22.08 ± 0.71 |
Fat (%) | 2.38 ± 0.81 | 2.20 ± 0.20 | 1.65 ± 0.42 | 1.58 ± 0.75 |
Ash (%) | 1.23 ± 0.08 | 1.21 ± 0.09 | 1.22 ± 0.10 | 1.22 ± 0.09 |
M:P | 3.14 ± 0.10 | 3.17 ± 0.06 | 3.29 ± 0.18 | 3.38 ± 0.12 |
Energy (kcal) | 113.90 ± 5.53 | 111.20 ± 2.13 | 105.10 ± 4.26 | 102.50 ± 7.55 |
December | MLL | MSM | ||||
---|---|---|---|---|---|---|
C2 | Sorbent A | Sorbent B | K2/C2 | Sorbent A | Sorbent B | |
(n = 6) | (n = 6) | (n = 6) | (n = 6) | (n = 6) | (n = 6) | |
pH1 | 6.65 ± 0.05 | 6.47 ± 0.48 | 6.48 ± 0.05 | 6.58 ± 0.06 | 6.71 ± 0.36 | 6.47 ± 0.12 |
pH24 | 5.79 ± 0.01 | 5.69 ± 0.21 | 5.54 ± 0.05 | 6.02 c ± 0.06 | 5.70 b ± 0.26 | 5.55 a ± 0.03 |
pH48 | 5.64 ± 0.04 | 5.44 ± 0.03 | 5.46 ± 0.02 | 5.79 B ± 0.04 | 5.48 A ± 0.04 | 5.49 A ± 0.02 |
aW | 0.947 ± 0.002 | 0.953 ± 0.006 | 0.953 ± 0.005 | 0.949 ± 0.002 | 0.957 ± 0.007 | 0.953 ± 0.003 |
L* | 50.58 a ± 1.15 | 54.05 b ± 2.37 | 53.79 b ± 1.36 | 44.56 a ± 0.75 | 50.44 c ± 3.79 | 48.63 b ± 2.53 |
a* | 17.51 ± 0.93 | 18.17 ± 0.93 | 18.03 ± 0.83 | 20.56 ± 0.84 | 19.75 ± 0.86 | 20.38 ± 0.98 |
b* | 4.21 ± 1.28 | 5.60 ± 1.84 | 5.51 ± 1.28 | 4.09 ± 1.06 | 5.98 ± 1.57 | 5.80 ± 1.28 |
Pigments (µg/g) | 53.70 C ± 1.76 | 41.80 A ± 1.26 | 46.70 B ± 3.95 | 64.30 B ± 3.42 | 43.70 A ± 3.82 | 44.90 A ± 0.94 |
TBARS | 0.314 b ± 0.018 | 0.238 a ± 0.019 | 0.280 ab ± 0.013 | 0.444 C ± 0.036 | 0.280 A ± 0.012 | 0.375 B ± 0.012 |
(mg MDA/kg) | ||||||
W-B SF (N) | 47.60 ± 8.80 | 55.10 ± 21.40 | 48.30 ± 9.20 | 65.50 ± 8.70 | 71.50 ± 21.10 | 72.60 ± 20.60 |
W-B SE (mJ) | 164.00 ± 28.50 | 182.00 ± 81.10 | 155.70 ± 41.80 | 289.30 ± 41.10 | 286.20 ± 103.50 | 285.90 ± 95.30 |
Hardness (N) | 88.90 ± 14.85 | 96.40 ± 12.86 | 75.22 ± 12.24 | 89.15 ± 12.37 | 89.05 ± 16.15 | 90.95 ± 33.60 |
Springiness | 0.59 ± 0.05 | 0.59 ± 0.03 | 0.60 ± 0.02 | 0.58 ± 0.03 | 0.58 ± 0.04 | 0.56 ± 0.03 |
Gumminess | 34.17 ± 5.83 | 36.98 ± 2.70 | 28.90 ± 5.37 | 37.12 ± 2.64 | 34.86 ± 5.72 | 37.21 ± 8.16 |
Chewiness | 20.09 ± 3.32 | 21.75 ± 0.99 | 17.38 ± 3.09 | 21.37 ± 0.52 | 19.97 ± 2.39 | 21.11 ± 8.09 |
DL (%) | 3.37 b ± 0.58 | 2.25 a ± 0.13 | 2.78 ab ± 0.12 | 3.78 ± 0.92 | 3.67 ± 0.44 | 3.52 ± 0.11 |
CL (%) | 27.04 ± 1.05 | 29.26 ± 1.61 | 27.06 ± 1.73 | 25.67 ± 1.08 | 26.84 ± 1.32 | 26.83 ± 2.20 |
M/T×100 | 37.34 ± 1.12 | 38.15 ± 6.59 | 36.95 ± 2.06 | 40.58 ± 4.51 | 45.08 ± 5.62 | 36.45 ± 4.34 |
G-H (mg) | 50.45 ± 1.59 | 56.53 ± 4.27 | 55.91 ± 1.07 | 57.57 ± 2.52 | 54.89 ± 9.11 | 60.82 ± 5.98 |
Moisture (%) | 75.25 ± 0.13 | 73.68 ± 0.53 | 74.42 ± 0.10 | 75.17 ± 0.20 | 73.41 ± 0.78 | 74.25 ± 0.19 |
Protein (%) | 21.48 ± 0.57 | 21.76 ± 1.19 | 22.22 ± 0.72 | 21.17 ± 1.46 | 22.09 ± 1.43 | 22.12 ± 0.99 |
Fat (%) | 1.08 ± 0.16 | 1.47 ± 0.42 | 1.30 ± 0.22 | 1.81 ± 0.04 | 2.24 ± 0.32 | 2.00 ± 0.58 |
Ash (%) | 1.21 ± 0.04 | 1.25 ± 0.03 | 1.24 ± 0.03 | 1.24 ± 0.04 | 1.17 ± 0.10 | 1.24 ± 0.08 |
M:P | 3.50 ± 0.09 | 3.39 ± 0.17 | 3.35 ± 0.11 | 3.56 ± 0.26 | 3.34 ± 0.29 | 3.36 ± 0.15 |
Energy (kcal) | 95.60 ± 2.78 | 100.30 ± 3.42 | 100.60 ± 4.14 | 101.00 ± 6.21 | 108.50 ± 3.11 | 106.50 ± 8.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ossowski, M.; Wlazło, Ł.; Nowakowicz-Dębek, B.; Florek, M. Effect of Natural Sorbents in the Diet of Fattening Pigs on Meat Quality and Suitability for Processing. Animals 2021, 11, 2930. https://doi.org/10.3390/ani11102930
Ossowski M, Wlazło Ł, Nowakowicz-Dębek B, Florek M. Effect of Natural Sorbents in the Diet of Fattening Pigs on Meat Quality and Suitability for Processing. Animals. 2021; 11(10):2930. https://doi.org/10.3390/ani11102930
Chicago/Turabian StyleOssowski, Mateusz, Łukasz Wlazło, Bożena Nowakowicz-Dębek, and Mariusz Florek. 2021. "Effect of Natural Sorbents in the Diet of Fattening Pigs on Meat Quality and Suitability for Processing" Animals 11, no. 10: 2930. https://doi.org/10.3390/ani11102930