Out of Sight, but Not Out of Mind: Aspects of the Avian Oncogenic Herpesvirus, Marek’s Disease Virus
Abstract
:Simple Summary
Abstract
1. The Biology of the Oncogenic Marek’s Disease Virus
2. Feathers as the Main Site of Marek’s Disease Virus (MDV) Replication and Spread
3. Control by Vaccination
4. The Oncogene Carried by MDV
5. The Functional Significance of the Conformational Epitopes on the MDV Immunodominant Protein
6. Molecular Recombination Involving MDV
Funding
Conflicts of Interest
References
- Calnek, B.W. Chicken neoplasia—A model for cancer research. Br. Poult. Sci. 1992, 33, 16. [Google Scholar] [CrossRef] [PubMed]
- Calnek, B.W. Marek’s disease: A model for herpesvirus oncology. CRC Crit. Rev. Microbiol. 1986, 2, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Schat, K.A.; Nair, V. Marek’s disease. In Diseases of Poultry Swayne, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; Wiley-Blackwell, Iowa State Press: Ames, IA, USA, 2013; pp. 515–552. [Google Scholar]
- Davidson, I.; Malkinson, M.; Weisman, Y. Marek’s disease in turkeys: I. A seven-year survey of commercial flocks and experimental infection using two field isolates. Avian Dis. 2002, 46, 314–321. [Google Scholar] [CrossRef]
- Davidson, I.; Malkinson, M.; Weisman, Y. Marek’s disease in turkeys: II. Characterization of the viral glycoprotein B gene and antigen of a turkey strain of MDV. Avian Dis. 2002, 46, 322–333. [Google Scholar] [CrossRef]
- Davidson, I. The Oncogenicity Mechanism of the Chicken Herpesvirus, Marek’s Disease Virus. Recent Research Development in Virology; Review Book Series; Transworld Research Network: Kerala, India, 2006; Volume 7, pp. 13–29. [Google Scholar]
- Davidson, I. Avian Oncogenic and Immunosuppressive Viruses. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2019; Invited Chapter. [Google Scholar]
- Hoerr, F.J. Clinical aspects of immunosuppression in poultry. Avian Dis. 2010, 54, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.F.; Sharma, J.M.; Nazerian, K.; Witter, R.L. Suppression of mitogen-induced proliferation of normal spleen cells by macrophages from chicken inoculated with Marek’s disease virus. J. Immunol. 2010, 120, 1554–1559. [Google Scholar]
- Schat, K.A.; Markowski-Grimsrud, C.J. Immune responses to Marek’s disease virus infection. Curr. Top. Microbiol. Immunol. 2001, 225, 91–120. [Google Scholar]
- Yu, C.; Liu, Q.; Qin, A.; Hu, X.; Xu, W.; Qian, K.; Shao, H.; Jin, W. Expression kinetics of chicken B2-microglobulin and Class I MHC in vito and in vivo during Marek’s disease viral infections. Vet. Res. Commun. 2013, 37, 277–283. [Google Scholar] [CrossRef]
- Davidson, I. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring. Braz. J. Vet. Sci. 2009, 11, 139–148. [Google Scholar] [CrossRef]
- Davidson, I.; Natour, A.-A.; Raibstein, I.; Kin, E.; Dahan, Y.; Krispin, H.; Elkin, N. Monitoring the uptake of live avian vaccines by their detection in feathers. Vaccine 2018, 36, 637–643. [Google Scholar] [CrossRef]
- Davidson, I.; Shimshon, Y.; Natour, A.-A. Vaccine uptake evaluation using feathers—In real practice. Isr. J. Vet. Med. 2018, 73, 7–13. [Google Scholar]
- Couteaudier, M.; Denesvre, C. Marek’s disease virus and skin interactions. Vet. Res. 2014, 45, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calnek, B.W.; Adldinger, H.K.; Kahn, D.E. Feather follicle epithelium: A source of enveloped and infectious cell-free herpesvirus from Marek’s disease. Avian Dis. 1970, 14, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Jarosinski, K.W.; Arndt, S.; Kaufer, B.B. Osterrieder, N. Fluorescently Tagged pUL47 of Marek’s disease virus reveals differential tissue expression of the tegument protein In Vivo. J. Virol. 2016, 86, 2428–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malkinson, M.; Davidson, I.; Strenger, C.; Weisman, Y.; Maray, T.; Levy, H.; Becker, Y. Kinetics of the appearance of Marek’s disease virus (MDV) DNA and antigens in the feathers of chickens infected with virulent MDV field isolates as measured by AGP, ELISA and dot-blot hybridization. Avian Pathol. 1989, 18, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Baigent, S.J.; Smith, L.P.; Currie, R.J.; Nair, V.K. Replication kinetics of Marek’s disease vaccine virus in feathers and lymphoid tissues using PCR and virus isolation. J. Gen. Virol. 2005, 86, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
- Borenshtain, R.; Davidson, I. Marek’s disease virus genome separation from feather tip extracts by pulsed field gel electrophoresis. J. Virol. Methods 2002, 101, 169–174. [Google Scholar] [CrossRef]
- Davidson, I.; Borenshtain, R. Novel applications of feather tip extracts from MDV-infected chickens; diagnosis of commercial broilers, whole genome separation by PFGE and synchronic mucosal infection. FEMS Immunol. Med. Microbiol. 2003, 38, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Davidson, I.; Altory-Natour, A.; Haddas, R.; Nagar, S.; Meir, R.; Avital-Cohen, N.; Rozenboim, I. Evaluation of Viral-Induced Stress by Quantitating Corticosterone in Feathers of Virus-Infected Specific Pathogen-Free Chicks. J. Appl. Poult. Res. 2020, 29, 48–63. [Google Scholar] [CrossRef]
- Ralapanawe, S.; Walkden-Brown, S.W.; Islam, A.F.; Renz, K.G. Effects of Rispens CVI988 vaccination followed by challenge with Marek’s disease viruses of differing virulence on the replication kinetics and shedding of the vaccine and challenge viruses. Vet. Microbiol. 2016, 183, 21–29. [Google Scholar] [CrossRef]
- Ralapanawe, S.; Walkden, S.W.-B.; Renz, K.G.; Fakrul, A.F.M.-I. Protection provided by Rispens CVI988 against Marek’s disease virus isolates of different pathotypes and early prediction of vaccine take and MD outcome. Avian Pathol. 2016, 45, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralapanawe, S.; Renz, K.G.; Burgess, S.K.; Walkden, S.W.-B. Field studies of the detection, persistence and spread of the Rispens CVI988 vaccine virus and the extent of co-infection with Marek’s disease virus. Aust. Vet. J. 2016, 94, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; King, D.J.; Anderson, D.P. A Herpesvirus Isolated from Kidney Cell Culture of Normal Turkeys. Avian Dis. 1969, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Witter, R.L.; Nazerian, K.; Purchase, H.G.; Burgoyne, G.H. Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek’s disease virus. Am. J. Vet. Res. 1970, 31, 525–538. [Google Scholar]
- Okasaki, W.; Purchase, H.G.; Burmester, B.R. Protection against Marek’s disease by vaccination with a hespesvirus of turkeys. Avian Dis. 1970, 14, 413–420. [Google Scholar] [CrossRef]
- Witter, R.L. Increased virulence of Marek’s disease virus field isolates. Avian Dis. 1977, 41, 149–154. [Google Scholar] [CrossRef]
- Biggs, P.M.; Milne, B.S. Biological properties of a number of Marek’s disease isolates. In Oncogenesis and Herpesviruses; Biggs, P.M., de The, G., Payne, L.N., Eds.; International Agency for Research on Cancer: Lyon, France, 1972; pp. 88–94. [Google Scholar]
- Schat, K.A.; Calnek, B.W. Characterization of an apparently non-oncogenic Marek’s disease virus. J. Natl. Cancer Inst. 1978, 60, 1075–1082. [Google Scholar] [CrossRef]
- Witter, R.L. Protection by attenuated and polyvalent vaccines against highly virulent strains of Marek’s disease virus1. Avian Pathol. 1982, 11, 49–62. [Google Scholar] [CrossRef]
- Witter, R.L.; Lee, L. Polyvalent Marek’s disease vaccines: Safety, efficacy and protective synergism in chickens with maternal antibodies1. Avian Pathol. 1984, 13, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Bullow, V.V. Further characterization of the CVI988 strain of Marek’s disease virus. Avian Pathol. 1977, 6, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.M.; Izumiya, Y.; Lupiani, B. Marek’s disease vaccines: Current status, and strategies for improvement and development of vector vaccines. Vet. Microbiol. 2017, 206, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Lee, L.; Liu, J.L.; Kung, H.J.; Tillotson, J.K. Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc. Natl. Acad. Sci. USA 1992, 89, 4042–4046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamblin, C.E.; Greene, N.; Arumugaswami, V.; Dienglewicz, R.L.; Parcells, M.S. Comparative analysis of Marek’s disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: Association of meq mutations with MDVs of high virulence. Vet. Microbiol. 2004, 102, 147–167. [Google Scholar] [CrossRef]
- Qian, Z.; Brunovskis, P.; Rauscher, F.; Lee, L.; Kung, H.J. Transactivation activity of Meq, a Marek’s disease herpesvirus bZIP protein persistently expressed in latently infected transformed T cells. J. Virol. 1995, 69, 4037–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, N.L. T-cell transformation by Marek’s disease virus. Trends Microbiol. 1999, 7, 22–29. [Google Scholar] [CrossRef]
- Liu, J.L.; Lin, S.F.; Xia, L.; Brunovskis, P.; Li, D.; Davidson, I.; Lee, L.F.; Kung, H.J. MEQ and V-IL8: Cellular genes in disguise? Acta Virol. 2000, 43, 94–101. [Google Scholar]
- Brown, A.C.; Baigent, S.J.; Smith, L.P.; Chattoo, J.P.; Petherbridge, L.J.; Hawes, P.; Allday, M.J.; Nair, V. Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek’s disease virus. Proc. Natl. Acad. Sci. USA 2006, 103, 1687–1692. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Li, X.; Shen, Y.; Qiu, Y.; Shi, Z.; Shao, D.; Jin, Y.; Tricoli, A.; Ding, C.; Li, L.; et al. The Meq oncoprotein of Marek’s disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Virol. J. 2010, 7, 348. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.F.; Liu, J.-L.; Cui, X.-P.; Kung, H.-J. Marek’s disease virus latent protein MEQ: Delineation of an epitope in the BR1 domain involved in nuclear localization. Virus Genes 2003, 27, 211–218. [Google Scholar] [CrossRef]
- Levy, A.M.; Gilad, O.; Xia, L.; Izumiya, Y.; Choi, J.; Tsalenko, A.; Yakhini, Z.; Witter, R.L.; Lee, L.; Cardona, C.J.; et al. Marek’s disease virus Meq transforms chicken cells via the v-Jun transcriptional cascade: A converging transforming pathway for avian oncoviruses. Proc. Natl. Acad. Sci. USA 2005, 102, 14831–14836. [Google Scholar] [CrossRef] [Green Version]
- Dully, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet. 2008, 9, 267–276. [Google Scholar] [CrossRef]
- Firth, C.; Kitchen, A.; Shapiro, B.; Suchard, M.A.; Holmes, E.C.; Rambaut, A. Using Time-Structured Data to Estimate Evolutionary Rates of Double-Stranded DNA Viruses. Mol. Boil. Evol. 2010, 27, 2038–2051. [Google Scholar] [CrossRef] [Green Version]
- Holmes, E.C. What Does Virus Evolution Tell Us about Virus Origins? J. Virol. 2011, 85, 5247–5251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padhi, A.; Parcells, M.S. Positive Selection Drives Rapid Evolution of the meq Oncogene of Marek’s Disease Virus. PLoS ONE 2016, 11, e0162180. [Google Scholar] [CrossRef]
- Trimpert, J.N.; Gronke, M.; Jenckel, S.; He, D.; Kunec, M.L.; Szpara, S.J.; Spatz, N. Osterrieder and D. P. McMahon. A phylogenomic analysis of Marek’s disease virus reveals independent paths to virulence in Euroasia and North America. Evol. Appl. 2017, 10, 1091–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schat, K.A.; Baranowski, E. Animal vaccination and the evolution of viral pathogens. Rev. Sci. Tech. l’OIE 2007, 26, 327–338. [Google Scholar] [CrossRef]
- Renz, K.G.; Cooke, J.; Clarke, N.; Cheetham, B.F.; Hussain, Z.; Islam, A.F.; Tannock, G.A.; Walkden-Brown, S.W. Pathotyping of Australian isolates of Marek’s disease virus and association of pathogenicity withmeqgene polymorphism. Avian Pathol. 2012, 41, 161–176. [Google Scholar] [CrossRef]
- Yu, Z.-H.; Teng, M.; Luo, J.; Wang, X.-W.; Ding, K.; Yu, L.; Su, J.-W.; Chi, J.-Q.; Zhao, P.; Hu, B.; et al. Molecular characteristics and evolutionary analysis of field Marek’s disease virus prevalent in vaccinated chicken flocks in recent years in China. Virus Genes 2013, 47, 282–291. [Google Scholar] [CrossRef]
- Suresh, P.; Rajeswar, J.J.; Sukumar, K.; Harikrishnan, T.J.; Srinivasan, P. Complete nucleotide sequence analysis of the oncogene “Meq” from serotype 1 Marek’s disease virus isolates from India. Br. Poult. Sci. 2017, 58, 1–5. [Google Scholar] [CrossRef]
- Woźniakowski, G.; Samorek-Salamonowicz, E. Molecular Evolution of Marek’s Disease Virus (MDV) Field Strains in a 40-Year Time Period. Avian Dis. 2014, 58, 550–557. [Google Scholar] [CrossRef]
- Hassanin, O.; Abdallah, F.; El-Araby, I.E. Molecular characterization and phylogenetic analysis of Marek’s disease virus from clinical cases of Marek’s disease in Egypt. Avian Dis. 2013, 57, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Mescolini, G.; Lupini, C.; Davidson, I.; Massi, P.; Tosi, G.; Catelli, E. Marek’s disease viruses circulating in commercial poultry in Italy in the years 2015–2018 are closely related by their meq gene phylogeny. Transbound. Emerg. Dis. 2019, 67, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Mescolini, G.; Lupini, C.; Davidson, I.; Massi, P.; Tosi, G.; Fiorentini, L.; Catelli, E. Molecular characterization of a Marek’s disease virus strain detected in tumour-bearing turkeys. Avian Pathol. 2019, 49, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Witter, R.; Calnek, B.W.; Buscaglia, C.; Gimeno, I.M.; Schat, K.A. Classification of Marek’s disease viruses according to pathotype: Philosophy and methodology. Avian Pathol. 2005, 34, 75–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudnikova, E.; Norkina, S.; Vlasov, A.; Slobodchuk, A.; Lee, L.F.; Witter, R.L. Evaluation of Marek’s disease field isolates by the "best fit" pathotyping assay. Avian Pathol. 2007, 36, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Conradie, A.M.; Bertzbach, L.D.; Bhandari, N.; Parcells, M.; Kaufer, B.B. A Common Live-Attenuated Avian Herpesvirus Vaccine Expresses a Very Potent Oncogene. mSphere 2019, 4, e00658-19. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.C.; Reddy, V.R.; Lee, J.; Nair, V. Marek’s disease virus oncoprotein Meq physically interacts with the chicken infectious anemia virus-encoded apoptotic protein apoptin. Oncotarget 2018, 9, 28910–28920. [Google Scholar] [CrossRef]
- Schat, K.A.; van Santen, V.L. Chicken anemia virus. In Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C., McDougald, L.R., Nair, V., Suarez, D.L., Eds.; Wiley-Blackwell: Ames, IA, USA, 2018; In Press. [Google Scholar]
- Davidson, I.; Malkinson, M.; Becker, Y. Marek’s Disease virus, serotype 1, antigens A and B and unglycosylated precursors detected by Western blot analysis in infected cells. Virus Genes 1988, 2, 5–18. [Google Scholar] [CrossRef]
- Chen, X.; Velicer, L.F. Expression of Marek’s disease virus homolog of HSV1 glycoprotein B in E. coli and its identification as B antigen. J. Virol. 1992, 66, 4390–4398. [Google Scholar] [CrossRef] [Green Version]
- Niikura, M.; Matsuura, Y.; Endoh, D.; Onuma, M.; Mikami, T. Expression of the Marek’s disease virus (MDV) homolog of glycoprotein B of herpes simplex virus by a recombinant baculovirus and its identification as the B antigen (gp100, gp60, gp49) of MDV. J. Virol. 1992, 66, 2631–2638. [Google Scholar] [CrossRef] [Green Version]
- Yanagida, N.; Ogawa, R.; Li, Y.; Lee, L.F.; Nazerian, K. Recombinant fowlpox viruses expressing the glycoprotein B homolog and the pp38 gene of Marek’s disease virus. J. Virol. 1992, 66, 1402–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, I.; Tanaka, A.; Nonoyama, M. Common antigenic epitopes are present on heat-labile oligomers of MDV glycoprotein B and on HSV glycoprotein B. Virus Res. 1995, 35, 233–245. [Google Scholar] [CrossRef]
- Malkinson, M.; Davidson, I.; Becker, Y. Antigen B of the vaccine strains of Marek’s disease virus and herpesvirus of turkeys presents heat-labile group and serotype-specific epitopes. Arch. Virol. 1992, 127, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Davidson, I.; Becker, Y.; Malkinson, M. Monospecific antibodies to Marek’s disease virus antigen B dimer (200 kDa) and monomer (130 and 60 kDa) glycoproteins neutralize virus infectivity and detect the antigen B proteins in infected cell membranes. Arch. Virol. 1991, 121, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Davidson, I.; Becker, Y.; Malkinson, M. Virus-neutralization domains on the oligomeric (230 kD) forms of antigen B of herpesvirus of turkeys and Marek’s disease virus differ in cross-serotypic activity. J. Vet. Med. Ser. B 1995, 42, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Klassen, T.; Baringer, J.R. Type-common and type-specific monoclonal antibody to herpes simplex virus type 1. Infect. Immun. 1980, 29, 724–732. [Google Scholar] [PubMed]
- Claesson-Welsh, L.; Spear, P.G. Oligomerization of herpes simplex virus glycoprotein B. J. Virol. 1986, 60, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Highlander, S.L.; Goins, W.F.; Person, S.; Holland, T.C.; Levine, M.; Glorioso, J.C. Oligomer formation of the gB glycoprotein of herpes simplex virus type 1. J. Virol. 1991, 65, 4275–4283. [Google Scholar] [CrossRef] [Green Version]
- Fuller, A.D.; Spear, P.D. Specificities of monoclonal and polyclonal antibodies that inhibit absorption of herpes simplex to cells and lack of inhibition by potent neutralizing antibodies. J. Virol. 1985, 55, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Spear, P.G.; Wittels, M.; Fuller, A.O.; WuDunon, D.; Johnson, R. Herpes simplex virus: Pathway of entry into cells. In Cell Biology of Virus Entry, Replication and Pathogenesis; Liss, E., Ed.; Plenum: New York, NY, USA, 1989; pp. 163–175. [Google Scholar]
- Stannard, L.M.; Fuller, A.O.; Spear, P.G. Herpes simplex virus glycoprotein associated with different morphological entities projecting from the virus envelope. J. Gen. Virol. 1987, 68, 715–725. [Google Scholar] [CrossRef]
- Almeida, G.R.; Goulart, L.R.; Junior, J.P.C.; Bataus, L.A.M.; Japolla, G.; De Brito, W.M.E.D.; Campos, I.T.; Ribeiro, C.; Souza, G.R. A conformational epitope mapped in the bovine herpesvirus type 1 envelope glycoprotein B by phage display and the HSV-1 3D structure. Res. Vet. Sci. 2015, 101, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Laquerre, S.; Person, S.; Glorioso, J.C. Glycoprotein B of herpes simplex virus type 1 oligomerizes through the intermolecular interaction of a 28-amino-acid domain. J. Virol. 1996, 70, 1640–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dollery, S.J.; Wright, C.C.; Johnson, D.C.; Nicola, A.V. Low-pH-Dependent Changes in the Conformation and Oligomeric State of the Prefusion Form of Herpes Simplex Virus Glycoprotein B Are Separable from Fusion Activity. J. Virol. 2011, 85, 9964–9973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weed, D.; Pritchard, S.M.; Gonzalez, F.; Aguilar, H.C.; Nicola, A.V. Mildly Acidic pH Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex Virus 1 Glycoprotein B and Inactivation of Viral Entry. J. Virol. 2016, 91, e02123-16. [Google Scholar] [CrossRef] [Green Version]
- Davidson, I.; Yang, H.; Witter, R.; Malkinson, M. The immunodominant proteins of reticuloendotheliosis virus. Vet. Microbiol. 1996, 49, 273–284. [Google Scholar] [CrossRef]
- Ward, A.B.; Wilson, I.A. The HIV-1 Envelope Glycoprotein Structure: Nailing down a Moving Target. Immunol. Rev. 2017, 275, 21–32. [Google Scholar] [CrossRef]
- Tripathy, D.N.; Sells, D.M.; Hanson, L.E. Natural Pox and Herpes as a Dual Viral Infection in Chickens. Avian Dis. 1975, 19, 75. [Google Scholar] [CrossRef]
- Brunovskis, P.; Velicer, L.F. The Marek’s disease virus unique short region: Alpha herpes virus homologs, fowlpox virus homologs, and Marek’s disease virus-specific genes. Virology 1995, 206, 324–338. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-W.; Markham, P.F.; Coppo, M.J.; Legione, A.R.; Noormohammadi, A.H.; Browning, G.; Ficorilli, N.; Hartley, C.A.; Devlin, J.M.; Markham, J. Attenuated Vaccines Can Recombine to Form Virulent Field Viruses. Science 2012, 337, 188. [Google Scholar] [CrossRef]
- Loncoman, C.; Vaz, P.K.; Coppo, M.J.C.; Hartley, C.A.; Morera, F.J.; Browning, G.F.; Devlin, J.M. Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. Infect. Genet. Evol. 2017, 49, 174–185. [Google Scholar] [CrossRef]
- Isfort, R.J.; Robinson, D.; Kung, H.-J. Purification of genomic sized herpesvirus DNA using pulse-field electrophoresis. J. Virol. Methods 1990, 27, 311–317. [Google Scholar] [CrossRef]
- Isfort, R.; Jones, D.; Kost, R.; Witter, R.; Kung, H.J. Retrovirus insertion into herpesvirus In Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 1992, 89, 991–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isfort, R.J.; Qian, Z.; Jones, D.; Silva, R.F.; Witter, R.; Kung, H.-J. Integration of Multiple Chicken Retroviruses into Multiple Chicken Herpesviruses: Herpesviral gD as a Common Target of Integration. Virology 1994, 203, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Isfort, R.; Witter, R.; Kost, R.; Kung, H.J. Retroviral insertions into a herpesvirus are clustered at the junctions of the short repeat and short unique sequences. Proc. Natl. Acad. Sci. USA 1993, 90, 3855–3859. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Brunovskis, P.; Witter, R.; Kung, H.J. Retroviral insertional activation in a herpesvirus: Transcriptional activation of US genes by an integrated long terminal repeat in a Marek’s disease virus clone. J. Virol. 1996, 70, 2460–2467. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, Y.; Mikami, T. Molecular Interactions between Retroviruses and Herpesviruses. J. Vet. Med. Sci. 1995, 57, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Brunovskis, P.; Kung, H.-J. Retrotransposition and Herpesvirus Evolution. Mol. Evol. Viruses Past Pres. 1996, 11, 187–198. [Google Scholar] [CrossRef]
- Kung, H.J.; Kamil, J.; Witter, R.; Davidson, I. Retroviral insertion into herpesviruses: Discovery and implications. Dev. Boil. 2001, 106, 223–229. [Google Scholar]
- Witter, R.; Li, D.; Jones, D.; Lee, L.F.; Kung, H.-J. Retroviral insertional mutagenesis of a herpesvirus: A Marek’s disease virus mutant attenuated for oncogenicity but not for immunosuppression or In Vivo replication. Avian Dis. 1997, 41, 407. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Sonoda, K.; Matsuo, K.; Zhu, G.-S.; Hirai, K. Insertion of tandem direct repeats consisting of avian leukosis virus LTR sequences into the inverted repeat region of Marek’s disease virus type I DNA. Virus Genes 1997, 14, 157–162. [Google Scholar]
- Endoh, D.; Ito, M.; Cho, K.-O.; Kon, Y.; Morimura, T.; Hayashi, M.; Kuwabara, M. Retroviral Sequence Located in Border Region of Short Unique Region and Short Terminal Repeat of Md5 Strain of Marek’s Disease Virus Type 1. J. Vet. Med. Sci. 1998, 60, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, I.; Borenshtain, R. In vivo events of retroviral LTR integration into MDV in commercial poultry: Detection of chimeric molecules as a marker. Avian Dis. 2001, 45, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cui, Z. Isolation of recombinant field strains of Marek’s disease virus integrated with reticuloendotheliosis virus genome fragments. Sci. China Ser. C Life Sci. 2005, 48, 81. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidson, I. Out of Sight, but Not Out of Mind: Aspects of the Avian Oncogenic Herpesvirus, Marek’s Disease Virus. Animals 2020, 10, 1319. https://doi.org/10.3390/ani10081319
Davidson I. Out of Sight, but Not Out of Mind: Aspects of the Avian Oncogenic Herpesvirus, Marek’s Disease Virus. Animals. 2020; 10(8):1319. https://doi.org/10.3390/ani10081319
Chicago/Turabian StyleDavidson, Irit. 2020. "Out of Sight, but Not Out of Mind: Aspects of the Avian Oncogenic Herpesvirus, Marek’s Disease Virus" Animals 10, no. 8: 1319. https://doi.org/10.3390/ani10081319
APA StyleDavidson, I. (2020). Out of Sight, but Not Out of Mind: Aspects of the Avian Oncogenic Herpesvirus, Marek’s Disease Virus. Animals, 10(8), 1319. https://doi.org/10.3390/ani10081319