Effects of Dietary Perilla Cake Supplementation in Growing Pig on Productive Performance, Meat Quality, and Fatty Acid Profiles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Diets
2.3. Sample Collection
2.4. Assessment of Carcass Traits
2.5. Assessment of Meat Quality
2.6. Fatty Acid (FA) Analysis
2.7. Statistical Analyses
3. Results
3.1. Chemical Composition and Fatty Acid Profile of PC
3.2. Productive Performance
3.3. Carcass Traits and Meat Quality
3.4. Fatty Acid Profiles in Backfat, Abdominal Fat, and Longisimus dorsi
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pusadee, T.; Prom-u-thai, C.; Yimyam, N.; Jamjod, S.; Rerkasem, B. Phenotypic and Genetic Diversity of Local Perilla (Perilla frutescens (L.) Britt.) from Northern Thailand. Econ. Bot. 2017, 71, 175–187. [Google Scholar] [CrossRef]
- Arjin, C.; Pringproa, K.; Hongsibsong, S.; Ruksiriwanich, W.; Seel-audom, M.; Mekchay, S.; Sringarm, K. In vitro screening antiviral activity of Thai medicinal plants against porcine reproductive and respiratory syndrome virus. BMC Vet. Res. 2020, 16, 102. [Google Scholar] [CrossRef]
- Tang, W.F.; Tsai, H.P.; Chang, Y.H.; Chang, T.Y.; Hsieh, C.F.; Lin, C.Y.; Lin, G.H.; Chen, Y.L.; Jheng, J.R.; Liu, P.C.; et al. Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed. J. 2021, 44, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Leu, Y.-L.; Fang, Y.; Lin, C.-F.; Kuo, L.-M.; Sung, W.-C.; Tsai, Y.-F.; Chung, P.-J.; Lee, M.-C.; Kuo, Y.-T.; et al. Anti-inflammatory effects of Perilla frutescens in activated human neutrophils through two independent pathways: Src family kinases and Calcium. Sci. Rep. 2015, 5, 18204. [Google Scholar] [CrossRef] [Green Version]
- Asif, M. Phytochemical study of polyphenols in Perilla Frutescens as an antioxidant. Avicenna J. Phytomed. 2012, 2, 169–178. [Google Scholar] [CrossRef]
- Gwari, G.; For, C.; Plants, A.; Haider, S.Z.; Himalaya, W. Fatty acid and nutrient composition of perilla (Perilla frutescens L.) Accessions collected from uttarakhand. Int. J. Phytopharm. 2014, 5, 379–382. [Google Scholar]
- Asif, M. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Bondioli, P.; Folegatti, L.; Rovellini, P. Oils rich in alpha linolenic acid: Chemical composition of perilla (Perilla frutescens) seed oil. OCL-Oilseeds Fats Crop. Lipids 2020, 27, 67. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Li, D.; Yang, L.; Suttajit, S.; Suttajit, M. Variation of lipid and fatty acid compositions in Thai Perilla seeds grown at different locations. Songklanakarin J. Sci. Technol. 2006, 28, 17–21. [Google Scholar]
- Montha, N.; Yothinsirikul, W.; Chompupun, K.; Kreuzer, M.; Jaturasitha, S. Increased Levels of De-oiled Perilla Seed Meal in Broiler Diets to Enhance n-3 Fatty Acid Proportions and Improve Efficiency Levels. Chiang Mai Univ. J. Nat. Sci. 2021, 20, 1–15. [Google Scholar] [CrossRef]
- Souphannavong, C.; Arjin, C.; Sartsook, A.; Yosen, T.; Thongkham, M.; Seel-audom, M.; Mekchay, S.; Sringarm, K. Nutritional values and nutrient digestibility of ground perilla cake (Perilla frutescens) in growing pig diets. Vet. Integr. Sci. 2021, 19, 121–131. [Google Scholar]
- Shrikanta Rao, P.V. A Study of Village Oil Industry in India; Appropriate Technology Developement Association, Ed.; Appropriate Technology Development Association: Lucknow, India, 1980. [Google Scholar]
- Dugan, M.; Vahmani, P.; Turner, T.; Mapiye, C.; Juárez, M.; Prieto, N.; Beaulieu, A.; Zijlstra, R.; Patience, J.; Aalhus, J. Pork as a Source of Omega-3 (n-3) Fatty Acids. J. Clin. Med. 2015, 4, 1999–2011. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Lee, J.K.; Jung, J.T.; Jung, Y.C.; Jung, J.H.; Jung, M.O.; Choi, Y.I.; Jin, S.K.; Choi, J.S. Comparison of meat quality and fatty acid composition of longissimus muscles from purebred pigs and three-way crossbred LYD pigs. Korean J. Food Sci. Anim. Resour. 2016, 36, 689–696. [Google Scholar] [CrossRef]
- Fritsche, K.L.; Huang, S.C.; Cassity, N.A. Enrichment of omega-3 fatty acids in suckling pigs by maternal dietary fish oil supplementation. J. Anim. Sci. 1993, 71, 1841–1847. [Google Scholar] [CrossRef]
- Kouba, M.; Enser, M.; Whittington, F.M.; Nute, G.R.; Wood, J.D. Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J. Anim. Sci. 2003, 81, 1967–1979. [Google Scholar] [CrossRef] [Green Version]
- Bézard, J.; Blond, J.; Bernard, A.; Clouet, P. The metabolism and availability of essential acids in animal and human tissues fatty. Reprod. Nutr. Dev. 1994, 34, 539–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Wojtasik, M.; Raj, S.; Skiba, G.; Weremko, D.; Czauderna, M. The effects of diets enriched in omega-3 fatty acids on carcass characteristics and the fatty acid profile of intramuscular and subcutaneous fat in pigs *. J. Anim. Feed Sci. 2012, 21, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chiba, L.I.; Bergen, W.G. Bioavailability and metabolism of omega-3 polyunsaturated fatty acids in pigs and omega-3 polyunsaturated fatty acid-enriched pork: A review. Livest. Sci. 2021, 243, 104370. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gasco, L.; Brugiapaglia, A.; Gai, F. Effects of perilla (Perilla frutescens L.) seeds supplementation on performance, carcass characteristics, meat quality and fatty acid composition of rabbits. Livest. Sci. 2011, 138, 118–124. [Google Scholar] [CrossRef]
- Świątkiewicz, M.; Olszewska, A.; Grela, E.R.; Tyra, M. The effect of replacement of soybean meal with corn dried distillers grains with solubles (Cddgs) and differentiation of dietary fat sources on pig meat quality and fatty acid profile. Animals 2021, 11, 1277. [Google Scholar] [CrossRef]
- Cui, X.; Gou, Z.; Fan, Q.; Li, L.; Lin, X.; Wang, Y.; Jiang, S.; Jiang, Z. Effects of dietary perilla seed oil supplementation on lipid metabolism, meat quality, and fatty acid profiles in Yellow-feathered chickens. Poult. Sci. 2019, 98, 5714–5723. [Google Scholar] [CrossRef]
- Oh, H.J.; Song, M.H.; Yun, W.; Lee, J.H.; An, J.S.; Kim, Y.J.; Kim, G.M.; Kim, H.B.; Cho, J.H. Effects of replacing soybean meal with perilla seed meal on growth performance, and meat quality of broilers. J. Anim. Sci. Technol. 2020, 62, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Hadi, R.F.; Sudiyono; Jannah, S.N.; Indriyani, W. The effect of enriched perilla seed (Perilla frutescens L.) in the diets on percentage of carcass and non-carcass, chemical quality, and levels of α-linoleic acid (ALA) of meat ducks. AIP Conf. Proc. 2019, 2199, 050008. [Google Scholar]
- Arjin, C.; Souphannavong, C.; Sartsook, A.; Seel-Audom, M.; Mekchay, S.; Sringarm, K. Efficiency of fresh and fermented banana stems in low protein diet on nutrient digestibility, productive performance and intestinal morphology of crossbred pig; (Thai native x Meishan) x Duroc. Vet. Integr. Sci. 2021, 19, 51–64. [Google Scholar]
- NRC. Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-48903-4. [Google Scholar]
- National Bureau of Agricultural Commodity and Food Standards. Thai Agricultural Standard TAS 9004-2004 Good Manufacturing Practices for Abattoir; Ministry of Agriculture and Cooperatives, Ed.; Royal Gazette Special Section 64D: Bangkok, Thailand, 2005; Volume 122.
- Chaiwang, N.; Bunmee, T.; Arjin, C.; Wattanakul, W.; Krutthai, N.; Mekchay, S.; Sringarm, K. Effect of deep bedding floor and fermented feed supplement on productive performance, carcase, meat quality and fatty acid profile of crossbred pigs. Ital. J. Anim. Sci. 2021, 20, 479–488. [Google Scholar] [CrossRef]
- dos Santos, L.S.; Caldara, F.R.; de Santos, R.D.K.S.; de Alencar Nääs, I.; Foppa, L.; Garcia, R.G.; Paz, I.C.D.L.A. Comparison of methodologies for assessment of pork loin eye area. Bol. Indústria Anim. 2014, 71, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Rodríguez, J.; Teixeira, A. Slaughter weight rather than sex affects carcass cuts and tissue composition of Bisaro pigs. Meat Sci. 2019, 154, 54–60. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 0935584773 9780935584776. [Google Scholar]
- Brewer, M.S.; Zhu, L.G.; Bidner, B.; Meisinger, D.J.; McKeith, F.K. Measuring pork color: Effects of bloom time, muscle, pH and relationship to instrumental parameters. Meat Sci. 2001, 57, 169–176. [Google Scholar] [CrossRef]
- Lee, S.-J.; Lee, J.K.; Lee, S.K. Effects of Crossbreeding and Gender on the Carcass Traits and Meat Quality of Korean Native Black Pig and Duroc Crossbred. Asian-Australas. J. Anim. Sci. 2014, 27, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Grela, E.R.; Świątkiewicz, M.; Florek, M.; Bąkowski, M.; Skiba, G. Effect of inulin source and a probiotic supplement in pig diets on carcass traits, meat quality and fatty acid composition in finishing pigs. Animals 2021, 11, 2438. [Google Scholar] [CrossRef] [PubMed]
- Adzitey, F.; Nurul, H. Pale soft exudative (PSE) and dark firm dry (DFD) meats: Causes and measures to reduce these incidences-a mini review. Int. Food Res. J. 2011, 18, 11–20. [Google Scholar]
- Son, A.R.; Park, C.S.; Kim, B.G. Determination and prediction of digestible and metabolizable energy concentrations in byproduct feed ingredients fed to growing pigs. Asian-Australas. J. Anim. Sci. 2017, 30, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Corino, C.; Rossi, R.; Cannata, S.; Ratti, S. Effect of dietary linseed on the nutritional value and quality of pork and pork products: Systematic review and meta-analysis. Meat Sci. 2014, 98, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Pastorelli, G.; Cannata, S.; Corino, C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Anim. Feed Sci. Technol. 2010, 162, 1–11. [Google Scholar] [CrossRef]
- Wiecek, J.; Rekiel, A.; Skomiał, J. Effect of feeding level and linseed oil on some metabolic and hormonal parameters and on fatty acid profile of meat and fat in growing pigs. Arch. Anim. Breed. 2010, 53, 37–49. [Google Scholar] [CrossRef]
- Okrouhlá, M.; Stupka, R.; Čítek, J.; Šprysl, M.; Brzobohatý, L. Effect of dietary linseed supplementation on the performance, meat quality, and fatty acid profile of pigs. Czech J. Anim. Sci. 2013, 58, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Matthews, K.R.; Homer, D.B.; Thies, F.; Calder, P.C. Effect of whole linseed (Linum usitatissimum) in the diet of finishing pigs on growth performance and on the quality and fatty acid composition of various tissues. Br. J. Nutr. 2000, 83, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Tartrakoon, W.; Tartrakoon, T.; Kitsupee, N. Effects of the ratio of unsaturated fatty acid to saturated fatty acid on the growth performance, carcass and meat quality of finishing pigs. Anim. Nutr. 2016, 2, 79–85. [Google Scholar] [CrossRef]
- Ivanovic, J.; Pantic, S.; Dokmanovic, M.; Glamoclija, N.; Markovic, R.; Janjic, J.; Baltic, M.Z. Effect of Conjugated Linoleic Acids in Pig Nutrition on Quality of Meat. Procedia Food Sci. 2015, 5, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Bertol, T.M.; de Campos, R.M.L.D.; Ludke, J.V.; Terra, N.N.; de Figueiredo, E.A.P.; Coldebella, A.; dos Santos Filho, J.I.; Kawski, V.L.; Lehr, N.M. Effects of genotype and dietary oil supplementation on performance, carcass traits, pork quality and fatty acid composition of backfat and intramuscular fat. Meat Sci. 2013, 93, 507–516. [Google Scholar] [CrossRef]
- De Tonnac, A.; Mourot, J. Effect of dietary sources of n-3 fatty acids on pig performance and technological, nutritional and sensory qualities of pork. Animal 2018, 12, 1527–1535. [Google Scholar] [CrossRef]
- Torres Filho, R.D.A.; Cazedey, H.P.; Fontes, P.R.; Ramos, A.D.L.S.; Ramos, E.M. Drip loss assessment by different analytical methods and their relationships with pork quality classification. J. Food Qual. 2017, 2017. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Swatland, H.J. Progress in understanding the paleness of meat with a low pH. S. Afr. J. Anim. Sci. 2004, 34, 1–7. [Google Scholar] [CrossRef]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef]
- Nuernberg, K.; Fischer, K.; Nuernberg, G.; Kuechenmeister, U.; Klosowska, D.; Eliminowska-Wenda, G.; Fiedler, I.; Ender, K. Effects of dietary olive and linseed oil on lipid composition, meat quality, sensory characteristics and muscle structure in pigs. Meat Sci. 2005, 70, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Azain, M.; Odle, J. Lipids and Lipid Utilization in Swine. In Sustainable Swine Nutrition; Chiba, L.I., Ed.; Wiley Online Books; Blackwell Publishing Ltd.: Oxford, UK, 2013; pp. 59–79. ISBN 9781118491454. [Google Scholar]
- Sobol, M.; Skiba, G.; Raj, S. Effect of n-3 polyunsaturated fatty acid intake on its deposition in the body of growing-finishing pigs. Anim. Feed Sci. Technol. 2015, 208, 107–118. [Google Scholar] [CrossRef]
- Czyż, K.; Sokoła-Wysoczańska, E.; Wyrostek, A.; Cholewińska, P. An attempt to enrich pig meat with omega-3 fatty acids using linseed oil ethyl ester diet supplement. Agriculture 2021, 11, 365. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Liu, X.; He, Y. Effects of dietary fat saturation level on growth performance, carcass traits, blood lipid parameters, tissue fatty acid composition and meat quality of finishing pigs. Anim. Biosci. 2021, 34, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2000, 1486, 219–231. [Google Scholar] [CrossRef]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef] [PubMed]
- Smink, W.; Gerrits, W.J.J.; Gloaguen, M.; Ruiter, A.; Van Baal, J. Linoleic and α-linolenic acid as precursor and inhibitor for the synthesis of long-chain polyunsaturated fatty acids in liver and brain of growing pigs. Animal 2012, 6, 262–270. [Google Scholar] [CrossRef] [Green Version]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Okrouhlá, M.; Stupka, R.; Čítek, J.; Lebedová, N.; Zadinová, K. Effect of duration of dietary rapeseed and soybean oil feeding on physical characteristics, fatty acid profile, and oxidative stability of pig backfat. Animals 2018, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Duran-Montgé, P.; Realini, C.E.; Barroeta, A.C.; Lizardo, R.G.; Esteve-Garcia, E. De novo fatty acid synthesis and balance of fatty acids of pigs fed different fat sources. Livest. Sci. 2010, 132, 157–164. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef] [Green Version]
Items | PC0 | PC5 | PC10 |
---|---|---|---|
Ingredient (%) | |||
Maize | 31.00 | 28.50 | 27.00 |
Broken rice | 31.00 | 27.22 | 27.00 |
Rice barn | 9.92 | 15.00 | 15.00 |
PC | 0.00 | 5.17 | 10.34 |
Soybean meal 44 % | 20.68 | 15.51 | 10.34 |
Fish meal 58 % | 4.80 | 6.00 | 7.72 |
DCP | 2.00 | 2.00 | 2.00 |
Salt | 0.25 | 0.25 | 0.25 |
Premix a | 0.35 | 0.35 | 0.35 |
Total | 100 | 100 | 100 |
Chemical compositions | |||
Dry matter, % | 89.99 | 89.59 | 89.76 |
Crude protein, % | 20.40 | 20.33 | 20.10 |
Ether extract, % | 3.97 | 4.31 | 4.58 |
Ash, % | 4.37 | 6.51 | 6.78 |
Crude fiber, % | 22.94 | 25.49 | 28.43 |
Gross energy, Cal/g | 4056 | 4400 | 4668 |
Digestible energy, Cal/g | 4038 | 4021 | 3997 |
Metabolizable energy, Cal/g | 3999 | 3958 | 3936 |
Net energy, Cal/g | 3037 | 3001 | 2985 |
Nutritive value (determined) | |||
Lysine, % | 1.12 | 1.13 | 1.12 |
Methionine, % | 0.34 | 0.33 | 0.33 |
Threonine, % | 0.72 | 0.72 | 0.73 |
Tryptophan, % | 0.19 | 0.19 | 0.18 |
Fatty Acid (g/100g Fat) | Formula | PC0 | PC5 | PC10 | SEM | p-Value |
---|---|---|---|---|---|---|
Saturated fatty acid | ||||||
Miristic acid | C14:0 | 0.32 b | 0.56 a | 0.58 a | 0.041 | 0.002 |
Pentadecylic acid | C15:0 | 0.08 b | 0.13 a | 0.14 a | 0.010 | 0.034 |
Palmitic acid | C16:0 | 15.55 | 19.78 | 18.27 | 0.886 | 0.139 |
Heptadecanoic acid | C17:0 | 0.18 b | 0.26 a | 0.26 a | 0.015 | 0.044 |
Stearic acid | C18:0 | 3.30 b | 5.08 a | 4.90 a | 0.284 | 0.003 |
Arachidic acid | C20:0 | 0.87 | 0.90 | 0.85 | 0.040 | 0.888 |
Heneicosylic acid | C21:0 | 0.01 | 0.02 | 0.01 | 0.003 | 0.606 |
Behenic acid | C22:0 | 0.62 a | 0.50 ab | 0.43 b | 0.033 | 0.026 |
Tricosylic acid | C23:0 | 0.24 | 0.22 | 0.28 | 0.014 | 0.333 |
Lignoceric acid | C24:0 | 1.04 | 0.81 | 0.77 | 0.183 | 0.070 |
Monounsaturated fatty acid | ||||||
Pentadecanoic acid | C15:1 | 0.03 | 0.04 | 0.04 | 0.002 | 0.202 |
Palmitoleic acid | C16:1 (cis-9) | 0.54 b | 0.76 a | 0.79 a | 0.043 | 0.015 |
Heptadecanoic acid | C17:1 | 0.05 | 0.06 | 0.06 | 0.003 | 0.653 |
Oleic acid | C18:1 (cis-9) | 40.58 | 34.87 | 31.35 | 1.968 | 0.155 |
Gondoic acid | C20:1 | 0.42 | 0.38 | 0.37 | 0.019 | 0.571 |
Erucic acid | C22:1 | 0.03 | 0.02 | 0.03 | 0.007 | 0.520 |
Nervonic acid | C24:1 | 0.11 | 0.15 | 0.14 | 0.009 | 0.123 |
Polyunsaturated acid | ||||||
Linoleic acid | C18:2 (cis-9,12) | 32.39 | 27.49 | 27.69 | 1.601 | 0.406 |
Eicosadienoic acid | C20:2 (cis-11,14) | 0.40 | 0.56 | 0.44 | 0.072 | 0.671 |
Docosadienoic acid | C22:2 | 0.03 | 0.03 | 0.03 | 0.002 | 0.856 |
γ-linolenic acid | C18:3 (cis-6,9,12) | 0.03 c | 0.05 b | 0.08 a | 0.007 | 0.000 |
α-linolenic acid | C18:3 (cis-9,12,15) | 1.27 c | 5.73 b | 10.61 a | 1.191 | 0.000 |
Dihomo-γ-linolenic acid | C20:3 | 0.03 | 0.02 | 0.02 | 0.003 | 0.438 |
Docosapentaenoic acid | C20:5 | 0.34 | 0.27 | 0.35 | 0.019 | 0.136 |
Docosahexaenoic acid | C22:6 | 1.20 | 0.92 | 1.20 | 0.701 | 0.167 |
ΣSFA | 22.26 | 28.33 | 26.54 | 1.268 | 0.132 | |
ΣMUFA | 41.74 | 36.26 | 32.78 | 1.996 | 0.187 | |
ΣPUFA | 35.30 | 34.53 | 40.02 | 1.957 | 0.507 | |
ΣMUFA/ΣSFA | 1.87 a | 1.27 b | 1.23 b | 0.088 | 0.000 | |
ΣPUFA/ΣSFA | 1.58 a | 1.20 b | 1.51 a | 0.053 | 0.000 | |
C18:2 n6/C18:3 n3 | 25.56 a | 4.81 b | 2.61 c | 3.118 | 0.000 | |
n6/n3 | 11.58 a | 4.01 b | 2.29 c | 1.219 | 0.000 |
Items | PC0 | PC5 | PC10 | SEM | p-Value |
---|---|---|---|---|---|
Initial weight, kg | 25.87 | 27.14 | 25.98 | 0.622 | 0.673 |
Final weight, kg | 69.00 | 67.00 | 73.00 | 1.492 | 0.198 |
Weeks 0–4 of the experimental periods | |||||
ADFI, kg/day | 1.26 | 1.36 | 1.35 | 0.026 | 0.245 |
ADG, kg/day | 0.51 | 0.56 | 0.48 | 0.017 | 0.159 |
FCR | 2.56 ab | 2.50 b | 2.81 a | 0.052 | 0.024 |
Weeks 5–8 of the experimental periods | |||||
ADFI, kg/day | 1.42 ab | 1.33 b | 1.57 a | 0.039 | 0.032 |
ADG, kg/day | 0.52 | 0.53 | 0.60 | 0.022 | 0.249 |
FCR | 2.81 | 2.67 | 2.76 | 0.038 | 0.297 |
Weeks 9–12 of the experimental periods | |||||
ADFI, kg/day | 1.64 | 1.62 | 1.60 | 0.107 | 0.986 |
ADG, kg/day | 0.34 b | 0.38 ab | 0.50 a | 0.027 | 0.017 |
FCR | 4.48 | 4.47 | 4.11 | 0.425 | 0.932 |
All of the experimental period | |||||
ADFI, kg/day | 1.50 ab | 1.43 b | 1.64 a | 0.036 | 0.028 |
ADG, kg/day | 0.48 b | 0.48 b | 0.55 a | 0.012 | 0.019 |
FCR | 3.36 | 3.25 | 3.24 | 0.168 | 0.959 |
Items | PC0 | PC5 | PC10 | SEM | p-Value |
---|---|---|---|---|---|
Carcass traits | |||||
Slaughter weight, kg | 69.00 | 67.00 | 73.00 | 1.492 | 0.198 |
Carcass percentage, % | 65.40 | 69.12 | 65.84 | 2.889 | 0.903 |
Hot carcass, kg | 48.63 | 49.85 | 50.50 | 1.429 | 0.913 |
Chilled carcass weight, kg | 45.24 | 46.16 | 48.30 | 2.486 | 0.921 |
Carcass length, cm | 76.00 | 78.50 | 84.00 | 1.979 | 0.282 |
Back fat thickness, cm | 1.11 | 1.12 | 1.16 | 0.061 | 0.955 |
Meat quality | |||||
Drip loss, % | 7.08 | 5.76 | 5.26 | 0.391 | 0.104 |
pH 45 min | 6.33 | 6.32 | 6.55 | 0.063 | 0.228 |
pH 24 h | 6.00 | 6.06 | 6.00 | 0.027 | 0.652 |
color | |||||
L* | 52.76 a | 50.21 ab | 48.42 b | 0.849 | 0.041 |
a* | 5.48 | 5.06 | 5.05 | 0.446 | 0.939 |
b* | 5.85 | 6.87 | 6.56 | 0.364 | 0.617 |
Chemical Composition (%) | PC0 | PC5 | PC10 | SEM | p-Value |
---|---|---|---|---|---|
Moisture | 71.38 | 73.33 | 73.58 | 0.609 | 0.297 |
Crude protein | 22.72 | 22.33 | 22.39 | 0.157 | 0.604 |
Ether extract | 2.95 | 2.90 | 2.93 | 0.063 | 0.965 |
Ash | 1.12 | 1.14 | 1.16 | 0.101 | 0.472 |
Fatty Acid (g/100g Fat) | Formula | PC0 | PC5 | PC10 | SEM | p-Value |
---|---|---|---|---|---|---|
Saturated fatty acid | ||||||
Miristic acid | C14:0 | 1.74 | 1.72 | 1.59 | 0.038 | 0.245 |
Palmitic acid | C16:0 | 18.47 | 18.17 | 17.28 | 0.339 | 0.350 |
Heptadecanoic acid | C17:0 | 1.89 | nd | 0.15 | 0.424 | 0.130 |
Stearic acid | C18:0 | 14.63 | 16.50 | 13.90 | 0.481 | 0.069 |
Arachidic acid | C20:0 | 0.23 | 0.17 | 0.19 | 0.026 | 0.637 |
Heneicosylic acid | C21:0 | 0.04 | 0.05 | 0.07 | 0.009 | 0.338 |
Behenic acid | C22:0 | 0.07 | 0.09 | 0.10 | 0.012 | 0.637 |
Tricosylic acid | C23:0 | 1.42 | 1.81 | 1.89 | 0.132 | 0.305 |
Monounsaturated fatty acid | ||||||
Palmitoleic acid | C16:1 (cis-9) | 5.31 | 4.33 | 4.99 | 0.180 | 0.068 |
Heptadecanoic acid | C17:1 | 1.07 | nd | 0.05 | 0.311 | 0.302 |
Oleic acid | C18:1 (cis-9) | 37.01 | 37.67 | 37.28 | 0.510 | 0.882 |
Gondoic acid | C20:1 | 1.36 | 0.65 | 1.04 | 0.177 | 0.276 |
Polyunsaturated acid | ||||||
Linoleic acid | C18:2 (cis-9,12) | 9.27 b | 11.34 ab | 15.25 a | 1.001 | 0.037 |
Eicosadienoic acid | C20:2 (cis11,14) | 4.44 | 0.72 | 1.09 | 0.987 | 0.247 |
γ-linolenic acid | C18:3 (cis-6,9,12) | 0.03 | 0.02 | 0.02 | 0.012 | 0.863 |
α-linolenic acid | C18:3 (cis-9,12,15) | 0.68 b | 3.70 a | 3.55 a | 0.049 | 0.005 |
Eicosatrienoic acid | C20:3 (cis-11, 14, 17) | 1.99 | 2.17 | 1.97 | 0.148 | 0.840 |
Eicosapentaenoic acid | C20:5 | 0.26 | 0.08 | 0.06 | 0.046 | 0.166 |
Docosahexaenoic acid | C22:6 | 0.07 | 0.08 | 0.09 | 0.009 | 0.735 |
ΣSFA | 38.51 | 38.50 | 35.14 | 1.041 | 0.330 | |
ΣMUFA | 44.75 | 44.44 | 43.86 | 0.640 | 0.859 | |
ΣPUFA | 16.74 | 17.06 | 21.00 | 1.197 | 0.284 |
Fatty Acid (g/100g Fat) | Formula | PC0 | PC5 | PC10 | SEM | p-Value |
---|---|---|---|---|---|---|
Saturated fatty acid | ||||||
Miristic acid | C14:0 | 1.58 | 1.78 | 1.64 | 0.039 | 0.103 |
Palmitic acid | C16:0 | 17.12 | 18.53 | 14.47 | 0.351 | 0.248 |
Heptadecanoic acid | C17:0 | 0.36 | 1.27 | 0.15 | 0.425 | 0.546 |
Stearic acid | C18:0 | 14.13 | 16.44 | 14.77 | 0.462 | 0.104 |
Arachidic acid | C20:0 | 0.22 | 0.21 | 0.10 | 0.027 | 0.124 |
Heneicosylic acid | C21:0 | 0.06 | 0.04 | 0.06 | 0.008 | 0.411 |
Behenic acid | C22:0 | 0.16 | 0.21 | 0.51 | 0.077 | 0.130 |
Tricosylic acid | C23:0 | 1.52 | 1.81 | 1.62 | 0.117 | 0.621 |
Monounsaturated fatty acid | ||||||
Palmitoleic acid | C16:1 (cis-9) | 4.76 | 4.43 | 4.69 | 0.193 | 0.788 |
Heptadecanoic acid | C17:1 | 0.99 | nd | 0.05 | 0.312 | 0.362 |
Oleic acid | C18:1 (cis-9) | 36.42 | 36.64 | 37.07 | 0.487 | 0.870 |
Gondoic acid | C20:1 | 1.46 | 0.66 | 1.03 | 0.181 | 0.197 |
Polyunsaturated fatty acid | ||||||
Linoleic acid | C18:2 (cis-9,12) | 10.57 | 10.04 | 13.19 | 0.954 | 0.344 |
Eicosadienoic acid | C20:2 (cis-11,14) | 4.19 | 0.84 | 0.82 | 0.997 | 0.272 |
γ-linolenic acid | C18:3 (cis-6,9,12) | 0.03 | 0.02 | 0.02 | 0.012 | 0.880 |
α-linolenic acid | C18:3 (cis-9,12,15) | 1.49 b | 3.74 a | 3.90a | 0.458 | 0.046 |
Eicosatrienoic acid | C20:3 | 2.17 | 2.33 | 2.38 | 0.133 | 0.825 |
Eicosapentaenoic acid | C20:5 | 0.61 | 0.73 | 0.35 | 0.072 | 0.078 |
Docosahexaenoic acid | C22:6 | 0.20 | 0.25 | 0.15 | 0.062 | 0.797 |
ΣSFA | 42.42 a | 38.58 ab | 36.34 b | 1.058 | 0.034 | |
ΣMUFA | 43.64 | 41.74 | 42.85 | 0.689 | 0.549 | |
ΣPUFA | 13.93 | 19.69 | 20.81 | 1.292 | 0.059 |
Fatty Acid (g/100g Fat) | Formula | PC0 | PC5 | PC10 | SEM | p-Value |
---|---|---|---|---|---|---|
Saturated fatty acid | ||||||
Miristic acid | C14:0 | 1.11 | 1.24 | 1.01 | 0.046 | 0.114 |
Palmitic acid | C16:0 | 21.14 a | 19.14 b | 17.00 c | 0.527 | 0.001 |
Heptadecanoic acid | C17:0 | 1.10 | 1.04 | 0.96 | 0.047 | 0.494 |
Stearic acid | C18:0 | 17.07 a | 15.97 b | 14.05 b | 0.390 | 0.002 |
Arachidic acid | C20:0 | 0.40 | 0.46 | 0.41 | 0.085 | 0.959 |
Behenic acid | C22:0 | 0.21 a | 0.13 b | 0.08 b | 0.016 | 0.000 |
Tricosylic acid | C23:0 | 2.96 a | 1.96 b | 1.92 b | 0.160 | 0.004 |
Monounsaturated fatty acid | ||||||
Palmitoleic acid | C16:1 (cis-9) | 4.32 b | 6.45 a | 6.30 a | 0.286 | 0.001 |
Heptadecanoic acid | C17:1 | 0.58 a | 0.39 b | 0.49 ab | 0.031 | 0.038 |
Oleic acid | C18:1 (cis-9) | 36.29 | 37.89 | 38.94 | 0.457 | 0.056 |
Gondoic acid | C20:1 | 1.24 | 1.10 | 1.50 | 0.073 | 0.078 |
Polyunsaturated fatty acid | ||||||
Linoleic acid | C18:2 (cis-9,12) | 10.48 b | 13.12 a | 12.93a | 0.458 | 0.018 |
Eicosadienoic acid | C20:2 (cis-11,14) | 0.76 | 0.87 | 1.03 | 0.049 | 0.073 |
γ-linolenic acid | C18:3 (cis-6,9,12) | 0.11 ab | 0.14 a | 0.06b | 0.013 | 0.035 |
α-linolenic acid | C18:3 (cis-9,12,15) | 1.48 b | 3.29 a | 3.42 a | 0.251 | 0.000 |
Dihomo-γ-linolenic acid | C20:3 | 0.42 a | 0.33 b | 0.30 b | 0.017 | 0.004 |
Eicosapentaenoic acid | C20:5 | 0.11 | 0.13 | 0.14 | 0.010 | 0.602 |
Docosahexaenoic acid | C22:6 | 0.35 | 0.31 | 0.44 | 0.037 | 0.356 |
ΣSFA | 44.01 a | 39.97 b | 35.43 c | 0.891 | 0.000 | |
ΣMUFA | 42.49 b | 45.84 a | 46.56 a | 0.606 | 0.005 | |
ΣPUFA | 13.50 b | 14.23 b | 18.03 a | 0.659 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arjin, C.; Souphannavong, C.; Norkeaw, R.; Chaiwang, N.; Mekchay, S.; Sartsook, A.; Thongkham, M.; Yosen, T.; Ruksiriwanich, W.; Sommano, S.R.; et al. Effects of Dietary Perilla Cake Supplementation in Growing Pig on Productive Performance, Meat Quality, and Fatty Acid Profiles. Animals 2021, 11, 3213. https://doi.org/10.3390/ani11113213
Arjin C, Souphannavong C, Norkeaw R, Chaiwang N, Mekchay S, Sartsook A, Thongkham M, Yosen T, Ruksiriwanich W, Sommano SR, et al. Effects of Dietary Perilla Cake Supplementation in Growing Pig on Productive Performance, Meat Quality, and Fatty Acid Profiles. Animals. 2021; 11(11):3213. https://doi.org/10.3390/ani11113213
Chicago/Turabian StyleArjin, Chaiwat, Chanmany Souphannavong, Rakkiat Norkeaw, Niraporn Chaiwang, Supamit Mekchay, Apinya Sartsook, Maninphan Thongkham, Thanchanok Yosen, Warintorn Ruksiriwanich, Sarana Rose Sommano, and et al. 2021. "Effects of Dietary Perilla Cake Supplementation in Growing Pig on Productive Performance, Meat Quality, and Fatty Acid Profiles" Animals 11, no. 11: 3213. https://doi.org/10.3390/ani11113213