Effects of Early Nutrition of Hatched Chicks on Welfare and Growth Performance: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Housing
2.3. Hatching
2.4. Animals
2.5. Diets and Chemical Analysis
2.6. Excreta and Litter Quality and Foot pad Scoring
2.7. Performance Parameters
2.8. Statistical Analysis
3. Results
3.1. Dry Matter Content of Excreta
3.2. Litter Quality
3.3. FPD Scoring
3.4. Performance Data and Mortality Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giersberg, M.F.; Molenaar, R.; de Jong, I.C.; da Silva, C.S.; van den Brand, H.; Kemp, B.; Rodenburg, T.B. Effects of hatching system on the welfare of broiler chickens in early and later life. Poult. Sci. 2021, 100, 100946. [Google Scholar] [CrossRef]
- Careghi, C.; Tona, K.; Onagbesan, O.; Buyse, J.; Decuypere, E.; Bruggeman, V. The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poult. Sci. 2005, 84, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, H.; Debonne, M.; Swennen, Q.; Everaert, N.; Careghi, C.; Han, H.; Bruggeman, V.; Tona, K.; Decuypere, E. Delay in feed access and spread of hatch: Importance of early nutrition. World’s Poult. Sci. J. 2010, 66, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Van der Wagt, I.; de Jong, I.C.; Mitchell, M.A.; Molenaar, R.; van den Brand, H. A review on yolk sac utilization in poultry. Poult. Sci. 2020, 99, 2162–2175. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.; de Vries Reilingh, G.; Bolhuis, J.; Kemp, B.; Lammers, A. Early feeding and early life housing conditions influence the response towards a noninfectious lung challenge in broilers. Poult. Sci. 2015, 94, 2041–2048. [Google Scholar] [CrossRef]
- Van de Ven, L.J.F.; van Wagenberg, A.V.; Debonne, M.; Decuypere, E.; Kemp, B.; van den Brand, H. Hatching system and time effects on broiler physiology and posthatch growth. Poult. Sci 2011, 90, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Van de Ven, L.J.F.; van Wagenberg, A.V.; Koerkamp, P.W.G.G.; Kemp, B.; van den Brand, H. Effects of a combined hatching and brooding system on hatchability, chick weight, and mortality in broilers. Poult. Sci. 2009, 88, 2273–2279. [Google Scholar] [CrossRef]
- De Jong, I.; Berg, C.; Butterworth, A.; Estevéz, I. Scientific report updating the EFSA opinions on the welfare of broilers and broiler breeders. EFSA Supporting Publ. 2012, 9, 295E. [Google Scholar] [CrossRef]
- Jacobs, L.; Delezie, E.; Duchateau, L.; Goethals, K.; Tuyttens, F.A.M. Impact of the separate pre-slaughter stages on broiler chicken welfare. Poult. Sci. 2017, 96, 266–273. [Google Scholar] [CrossRef]
- Council of the European Union. Council Regulation (EC) No 1/2005 of 22 December, 2004, on the protection of animals during transport and related operations and amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. Off. J. Eur. Union L 2005, 3, 1–44. [Google Scholar]
- EFSA Panel on Animal Health Welfare. Scientific Opinion concerning the welfare of animals during transport. EFSA J. 2011, 9, 1966. [Google Scholar] [CrossRef]
- Yassin, H.; Velthuis, A.G.J.; Boerjan, M.; van Riel, J. Field study on broilers’ first-week mortality. Poult. Sci. 2009, 88, 798–804. [Google Scholar] [CrossRef] [PubMed]
- De Jong, I.C.; van Riel, J.; Bracke, M.B.M.; van den Brand, H. A ‘meta-analysis’ of effects of post-hatch food and water deprivation on development, performance and welfare of chickens. PLoS ONE 2017, 12, e0189350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, T.G.; Brown, S.N.; Warriss, P.D.; Butterworth, A.; Hewitt, L. Welfare aspects of chick handling in broiler and laying hen hatcheries. Anim. Welfare 2004, 13, 409–418. [Google Scholar]
- De Gouw, P.; van de Ven, L.J.F.; Lourens, S.; Kemp, B.; van den Brand, H. Effects of dust, formaldehyde and delayed feeding on early postnatal development of broiler chickens. Res. Vet. Sci. 2017, 112, 201–207. [Google Scholar] [CrossRef]
- Giersberg, M.F.; Poolen, I.; de Baere, K.; Gunnink, H.; van Hattum, T.; van Riel, J.W.; de Jong, I.C. Comparative assessment of general behaviour and fear-related responses in hatchery-hatched and on-farm hatched broiler chickens. Appl. Anim. Behav. Sci. 2020, 232, 105100. [Google Scholar] [CrossRef]
- Lilburn, M.S.; Loeffler, S. Early intestinal growth and development in poultry. Poult. Sci. 2015, 94, 1569–1576. [Google Scholar] [CrossRef]
- Lamot, D.M.; van de Linde, I.B.; Molenaar, R.; van der Pol, C.W.; Wijtten, P.J.; Kemp, B.; van den Brand, H. Effects of moment of hatch and feed access on chicken development. Poult. Sci. 2014, 93, 2604–2614. [Google Scholar] [CrossRef]
- Powell, D.J.; Velleman, S.G.; Cowieson, A.J.; Singh, M.; Muir, W.I. Influence of chick hatch time and access to feed on broiler muscle development. Poult. Sci. 2016, 95, 1433–1448. [Google Scholar] [CrossRef]
- Panda, A.; Bhanja, S.; Shyam Sunder, G. Early post hatch nutrition on immune system development and function in broiler chickens. World’s Poult. Sci. J. 2015, 71, 285–296. [Google Scholar] [CrossRef]
- Jha, R.; Singh, A.K.; Yadav, S.; Berrocoso, J.F.D.; Mishra, B. Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Front. Vet. Sci. 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Hollemans, M.S.; de Vries, S.; Lammers, A.; Clouard, C. Effects of early nutrition and transport of 1-day-old chickens on production performance and fear response. Poult. Sci. 2018, 97, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Van der Pol, C.; Maatjens, C.; Aalbers, G.; Van Roovert-Reijrink, I. Effect of feed and water access on hatchling body weight changes between hatch and pull. In Proceedings of the 20th European Symposium on Poultry Nutrition-ESPN, Prague, Czech Republic, 24–27 August 2015; p. 255. [Google Scholar]
- De Jong, I.C.; van Hattum, T.; van Riel, J.W.; De Baere, K.; Kempen, I.; Cardinaels, S.; Gunnink, H. Effects of on-farm and traditional hatching on welfare, health, and performance of broiler chickens. Poult. Sci. 2020, 99, 4662–4671. [Google Scholar] [CrossRef] [PubMed]
- De Jong, I.C.; Gunnink, H.; van Hattum, T.; van Riel, J.W.; Raaijmakers, M.M.P.; Zoet, E.S.; van den Brand, H. Comparison of performance, health and welfare aspects between commercially housed hatchery-hatched and on-farm hatched broiler flocks. Animal 2019, 13, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Van den Brand, H.; Molenaar, R.; van der Star, I.; Meijerhof, R. Early feeding affects resistance against cold exposure in young broiler chickens. Poult. Sci. 2010, 89, 716–720. [Google Scholar] [CrossRef]
- Abd El-Wahab, A.; Beineke, A.; Beyerbach, M.; Visscher, C.F.; Kamphues, J. Effects of Floor Heating and Litter Quality on the Development and Severity of Foot Pad Dermatitis in Young Turkeys. Avian Dis. 2011, 55, 429–434. [Google Scholar] [CrossRef]
- Abd El-Wahab, A.; Visscher, C.F.; Beineke, A.; Beyerbach, M.; Kamphues, J. Effects of high electrolyte contents in the diet and using floor heating on development and severity of foot pad dermatitis in young turkeys. J. Anim. Physiol. N 2013, 97, 39–47. [Google Scholar] [CrossRef]
- Chuppava, B.; Keller, B.; Abd El-Wahab, A.; Meissner, J.; Kietzmann, M.; Visscher, C. Resistance of Escherichia coli in Turkeys after Therapeutic or Environmental Exposition with Enrofloxacin Depending on Flooring. Int. J. Environ. Res. Pub. He. 2018, 15, 1993. [Google Scholar] [CrossRef] [Green Version]
- Mayne, R.K.; Else, R.W.; Hocking, P.M. High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Brit. Poult. Sci. 2007, 48, 538–545. [Google Scholar] [CrossRef]
- Lourens, A.; van den Brand, H.; Heetkamp, M.J.W.; Meijerhof, R.; Kemp, B. Metabolic responses of chick embryos to short-term temperature fluctuations. Poult. Sci. 2006, 85, 1081–1086. [Google Scholar] [CrossRef]
- Molenaar, R.; Reijrink, I.A.M.; Meijerhof, R.; Van den Brand, H. Meeting Embryonic Requirements of Broilers Throughout Incubation: A Review. Braz. J. Poult. Sci. 2010, 12, 137–148. [Google Scholar] [CrossRef]
- Naumann, C.; Bassler, R. Methoden der Landwirtschaftlichen Forschungs-und Untersuchungsanstalt, Biochemische Untersuchung von Futtermitteln. Methodenbuch III (Einschließlich der Achten Ergänzungen); VDLUFA: Darmstadt, Germany, 2012. [Google Scholar]
- Abd El-Wahab, A.; Lingens, J.B.; Chuppava, B.; Ahmed, M.F.E.; Osman, A.; Langeheine, M.; Brehm, R.; Taube, V.; Grone, R.; von Felde, A.; et al. Impact of Rye Inclusion in Diets for Broilers on Performance, Litter Quality, Foot Pad Health, Digesta Viscosity, Organ Traits and Intestinal Morphology. Sustainability-Basel 2020, 12, 7753. [Google Scholar] [CrossRef]
- Abd El-Wahab, A.; Hillert, M.S.; Spindler, B.; Hartung, J.; Sürie, C.; Kamphues, J. Effects of diets formulated on an all-plant protein basis or including animal protein on foot pad health and performance in fattening turkeys. Eur. Poult. Sci. 2014, 78, 38. [Google Scholar] [CrossRef]
- Martland, M. Wet litter as a cause of plantar pododermatitis, leading to foot ulceration and lameness in fattening turkeys. Avian Pathol. 1984, 13, 241–252. [Google Scholar] [CrossRef] [PubMed]
- De Jong, I.C.; Gunnink, H.; Van Harn, J. Wet litter not only induces footpad dermatitis but also reduces overall welfare, technical performance, and carcass yield in broiler chickens. J. Appl. Poult. Res. 2014, 23, 51–58. [Google Scholar] [CrossRef]
- Uni, Z.; Ferket, R.P. Methods for early nutrition and their potential. World’s Poult. Sci. J. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- Gonzales, E.; Kondo, N.; Saldanha, E.S.P.B.; Loddy, M.M.; Careghi, C.; Decuypere, E. Performance and physiological parameters of broiler chickens subjected to fasting on the neonatal period. Poult. Sci. 2003, 82, 1250–1256. [Google Scholar] [CrossRef]
- Noy, Y.; Sklan, D. Different types of early feeding and performance in chicks and poults. J. Appl. Poult. Res. 1999, 8, 16–24. [Google Scholar] [CrossRef]
- Mitchell, M.; Carlisle, A.; Hunter, R.; Kettlewell, P. Weight loss in transit: An issue in broiler transportation. Poult. Sci. 2003, 82, 101. [Google Scholar]
- Karaman, M. Effect of transport time on body performance of broilers during transit to slaughter house. J. Anim. Vet. Adv. 2009, 8, 1555–1557. [Google Scholar]
- Noy, Y.; Uni, Z. Early nutritional strategies. World’s Poult. Sci. J. 2010, 66, 639–646. [Google Scholar] [CrossRef]
- Dibner, J.J.; Knight, C.D.; Kitchell, M.L.; Atwell, C.A.; Downs, A.C.; Ivey, F.J. Early feeding and development of the immune system in neonatal poultry. J. Appl. Poult. Res. 1998, 7, 425–436. [Google Scholar] [CrossRef]
- Yi, G.; Allee, G.; Knight, C.; Dibner, J. Impact of glutamine and oasis hatchling supplement on growth performance, small intestinal morphology, and immune response of broilers vaccinated and challenged with Eimeria maxima. Poult. Sci. 2005, 84, 283–293. [Google Scholar] [CrossRef]
- Vieira, S.L.; Moran, E.T. Effects of delayed placement and used litter on broiler yields. J. Appl. Poult. Res. 1999, 8, 75–81. [Google Scholar] [CrossRef]
- Dibner, J.; Knight, C. Early Nutrition: Effect of Feed and Water on Livability and Performance; Novus Int. Inc.: St. Charles, MO, USA, 2003.
- Mitchell, M.A. Chick transport and welfare. Avian Biol. Res. 2009, 2, 99–105. [Google Scholar] [CrossRef]
- Gouda, A.; Samar, A.T.; & Khalid, M.M. Influences of vitamin A, L-carnitine, and folic acid in ovo feeding on embryo and hatchling characteristics and general health status in ducks. Anim. Biotechnol. 2021, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
Item (g/kg DM) 2 | Commercial Diets 1 | |||||
---|---|---|---|---|---|---|
Starter | Grower | Finisher | ||||
T1 | T2 | T1 | T2 | T1 | T2 | |
DM | 898 | 893 | 891 | 894 | 891 | 891 |
Crude ash | 57.6 | 57.1 | 60.9 | 57.8 | 55.9 | 60.3 |
Crude protein | 219 | 222 | 213 | 214.3 | 222 | 223 |
Crude fat | 43.8 | 47.0 | 50.7 | 55.3 | 52.4 | 51.2 |
Crude fiber | 28.4 | 28.7 | 38.3 | 38.1 | 30.7 | 34.1 |
Starch | 490 | 486 | 469 | 462 | 480 | 471 |
Sugar | 44.5 | 46.1 | 46.6 | 48.0 | 48.3 | 48.0 |
Metabolizable energy (MJ/kg) 3 | 13.7 | 13.8 | 13.5 | 13.6 | 13.9 | 13.7 |
Calcium | 9.40 | 10.1 | 7.60 | 8.31 | 7.00 | 8.37 |
Magnesium | 1.80 | 1.76 | 1.88 | 1.86 | 1.76 | 1.77 |
Phosphorus | 7.69 | 7.18 | 5.89 | 5.95 | 5.56 | 5.19 |
Sodium | 1.58 | 1.41 | 1.76 | 1.45 | 1.42 | 1.45 |
Potassium | 9.30 | 9.35 | 9.23 | 9.23 | 8.86 | 8.91 |
Chloride | 2.15 | 1.96 | 2.20 | 2.08 | 2.03 | 2.02 |
Copper (mg/kg DM) | 26.7 | 23.3 | 28.2 | 23.7 | 24.7 | 23.8 |
Zinc (mg/kg DM) | 107.2 | 94.8 | 104 | 108 | 91.3 | 101 |
Iron (mg/kg DM) | 267 | 276 | 329 | 298 | 309 | 277 |
Manganese (mg/kg DM) | 144 | 141 | 137 | 130 | 112 | 134 |
Arginine | 13.5 | 12.9 | 12.9 | 12.6 | 13.4 | 12.6 |
Cysteine | 3.71 | 3.90 | 3.68 | 3.35 | 4.07 | 3.35 |
Isoleucine | 8.86 | 8.49 | 8.44 | 8.37 | 8.56 | 8.37 |
Leucine | 16.8 | 16.0 | 15.7 | 15.7 | 16.1 | 15.7 |
Lysine | 13.5 | 12.8 | 13.4 | 12.2 | 12.6 | 12.2 |
Methionine 4 | 6.58 | 6.46 | 3.05 | 2.57 | 5.97 | 2.57 |
Phenylalanine | 10.6 | 10.1 | 10.0 | 9.69 | 10.3 | 9.69 |
Threonine | 8.25 | 7.91 | 7.98 | 8.54 | 8.45 | 8.54 |
Valine | 9.92 | 9.68 | 10.1 | 9.69 | 10.1 | 9.69 |
Trial | Group | Day of Life | |||||
---|---|---|---|---|---|---|---|
4 | 6/7 | 14 | 21 | 28 | 32 | ||
1 * | Control | 21.7 ± 0.404 | 22.8 ± 0.250 | 22.8 ± 0.479 | 23.3 ± 0.580 | 22.9 ± 0.557 | 23.1 ± 0.263 |
Experimental | 22.1 ± 0.404 | 23.0 ± 0.238 | 22.8 ± 0.939 | 23.2 ± 0.359 | 22.7 ± 0.714 | 23.2 ± 0.238 | |
2 * | Control | 22.2 ± 0.964 | 20.1 ± 0.668 | 24.3 ± 0.512 | 26.8 ± 1.59 | 29.7 ± 2.80 | 25.4 ± 0.624 |
Experimental | 23.3 ± 1.00 | 21.1 ± 0.374 | 23.5 ± 0.526 | 26.5 ± 1.02 | 27.7 ± 2.11 | 26.2 ± 1.27 | |
p-value | Group | 0.122 | 0.016 | 0.223 | 0.697 | 0.248 | 0.280 |
Trial | 0.096 | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 | |
Group × Trial | 0.443 | 0.073 | 0.176 | 0.922 | 0.327 | 0.373 |
Trial | Group | Day of Life | ||||||
---|---|---|---|---|---|---|---|---|
0 | 4 | 6/7 | 14 | 21 | 28 | 32 | ||
1 | Control | 91.8 a ± 0.404 | 87.9 a ± 1.86 | 83.7 a ± 3.11 | 76.9 a ± 4.51 | 69.0 b ± 2.60 | 66.1 b ± 1.80 | 63.2 a ± 2.09 |
Experimental | 91.8 a ± 0.436 | 85.2 a ± 1.82 | 72.1 b ± 0.797 | 80.2 a ± 1.30 | 73.6 a ± 0.601 | 69.6 a ± 1.03 | 65.4 a ± 1.68 | |
2 | Control | 91.9 a ± 0.361 | 82.3 a ± 6.83 | 83.8 a ± 5.36 | 74.6 a ± 3.04 | 77.4 a ± 3.61 | 80.3 a ± 1.97 | 73.2 a ± 3.66 |
Experimental | 92.0 a ± 0.252 | 75.2 a ± 3.33 | 72.0 b ± 10.8 | 77.9 a ± 1.86 | 74.3 a ± 2.57 | 78.5 a ± 2.26 | 74.4 a ± 2.12 | |
p -value | Group | 0.706 | 0.066 | <0.001 | 0.013 | 0.490 | 0.305 | 0.122 |
Trial | 0.415 | 0.010 | 0.992 | 0.064 | <0.001 | <0.001 | <0.001 | |
Group × Trial | 0.821 | 0.377 | 0.972 | 0.995 | 0.002 | 0.002 | 0.642 |
Trial | Group | Day of Life | |||||
---|---|---|---|---|---|---|---|
4 | 6/7 | 14 | 21 | 28 | 32 | ||
1 | Control | 0.020 a ± 0.141 | 0.410 a ± 0.668 | 1.77 a ± 1.71 | 2.04 a ± 2.04 | 1.78 a ± 1.93 | 2.54 a ± 2.30 |
Experimental | 0.120 a ± 0.372 | 0.360 a ± 0.452 | 0.870 b ± 0.781 | 1.02 b ± 0.742 | 0.910 b ± 0.793 | 1.18 b ± 1.20 | |
2 | Control | 0.180 a ± 0.414 | 0.590 a ± 0.560 | 1.04 a ± 0.807 | 1.31 a ± 0.931 | 1.22 a ± 0.648 | 1.29 a ± 0.840 |
Experimental | 0.240 a ± 0.381 | 0.390 a ± 0.455 | 1.02 a ± 0.827 | 0.920 b ± 0.547 | 1.01 b ± 0.237 | 1.09 b ± 0.241 | |
p-value | Group | 0.102 | 0.104 | 0.004 | <0.001 | <0.001 | <0.001 |
Trial | 0.005 | 0.172 | 0.064 | 0.016 | 0.140 | 0.001 | |
Group × Trial | 0.682 | 0.328 | 0.005 | 0.067 | 0.035 | 0.003 |
Trial | Group | Day of Life | ||||||
---|---|---|---|---|---|---|---|---|
0 | 4 | 6/7 | 14 | 21 | 28 | 32 | ||
1 | Control | 46.2 a ± 3.32 | 111 a ± 9.29 | 167 a ± 14.8 | 475 b ± 66.8 | 902 b ± 101 | 1524 a ± 181 | 1760 b ± 204 |
Experimental | 47.6 a ± 3.67 | 113 a ± 9.38 | 169 a ± 13.0 | 509 a ± 60.8 | 954 a ± 109 | 1575 a ± 184 | 1911 a ± 223 | |
2 | Control | 40.3 b ± 3.29 | 96.2 b ± 8.21 | 160 b ± 13.4 | 419 b ± 50.4 | 885 b ± 126 | 1381 b ± 191 | 1736 b ± 185 |
Experimental | 47.5 a ± 2.75 | 104 a ± 9.39 | 167 a ± 14.3 | 462 a ± 51.3 | 966 a ± 76.7 | 1541 a ± 142 | 1883 a ± 177 | |
p-value | Group | <0.001 | <0.001 | 0.025 | <0.001 | <0.001 | <0.001 | <0.001 |
Trial | <0.001 | <0.001 | 0.024 | <0.001 | 0.847 | 0.001 | 0.349 | |
Group × Trial | <0.001 | 0.017 | 0.230 | 0.551 | 0.341 | 0.029 | 0.935 |
Trial | Parameter | Control Group | Experimental Group |
---|---|---|---|
1 | Total live birds at d 0 (n) | 3318 | 3582 |
Total live birds at d 6 (n) | 3258 | 3536 | |
Total live birds at d 33 (n) | 3140 | 3402 | |
Mortality rate from d 0–d 6 (%) | 1.81 | 1.28 | |
Mortality rate from d 7–d 33 (%) | 3.62 | 3.79 | |
BW at 0 d (g) | 46 | 48 | |
BW at 33 d (g), slaughterhouse data | 1817 | 1893 | |
BWG from d 0–d 33 (g) | 1771 | 1845 | |
Stocking density (kg/m2) 1 | 28.7 | 32.4 | |
2 | Total live birds at d 0 (n) | 3391 | 3459 |
Total live birds at d 7 (n) | 3349 | 3429 | |
Total live birds at d 33 (n) | 3092 | 3196 | |
Mortality rate from d 0–d 7 (%) | 1.24 | 0.87 | |
Mortality rate from d 8–d 33 (%) | 6.75 | 5.66 | |
BW at 0 d (g) | 40 | 48 | |
BW at 33 d (g), slaughterhouse data | 1795 | 1911 | |
BWG from d 0–d 33 (g) | 1755 | 1863 | |
Stocking density (kg/m2) 1 | 27.9 | 30.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lingens, J.B.; Abd El-Wahab, A.; Ahmed, M.F.E.; Schubert, D.C.; Sürie, C.; Visscher, C. Effects of Early Nutrition of Hatched Chicks on Welfare and Growth Performance: A Pilot Study. Animals 2021, 11, 2888. https://doi.org/10.3390/ani11102888
Lingens JB, Abd El-Wahab A, Ahmed MFE, Schubert DC, Sürie C, Visscher C. Effects of Early Nutrition of Hatched Chicks on Welfare and Growth Performance: A Pilot Study. Animals. 2021; 11(10):2888. https://doi.org/10.3390/ani11102888
Chicago/Turabian StyleLingens, Jan Berend, Amr Abd El-Wahab, Marwa Fawzy Elmetwaly Ahmed, Dana Carina Schubert, Christian Sürie, and Christian Visscher. 2021. "Effects of Early Nutrition of Hatched Chicks on Welfare and Growth Performance: A Pilot Study" Animals 11, no. 10: 2888. https://doi.org/10.3390/ani11102888
APA StyleLingens, J. B., Abd El-Wahab, A., Ahmed, M. F. E., Schubert, D. C., Sürie, C., & Visscher, C. (2021). Effects of Early Nutrition of Hatched Chicks on Welfare and Growth Performance: A Pilot Study. Animals, 11(10), 2888. https://doi.org/10.3390/ani11102888