Autochtonous Strain Enterococcus faecium EF2019(CCM7420), Its Bacteriocin and Their Beneficial Effects in Broiler Rabbits—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Enterococcus faecium CCM7420 (EF2019) and Its Bacteriocin-Enterocin (Ent7420)
3. Application Effects of E. faecium CCM7420 and Its Enterocin Ent7420 Observed in Experiments
3.1. Effect on Growth Performance
3.2. Effect on Fecal Microbiota
3.3. Effect on Eimeria sp. Oocysts
3.4. Effect on Serum Biochemistry
3.5. Effect on Organic Acids
3.6. Effect on Immunity and Jejunal Morphometry
3.7. Effect on Meat—Nutrient Content and Physicochemical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dalle Zotte, A.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Cullere, M.; Dalle Zotte, A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef]
- Basavaraj, M.; Nagabhushana, V.; Prakash, N.; Appannavar, M.M.; Prashanth, W.; Mallikarjunappa, S. Effect of dietary supplementation of curcuma longaon the biochemical profile and meat characteristics of broiler rabbits under summer stress. Vet. World 2011, 4, 15–18. [Google Scholar] [CrossRef]
- Carabaño, R.; Badiola, I.; Licois, D.; Gidenne, T. The digestive ecosystem and its control through nutritional or feeding strategies. In Recent Advances in Rabbit Sciences, 1st ed.; Maertens, L., Coudert, P., Eds.; ILVO: Merehleke, Belgium, 2006; pp. 221–227. [Google Scholar]
- Marlier, D.; Dewrée, R.; Lassence, C.; Licois, D.; Mainil, J.; Coudert, P.; Meulemans, L.; Ducatelle, R.; Vindevogel, H. Infectious agents associated with epizootic rabbit enteropathy: Isolation and attempts to reproduce the syndrome. Vet. J. 2006, 172, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Salyers, A.A.; Gupta, A.; Wang, Y.P. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004, 12, 412–416. [Google Scholar] [CrossRef] [PubMed]
- European Commission. IP/03/1058 Council and Parliament Prohibit Antibiotics as Growth Promoters: Commissioner Byrne Welcomes Adoption of Regulation on Feed Additives; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Barug, D.; de Jong, J.; Kies, A.K.; Verstegen, M.W.A. Antimicrobial Growth Promoters. Where Do We Go from Here? 1st ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 1–196. [Google Scholar]
- Falcão-e-Cunha, L.; Castro-Solla, L.; Maertens, L.; Marounek, M.; Pinheiro, V.; Freire, J.; Mourão, J.L. Alternatives to antibiotic growth promoters in rabbit feeding: A review. World Rabbit Sci. 2007, 15, 127–140. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Regulation EC/1831/2003 of the European Parliament and of the Council on Additives for Use in Animal Nutrition; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- European Commission. Regulation EC 1924/2006 of the European Parliament and of the Council on Nutrition and Health Claims Made on Foods; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Papatsiros, V.G.; Christodoulopoulos, G. The use of organic acids in rabbit farming. Online J. Anim. Feed Res. 2011, 1, 434–438. [Google Scholar]
- Dalle Zotte, A.; Celia, C.; Szendrő, Z. Herbs and spices inclusion as feedstuff or additive in growing rabbit diet and as additive in rabbit meat: A review. Livest. Sci. 2016, 189, 82–90. [Google Scholar] [CrossRef]
- Kalma, R.P.; Patel, V.K.; Joshi, A.; Umatiya, R.V.; Parmar, K.N.; Damor, S.V.; Chauhan, H.D.; Srivastava, A.K.; Sharma, H.A. Probiotic supplementation in rabbit: A review. Int. J. Agric. Sci. 2016, 8, 2811–2815. [Google Scholar]
- Sharma, K.G.; Vidyarthi, K.V.; Archana, K.; Zuyie, R. Probiotic supplementation in the diet of rabbits—A Review. Livest. Res. Int. 2016, 4, 1–10. [Google Scholar]
- Canzi, E.; Zanchi, R.; Camaschella, P.; Cresci, A.; Greppi, G.F.; Orpianesi, C.; Serrantoni, M.; Ferrari, A. Modulation by lactic-acid bacteria of the intestinal ecosystem and plasma cholesterol in rabbits fed a casein diet. Nutr. Res. 2000, 20, 1329–1340. [Google Scholar] [CrossRef]
- Amber, K.H.; Yakout, H.M.; Hamed Rawya, S. Effect of feedings diets containing Yucca extract or probiotic on growth, digestibility, nitrogen balance and caecal microbial activity of growing New Zealand White rabbits. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004; pp. 737–745. [Google Scholar]
- Trocino, A.; Xiccato, G.; Carraro, L.; Jiménez, G. Effect of diet supplementation with Toyocerin® (Bacillus cereus var. Toyoi) on performance and health of growing rabbits. World Rabbit Sci. 2005, 13, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Matusevičius, P.; Ašmenskaitė, L.; Žilinskienė, A.; Gugolek, A.; Lorek, M.O.; Hartman, A. Effect of probiotic Bioplus 2B® on performance of growing rabbits. Vet. Zootech 2006, 36, 54–59. [Google Scholar]
- Lauková, A.; Strompfová, V.; Skřivanová, V.; Volek, Z.; Jindřichová, E.; Marounek, M. Bacteriocin producing strain of Enterococcus faecium EK13 with probiotic character and its application in the digestive tract of rabbits. Biol. Bratisl. 2006, 61, 779–782. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ. Enterococcus faecium AL 41: Its enterocin M and their beneficial use in rabbits husbandry. Probiotics Antimicrob. Proteins 2012, 4, 243–249. [Google Scholar] [CrossRef]
- Lauková, A.; Pogány Simonová, M.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Plachá, I.; Čobanová, K.; Formelová, Z.; Ondruška, Ľ.; Štrkolcová, G.; et al. Beneficial effect of bacteriocin-producing strain Enterococcus durans ED 26E/7 in model experiment using broiler rabbits. Czech J. Anim. Sci. 2017, 62 (Suppl. 4), 168–177. [Google Scholar]
- Kritas, S.K.; Petridou, E.I.; Fortomaris, P.; Tzika, E.; Arsenos, G.; Koptopoulos, G. The effect of probiotics on microbiology, health and performance of fattening rabbits. Asian Australas. J. Anim. Sci. 2008, 21, 1312–1317. [Google Scholar] [CrossRef]
- Simonová, M.; Marciňáková, M.; Strompfová, V.; Čobanová, K.; Gancarčíková, S.; Vasilková, Z.; Lauková, A. Effect of probiotics Lactobacillus rhamnosus GG and new isolate Enterococcus faecium EF2019 (CCM 7420) on growth, blood parameters, microbiota and coccidia oocysts excretion in rabbits. Int. J. Prob. Preb. 2008, 3, 7–14. [Google Scholar]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Strompfová, V.; Faix, Š.; Vasilková, Z.; Ondruška, Ľ.; Jurčík, R.; Rafay, J. Enterococcus faecium CCM7420, bacteriocin PPB CCM7420 and their effect in thedigestive tract of rabbits. Czech J. Anim. Sci. 2009, 54, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Čobanová, K.; Strompfová, V.; Formelová, Z.; Chrenková, M. Combined administration of bacteriocin-producing, probiotic strain Enterococcus faecium CCM7420 with Eleutherococcus senticosus and their effect in rabbits. Pol. J. Vet. Sci. 2013, 8, 730–734. [Google Scholar]
- Pogány Simonová, M.; Chrastinová, Ľ.; Kandričáková, A.; Kubašová, I.; Formelová, Z.; Chrenková, M.; Miltko, R.; Belzecki, G.; Strompfová, V.; Lauková, A. Enterocin M and sage supplementation in post-weaning rabbits: Effects on growth performance, caecal microbiota, fermentation and enzymatic activity. Probiotics Antimicrob. Proteins 2020, 12, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Szabóová, R.; Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Vasilková, Z.; Chrenková, M. Enterocin 4231 produced by Enterococcus faecium CCM 4231 and its use in rabbits. Acta Vet. Beogr. 2011, 61, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Bovera, F.; Iannaccone, F.; Mastellone, V.; Nizza, S.; Lestingi, A.; De Martino, L.; Lombardi, P.; Mallardo, K.; Ferrara, M.; Nizza, A. Effect of spray application of Lactobacillus plantarum on in vivo performance, caecal fermentations and haematological traits of suckling rabbits. Ital. J. Anim. Sci. 2012, 11, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Oso, A.O.; Idowu, O.M.O.; Haastrup, A.S.; Ajibade, A.J.; Olowonefa, K.O.; Aluko, A.O.; Ogunade, I.M.; Osho, S.O.; Bamgbose, A.E. Growth performance, apparent nutrient digestibility, caecal fermentation, ileal morphology and caecal microflora of growing rabbits fed diets containing probiotics and prebiotics. Livest. Sci. 2013, 157, 184–190. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Agrawal, A.R.; Sahoo, A. Effect of probiotic supplementation on growth performance, nutrient utilization and carcass characteristics of growing Chinchilla rabbits. J. Appl. Anim. Res. 2017, 45, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Cunha, S.; Mendes, Â.; Rego, D.; Meireles, D.; Fernandes, R.; Carvalho, A.; Martins da Costa, P. Effect of competitive exclusion in rabbits using an autochtonous probiotic. World Rabbit Sci. 2017, 25, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Fathi, M.; Abdelsalam, M.; Al-Homidan, I.; Ebeid, T.; El-Zarei, M.; Abou-Emera, O. Effect of probiotic supplementation and genotype on growth performance, carcass traits, hematological parameters and imunity of growing rabbits under hot environmental conditions. Anim. Sci. J. 2017, 88, 1644–1650. [Google Scholar] [CrossRef]
- Phuoc, T.L.; Jamikorn, U. Effects of probiotic supplement (Bacillus subtilis and Lactobacillus acidophilus) on feed efficiency, growth performance, and microbial population of weaning rabbits. Asian Austral. J. Anim. Sci. 2017, 30, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Szabóová, R.; Chrastinová, Ľ.; Lauková, A.; Haviarová, M.; Simonová, M.; Strompfová, V.; Faix, Š.; Vasilková, Z.; Chrenková, M.; Plachá, I.; et al. Bacteriocin - producing strain Enterococcus faecium CCM4231 and its use in rabbits. Int. J. Prob. Preb. 2008, 3, 77–82. [Google Scholar]
- Pogány Simonová, M.; Lauková, A.; Plachá, I.; Čobanová, K.; Strompfová, V.; Szabóová, R.; Chrastinová, Ľ. Can enterocins affect phagocytosis and glutathione peroxidase in rabbits? Cent. Eur. J. Biol. 2013, 8, 730–734. [Google Scholar]
- Pogány Simonová, M.; Chrastinová, Ľ.; Kandričáková, A.; Gancarčíková, S.; Bino, E.; Plachá, I.; Ščerbová, J.; Strompfová, V.; Žitňan, R.; Lauková, A. Can have enterocin M in combination with sage beneficial effect on microbiota, blood biochemistry, phagocytic activity and jejunal morphometry in broiler rabbits? Anim. 2020, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Kandričáková, A.; Szabóová, R.; Strompfová, V.; Chrenková, M.; Čobanová, K.; Žitňan, R. Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob. Proteins 2014, 6, 41–46. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Szabóová, R.; Haviarová, M.; Chrastinová, Ľ.; Mojto, J.; Strompfová, V.; Lauková, A.; Rafay, J. Quality of rabbit meat after application of bacteriocinogenic and probiotic strain Enterococcus faecium CCM 4231 in rabbits. Int. J. Prob. Preb. 2009, 4 (Suppl. 1), 1–6. [Google Scholar]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Dietary supplementation of a bacteriocinogenic and probiotic strain of Enterococcus faecium CCM7420 and its effect on the mineral content and quality of Musculus longissimus dorsi in rabbits. Anim. Prod. Sci. 2016, 56 (Suppl. 12), 2140–2145. [Google Scholar]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Lantibiotic nisin applied in broiler rabbits and its effect on the growth performance and carcass quality. Probiotics Antimicrob. Proteins 2019, 11, 1414–1417. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Chrenková, M.; Formelová, Z.; Kandričáková, A.; Bino, E.; Lauková, A. Benefits of enterocin M and sage combination on the physico-chemical traits, fatty acid, amino acid, and mineral content of rabbit meat. Probiotics Antimicrob. Proteins 2019. [Google Scholar] [CrossRef]
- Chrastinová, Ľ.; Lauková, A.; Chrenková, M.; Poláčiková, M.; Formelová, Z.; Kandričáková, A.; Glatzová, E.; Ščerbová, J.; Bučko, O.; Ondruška, Ľ.; et al. Effects of enterocin M and durancin ED26E/7 substances applied in drinking water on the selected carcass characteristics and meat quality of broiler rabbits. Arch. Zootech. 2018, 21, 5–17. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (EFSA FEEDAP PANEL). Safety and efficacy of Probiotic Lactina® (Enterococcus faecium NBIMCC8270, Lactobacillus acidophilus NBIMCC 8242, Lactobacillus helveticus NBIMCC 8269, Lactobacillus delrueckei ssp. lactis NBIMCC 8250, Lactobacillus delbrueckei ssp. bulgaricus NBIMCC 8244 and Streptococcus thermophilus NBIMCC 8253) as a feed additive for chickens for fattening and suckling and weaned rabbits. EFSA J. 2019, 17, 5646. [Google Scholar]
- Matusevičius, P.; Bartkeviciute, Z.; Cernauskenie, J.; Kozłowski, K.; Jeroch, H. Effect of probiotic preparation “ToyoCerin (R)” and phytobiotic preparation “Cuxarom Spicemaster” on growing rabbits. Arch. Geflügelkunde 2011, 75, 67–71. [Google Scholar]
- Simonová, M.; Lauková, A. Isolation of faecal Enterococcus faecium strains from rabbits and their sensitivity to antibiotics and ability to bacteriocin production. Bull. Vet. Inst. Pulawy 2004, 48, 383–386. [Google Scholar]
- Simonová, M.; Lauková, A. Bacteriocin activity of enterococci from rabbits. Vet. Res. Comm. 2007, 31, 143–152. [Google Scholar] [CrossRef]
- Simonová, M. Probiotic and Bacteriocin-Producing Bacteria and Their Effect on Physiology of Digestion in Rabbits. Ph.D. Thesis, Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Poland, 2006. [Google Scholar]
- Simonová, M.; Lauková, A.; Sirotek, K. (2008b): Lipolytic activity of potential probiotic enterococci and additive staphylococci. Acta Vet. Brno 2008, 77, 575–580. [Google Scholar] [CrossRef] [Green Version]
- El Dimerdash, M.Z.; Dalia, M.H.; Hanan, F.A.; Doaa, S.A. Studies on the effect of some probiotics in rabbits. Suez Canal Vet. Med. J. 2011, 16, 151–168. [Google Scholar]
- Kalma, R.P.; Chauhan, H.D.; Shrivastava, A.K.; Pawar, M.M. Growth and blood profile of broiler rabbits on probiotics supplementation. Ind. J. Small Rum. 2018, 24, 66–69. [Google Scholar] [CrossRef]
- Szabóová, R.; Chrastinová, L.; Lauková, A.; Strompfová, V.; Pogány Simonová, M.; Vasilková, Z.; Plachá, I.; Čobanová, K.; Chrenková, M. Effect of combinative administration of bacteriocin-producing and probiotic strain Enterococcus faecium CCM 4231 and sage plant extract on rabbits. Afr. J. Microbiol. Res. 2012, 6, 4868–4873. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Szabóová, R.; Kandričáková, A.; Pogány Simonová, M.; Formelová, Z.; Ondruška, Ľ.; Goldová, M.; Chrenková, M.; et al. Enterocin 55 produced by non rabbit-derived strain Enterococcus faecium EF55 in relation with microbiota and selected parameters in broiler rabbits. Int. J. Agric. Environ. Res. 2017, 3, 45–52. [Google Scholar]
- Lauková, A.; Pogány Simonová, M.; Chrastinová, Ľ.; Gancarčíková, S.; Kandričáková, A.; Plachá, I.; Chrenková, M.; Formelová, Z.; Ondruška, Ľ.; Ščerbová, J.; et al. Assessment of Lantibiotic type bacteriocin—Gallidermin application in model experiment with broiler rabbits. Int. J. Anim. Sci. 2018, 2, 1028. [Google Scholar]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Strompfová, V.; Plachá, I.; Szabóová, R.; Chrenková, M.; Čobanová, K.; Goldová, M.; Žitňan, R. Benefity of probiotic and bacteriocin-producing strain Enterococcus faecium EF2019 (CCM7420) for rabbits health (In Slovak). In Proceedings of the 12th Conference of New Ways in Intensive and Hobbies Rabbits Husbandries, Praha, Czech Republic, 6 November 2013; pp. 37–43. [Google Scholar]
- Benato, L.; Hastie, P.; O’Shaughnessy, P.; Murray, J.A.; Meredith, A. Effects of probiotic Enterococcus faecium and Saccharomyces cerevisiae on the faecal microflora of pet rabbits. J. Small Anim. Pr. 2014, 55, 442–446. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Li, F.; Huang, L. The effect of Lactobacillus isolates on growth performance, immune response, intestinal bacterial community composition of growing Rex rabbits. Anim. Physiol. Anim. Nutr. 2017, 101, e1–e13. [Google Scholar] [CrossRef] [Green Version]
- Linaje, R.; Coloma, M.D.; Pérez-Martínez, G.; Zúñiga, M. Characterization of faecal enterococci from rabbits for the selection of probiotic strains. J. Appl. Microbiol. 2014, 96, 761–771. [Google Scholar] [CrossRef]
- Abecia, L.; Fondevila, M.; Balcells, J.; Edwards, J.E.; Newbold, J.C.; McEwan, N.R. Molecular profiling of bacterial species in the rabbit cecum. FEMS Microbiol. Lett. 2005, 244, 111–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonová, M.; Lauková, A.; Štyriak, I. Enterococci from rabbits—potential feed additives. Czech J. Anim. Sci. 2005, 50, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Fortune-Lamothe, L.; Boullier, S. A review on the interactions between gutmicroflora and digestive mucosal imunity. Possible ways to improve the health of rabbits. Livest. Sci. 2007, 107, 1–18. [Google Scholar] [CrossRef]
- Pakandl, M. Coccidia of rabbit: A review. Folia Parasitol. 2009, 56, 153–166. [Google Scholar] [CrossRef]
- Zita, L.; Tůmová, E.; Skřivanová, V.; Ledvinka, Z. The effect of weaning age on performance and nutrient digestibility of broiler rabbits. Czech J. Anim. Sci. 2007, 52, 341–347. [Google Scholar] [CrossRef] [Green Version]
- EC (2005) European Union Commission. Ban on Antibiotics as Growth Promoters in Animal Feed Enters into Effect: Regulation 1831/2003/EC on Additives for Use in Animal Nutrition, Replacing Directive 700/524//333c on Additives in Feedstuffs; European Union Commission: Brussels, Belgium, 2005. [Google Scholar]
- Travers, M.-A.; Florent, I.; Kohl, L.; Grellier, P. Probiotics for the control of parasites: An overview. J. Parasitol. Res. 2011, 2011, 610769. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Kowalska, D.; Bielański, P.; Nosal, P.; Kowal, J. Natural alternatives to coccidiostats in rabbit nutrition. Ann. Anim. Sci. 2012, 12, 561–574. [Google Scholar] [CrossRef] [Green Version]
- Nosal, P.; Kowalska, D.; Bielanski, P.; Kowal, J.; Kornas, S. Herbal formulations as feed additives in the course of rabbit subclinical coccidiosis. Ann. Parasitol. 2014, 60, 65–69. [Google Scholar]
- El-Ashram, S.A.; Aboelhadid, S.M.; Abdel-Kafy, E.-S.M.; Hashem, S.A.; Mahrous, L.N.; Farghly, E.M.; Moawad, U.K.; Kamel, A.A. Prophylactic and therapeutic efficacy of prebiotic supplementation against intestinal coccidiosis in rabbits. Animals 2019, 9, 965. [Google Scholar] [CrossRef] [Green Version]
- Szabóová, R.; Lauková, A.; Chrastinová, Ľ.; Strompfová, V.; Pogány Simonová, M.; Vasilková, Z.; Čobanová, K.; Plachá, I.; Chrenková, M. Effect of combined administration of enterocin 4231 and sage in rabbits. Pol. J. Vet. Sci. 2011, 14, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Strompfová, V.; Lauková, A.; Marciňáková, M.; Vasilková, Z. Testing of probiotic and bacteriocin-producing lactic acid bacteria towards Eimeria sp. Pol. J. Vet. Sci. 2010, 13, 389–391. [Google Scholar] [PubMed]
- Bucková, B.; Hurníková, Z.; Lauková, A.; Revajová, V.; Dvorožňáková, E. The anti-parasitic effect of probiotic bacteria via limiting the fecundity of Trichinella spiralis female adults. Helminthol. 2018, 55, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, J.F. Clinical Pathology. In Manual of Rabbits Medicine and Surgery, 2nd ed.; Meredith, A., Flecknell, P., Eds.; BSAVA: Gloucester, UK, 2006. [Google Scholar]
- Martinec, M.; Härtlová, H.; Chodová, D.; Tůmová, E.; Fučíková, A. Selected haematological and biochemical indicators in different breeds of rabbits. Acta Vet. Brno 2012, 81, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Özkan, C.; Kaya, A.; Akgül, Y. Normal values of haematological and some biochemical parameters in serum and urine of New Zealand rabbits. World Rabbit Sci. 2012, 20, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Illes, R.A.; Cohen, R.D.; Rist, A.H.; Baron, P.G. The mechanism of inhibition by acidosis of gluconeogenesis from lactate in rat liver. Biochem. J. 1977, 164, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redrobe, S. Calcium metabolism in rabbits. In Seminars in Avian and Exotic Pet Medicine; WB Saunders: Philadelphia, PA, USA, 2002; Volume 11, pp. 94–101. [Google Scholar]
- Gidenne, T. Estimation of volattile fatty acids and of their energetic supply in the rabbit caecum: Effect of the dietary fibre level. In Proceedings of the Conference Vleme Journees de la Recherche Cunicole, Paris, France, 6–7 December 1994; pp. 293–299. [Google Scholar]
- Combes, S.; Fortune-Lamothe, L.; Cauqui, L.; Gidenne, T. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal 2013, 7, 1429–1439. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, G.C.; Lemme-Dumit, J.M.; Thieblemont, N.; Carmuega, E.; Weill, R.; Perdigón, G. Stimulation of innate immune cells induced by probiotics: Participation of toll-like receptors. J. Clin. Cell. Immunol. 2015, 6, 1000283. [Google Scholar]
- Deptuła, W.; Niedźwiedzka-Rystwej, P.; Śliwa, J.; Kaczmarczyk, M.; Tokarz-Deptuła, B.; Hukowska-Szematowicz, B.; Pawlikowska, M. Values of selected immune indices in healthy rabbits. Centr. Eur. J. Immunol. 2008, 33, 190–192. [Google Scholar]
- Pogány Simonová, M.; Lauková, A.; Žitňan, R.; Chrastinová, Ľ. Effect of rabbit origin enterocin-producing strain Enterococcus faecium CCM7420 application on growth performance and gut morphometry in rabbits. Czech J. Anim. Sci. 2015, 60, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zeng, D.; Yang, M.; Wen, B.; Lai, J.; Zhou, Y.; Sun, H.; Xiong, L.; Wang, J.; Lin, Y.; et al. Probotic Clostridium butyricum improves the growth perfomance, immune function, and gut microbiota of weaning rex rabbits. Probiotics Antimicrob. Proteins 2019, 11, 1278–1292. [Google Scholar] [CrossRef]
- Matur, E.; Eraslan, E. The impact of probiotics on the gastrointestinal physiology. In New Advances in the Basic and Clinical Gastroenterology; Brzozowski, T., Ed.; InTech: London, UK, 2013; pp. 51–74. [Google Scholar]
- Dalle Zotte, A. Rabbit farming for meat purposes. Anim. Front. 2014, 4, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Dalle Zotte, A. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Li, R.G.; Wang, X.P.; Wang, C.Y.; Ma, M.W.; Li, F.C. Growth performance, meat quality and fatty acid metabolism response of growing meat rabbits to dietary linoleic acid. Asian Astr. J. Anim. Sci. 2012, 25, 1169–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattioli, S.; Cardinali, R.; Balzano, M.; Pacetti, D.; Castellini, C.; Dal Bosco, A.; Mattioli, N.G.F. Influence of dietary supplementation with prebiotic, oregano extract and vitamin E on fatty acid profile and oxidative status of rabbit meat. J. Food Qual. 2017, 2017, 3015120. [Google Scholar] [CrossRef] [Green Version]
- Ayyat, M.S.; Al-Sagheer, A.A.; Abd El-Latif, K.M.; Khalil, B.A. Organic selenium, probiotics, and prebiotics effects on growth, blood biochemistry, and carcass traits of growing rabbits during summer and winter seasons. Biol. Trace Elem. Res. 2018, 186, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Liu, Z.; Qian, C.; Wu, J.; Sultana, N.; Zhong, X. Potential effect of the microbial fermented feed utilization on physicochemical traits, antioxidant enzyme and trace mineral analysis in rabbit meat. J. Anim. Physiol. Anim. Nutr. 2020, 104, 767–775. [Google Scholar] [CrossRef]
- Cummings, J.H.; Macfarlane, G.T.; Englyst, H.N. Prebiotic digestion and fermentation. Am. J. Clin. Nutr. 2001, 73, 415S–420S. [Google Scholar] [CrossRef]
- Hermida, M.; Gonzalez, M.; Miranda, M.; Rodríguez-Otero, J.L. Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Sci. 2006, 73, 35–639. [Google Scholar] [CrossRef]
- Valenzuela, C.; Lopez de Romaña, D.; Schmiede, C.; Sol Morales, M.; Olivares, M.; Pizzaro, F. Total iron, heme iron, zinc and copper content in rabbit meat and viscera. Biol. Trace Elem. Res. 2011, 143, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
Tested Zootechnical Parameters | E. faecium CCM7420 Strain | Enterocin (Ent) 7420 | ||||
---|---|---|---|---|---|---|
Fresh Culture | Fresh Culture | Lyophilized Form Resolved in Water | Lyophilized Form Mixed into Pellets | Fresh Culture + E. senticosus | ||
Reference number of publication | [24] | [25] | [55] | [55] | [26] | [25] |
Length of application | 14 days | 21 days | 21 days | 21 days | 21 days | 21 days |
Number of rabbits | (n = 7) | (n = 24) | (n = 24) | (n = 24) | (n = 24) | (n = 24) |
Initial live weight (35 d of age; 0 d of experiment), g | 1136.0 ± 100.0 | 977.0 ± 97.0 | 1002.3 ± 162.3 | 1042.5 ± 315.7 | 1077.5 ± 102.2 | 963.0 ± 101.0 |
Intermediate live weight (49/56 d of age; 14/21 d of experiment), g | 1507.0 ± 120.0 | 1850.0 ± 152.0 | 1664.4 ± 170.0 | 1856.9 ± 361.4 | 1943.3 ± 222.2 | 1788.0 ± 199.0 |
Final weight (70/77 d of age; 35/42 d of experiment), g | 2325.0 ± 260.0 | 2622.0 ± 104.0 | 2206.7 ± 164.6 | 2319.2 ± 164.6 | 2723.3 ± 204.7 | 2431.0 ± 142.0 |
Average daily weight gain (g/d; increase compare to control data%) | 28.00 (22.0%) | 39.17 (4.8%) | 38.35 (10.0%) | 38.51 (10.5%) | 39.19 (8.5%) | 34.95 (2.2%) |
Feed conversion ratio between 35 and 56 days of age (g/g) | Not tested | 2.71 | 2.23 | 2.28 | 2.59 | 2.68 |
Feed conversion ratio between 56 and 77 days of age (g/g) | Not tested | 4.67 | 3.41 | 3.42 | 3.97 | 3.87 |
Feed conversion ratio per kg gain | Not tested | 3.47 | 2.82 | 2.85 | 3.28 | 3.22 |
Mortality (n(%) in experimental group/n(%) in control group) | 0(0.0%)/0(0.0%) | 3(12.5%)/5(20.8%) | 3(12.5%)/7(29.2%) | 3(12.5%)/7(29.2%) | 0(0.0%)/4(16.7%) | 1(0.04%)/4(16.7%) |
E. faecium CCM7420 Strain | Enterocin (Ent)7420 | |||||
---|---|---|---|---|---|---|
Tested Microorganisms | Fresh Culture | Fresh Culture | Lyophilized form Resolved in Water | Lyophilized Form Mixed into Pellets | Fresh Culture + E. senticosus | |
Reference number of publication | [24] | [25] | [55] | [55] | [26] | [25] |
Length of application | 14 days | 21 days | 21 days | 21 days | 21 days | 21 days |
Enterococci | Increased | Increased (p < 0.01) | Increased | Increased | Unchanged | Increased (p < 0.05) |
Lactic acid bacteria (LAB) | Increased (p < 0.01) | Unchanged | Increased | Increased | Unchanged | Decreased |
Clostridia | Decreased | Decreased | Unchanged | Unchanged | Decreased (p < 0.05) | Unchanged |
Coagulase-positive staphylococci | Decreased (p < 0.01) | Unchanged | Unchanged | Unchanged | Decreased | Decreased |
Staphylococcus aureus | Unchanged | Decreased | Unchanged | Unchanged | Decreased (p < 0.001) | Decreased |
Coliforms | Unchanged | Decreased | Unchanged | Unchanged | Decreased (p < 0.001) | Decreased |
CCM7420 | 6.7 log cycle | 6.7 log cycle | <1.0 log cycle | 2.8 log cycle | 1.1 log cycle | - |
E. faecium CCM7420 Strain | Enterocin (Ent)7420 | |||||
---|---|---|---|---|---|---|
Tested Blood Parameters | Fresh Culture | Fresh Culture | Lyophilized Form Resolved in Water | Lyophilized Form Mixed into Pellets | Fresh Culture + E. senticosus | |
Reference number of publication | [24] | [25] | [55] | [55] | [26] | [25] |
Length of application | 14 days | 21 days | 21 days | 21 days | 21 days | 21 days |
Total proteins (g/L) | Increased (p < 0.05) | Increased | Unchanged | Unchanged | Increased | Increased (p < 0.05) |
Total lipids (g/L) | Increased | Increased | Unchanged | Unchanged | Unchanged | Increased |
Cholesterol (mmol/L) | Not tested | Not tested | Unchanged | Unchanged | Increased | Not tested |
Glucose (mmol/L) | Unchanged | Increased | Increased | Decreased | Decreased | Increased |
Calcium (mmol/L) | Unchanged | Increased | Unchanged | Unchanged | Not tested | Increased |
Glutathione-peroxidase (GSH-Px; U/mL) | Increased | Decreased | Increased | Increased | Decreased | Decreased |
Phagocytic activity (%) | Not tested | Not tested | Increased | Increased | Increased (p < 0.0001) | Not tested |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Autochtonous Strain Enterococcus faecium EF2019(CCM7420), Its Bacteriocin and Their Beneficial Effects in Broiler Rabbits—A Review. Animals 2020, 10, 1188. https://doi.org/10.3390/ani10071188
Pogány Simonová M, Chrastinová Ľ, Lauková A. Autochtonous Strain Enterococcus faecium EF2019(CCM7420), Its Bacteriocin and Their Beneficial Effects in Broiler Rabbits—A Review. Animals. 2020; 10(7):1188. https://doi.org/10.3390/ani10071188
Chicago/Turabian StylePogány Simonová, Monika, Ľubica Chrastinová, and Andrea Lauková. 2020. "Autochtonous Strain Enterococcus faecium EF2019(CCM7420), Its Bacteriocin and Their Beneficial Effects in Broiler Rabbits—A Review" Animals 10, no. 7: 1188. https://doi.org/10.3390/ani10071188
APA StylePogány Simonová, M., Chrastinová, Ľ., & Lauková, A. (2020). Autochtonous Strain Enterococcus faecium EF2019(CCM7420), Its Bacteriocin and Their Beneficial Effects in Broiler Rabbits—A Review. Animals, 10(7), 1188. https://doi.org/10.3390/ani10071188