Effectiveness of Stocking Density Reduction on Mitigating Lameness in a Charolais Finishing Beef Cattle Farm
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, and Feeding and Experimental Design
2.2. Growth Performance, Ration, Digestibility and Diet Particle Length Distribution
2.3. Animal Behavior
2.4. Monitoring, Clinical Assessments and Treatments
2.5. Statistical Analysis and Calculations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat Agriculture, Forestry and Fishery Statistics, 2019. Available online: https://ec.europa.eu/eurostat (accessed on 5 May 2020).
- Rama, D. Il sistema carne bovina nel 2011. In Il Mercato Della Carne Bovina. Rapporto 2012: Rapporto 2012; Franco Angeli Edizioni: Milano, Italy, 2012; pp. 11–21. ISBN 978-88-568-6614-8. [Google Scholar]
- SCAHAW (Scientific Committee on Animal Health and Animal Welfare). The Welfare of Cattle Kept for Beef Production. Available online: http://ec.europa.eu/food/fs/sc/scah/out54_en.pdf (accessed on 4 April 2020).
- Fallon, R.J.; Lenehan, J.J. Factors Affecting the Cleanliness of Cattle Housed in Buildings with Concrete Slatted Floors. End of Project Reports, Teagasc, 2002. Available online: http://hdl.handle.net/11019/1367 (accessed on 13 April 2020).
- Magrin, L.; Gottardo, F.; Contiero, B.; Brscic, M.; Cozzi, G. Time of occurrence and prevalence of severe lameness in fattening Charolais bulls: Impact of type of floor and space allowance within type of floor. Livest. Sci. 2019, 221, 86–88. [Google Scholar] [CrossRef]
- Gygax, L.; Siegwart, R.; Wechsler, B. Effects of space allowance on the behaviour and cleanliness of finishing bulls kept in pens with fully slatted rubber coated flooring. Appl. Anim. Behav. Sci. 2007, 107, 1–12. [Google Scholar] [CrossRef]
- Andersen, H.R.; Jensen, L.R.; Munksgaard, L.; Ingvartsen, K.L. Influence of floor space allowance and access sites to feed trough on the production of calves and young bulls and on the carcass and meat quality of young bulls. Acta Agric. Scand. A Anim. Sci. 1997, 47, 48–56. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Andersen, H.R. Space allowance and type of housing for growing cattle: A review of performance and possible relation to neuroendocrine function. Acta Agric. Scand. A Anim. Sci. 1993, 43, 65–80. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW). Scientific opinion on the welfare of cattle kept for beef production and the welfare in intensive calf farming systems. EFSA J. 2012, 10, 2669. [Google Scholar] [CrossRef]
- Wierenga, H.K. Behavioural problems in fattening bulls. In Proceedings of the Welfare Aspects of Housing Systems for Veal Calves and Fattening Bulls, Brussels, Belgium, 3–4 June 1987; Schlicting, M.C., Smidt, D., Eds.; Commission of the European Communities: Brussels, Belgium, 1987; pp. 105–122. [Google Scholar]
- Hancock, D.L.; Wagner, J.F.; Anderson, D.B. Effects of estrogens and androgens on animal growth. Adv. Meat Res. 1991, 7, 255–297. [Google Scholar]
- Fiems, L.O. Double muscling in cattle: Genes, husbandry, carcasses and meat. Animals 2012, 2, 472–506. [Google Scholar] [CrossRef]
- Fisher, A.D.; Crowe, M.A.; O’Kiely, P.; Enright, W.J. Growth, behaviour, adrenal and immune responses of finishing beef heifers housed on slatted floors at 1.5, 2.0, 2.5 or 3.0 m2 space allowance. Livest. Prod. Sci. 1997, 51, 245–254. [Google Scholar] [CrossRef]
- Tennant, T.C.; Ives, S.E.; Harper, L.B.; Renter, D.G.; Lawrence, T.E. Comparison of tulathromycin and tilmicosin on the prevalence and severity of bovine respiratory disease in feedlot cattle in association with feedlot performance, carcass characteristics, and economic factors. J. Anim. Sci. 2014, 92, 5203–5213. [Google Scholar] [CrossRef] [Green Version]
- Callan, R.J.; Garry, F.B. Biosecurity and bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 57–77. [Google Scholar] [CrossRef]
- Heinrichs, A.J. The Penn State Particle Separator. Pen State Extension. Available online: http://extension.psu.edu/animals/dairy/nutrition/forages/forage-quality-physical/separator (accessed on 6 April 2020).
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2003. [Google Scholar]
- McDonald, P.; Edwards, R.A.; Greenhalg, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Evaluation of foods: Digestibility. In Animal Nutrition, 7th ed.; Pearson Education Limited: Harlow, UK, 2011; pp. 237–253. [Google Scholar]
- Schäfers, S.; Bulang, M.; Meyer, U.; Lindwedel, A.; Hüther, L.; Dänicke, S. Suitability of n-alkanes and chromium (III) oxide as digestibility markers in calves at the end of the milk feeding period supplemented with a prebiotic. Anim. Nutr. 2018, 4, 84–89. [Google Scholar] [CrossRef]
- Martin, P.; Bateson, P. Measuring Behaviour, an Introductory Guide, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Welfare Quality®. Welfare Quality® Assessment Protocol for Cattle; Welfare Quality® Consortium: Lelystad, The Netherlands, 2009; Available online: https://edepot.wur.nl/233467 (accessed on 16 April 2020).
- Van Hertem, T.; Maltz, E.; Antler, A.; Romanini, C.E.B.; Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Lokhorst, C.; Berckmans, D.; Halachmi, I. Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity. J. Dairy Sci. 2013, 96, 4286–4298. [Google Scholar] [CrossRef] [Green Version]
- Marchesini, G.; Cortese, M.; Mottaran, D.; Ricci, R.; Serva, L.; Contiero, B.; Segato, S.; Andrighetto, I. Effects of axial and ceiling fans on environmental conditions, performance and rumination in beef cattle during the early fattening period. Livest. Sci. 2018, 214, 225–230. [Google Scholar] [CrossRef]
- Schirmann, K.; Von Keyserlingk, M.; Weary, D.; Veira, D.; Heuwieser, W. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [PubMed]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Heuwieser, W.; von Keyserlingk, M.A.G. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J. Dairy Sci. 2012, 95, 3212–3217. [Google Scholar] [CrossRef] [Green Version]
- Marchesini, G.; Mottaran, D.; Contiero, B.; Schiavon, E.; Segato, S.; Garbin, E.; Tenti, S.; Andrighetto, I. Use of rumination and activity data as health status and performance indicators in beef cattle during the early fattening period. Vet. J. 2018, 231, 41–47. [Google Scholar] [CrossRef]
- Marchesini, G.; Cortese, M.; Ughelini, N.; Ricci, R.; Chinello, M.; Contiero, B.; Andrighetto, I. Effect of total mixed ration processing time on ration consistency and beef cattle performance during the early fattening period. Anim. Feed Sci. Technol. 2020, 262, 114421. [Google Scholar] [CrossRef]
- Magrin, L.; Gottardo, F.; Fiore, E.; Gianesella, M.; Martin, B.; Chevaux, E.; Cozzi, G. Use of a live yeast strain of Saccharomyces cerevisiae in a high-concentrate diet fed to finishing Charolais bulls: Effects on growth, slaughter performance, behavior, and rumen environment. Anim. Feed Sci. Technol. 2018, 241, 84–93. [Google Scholar] [CrossRef]
- Mogensen, L.; Krohn, C.C.; Sørensen, J.T.; Hindhede, J.; Nielsen, L.H. Association between resting behaviour and live weight gain in dairy heifers housed in pens with different space allowance and floor type. Appl. Anim. Behav. Sci. 1997, 55, 11–19. [Google Scholar] [CrossRef]
- Marquis, A.; Godbout, S.; Seoane, J. Effect of animal density in feedlot on winter performance of fattening steers under Quebec conditions. Can. Agric. Eng. 1991, 33, 387–390. [Google Scholar]
- McDonald, P.; Edwards, R.A.; Greenhalg, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Voluntary intake of food. In Animal Nutrition; Pearson Education Limited: Harlow, UK, 2011; pp. 461–477. [Google Scholar]
- Colucci, P.E.; Chase, L.E.; Van Soest, P.J. Feed Intake, Apparent Diet Digestibility, and Rate of Particulate Passage in Dairy Cattle. J. Dairy Sci. 1982, 65, 1445–1456. [Google Scholar] [CrossRef]
- Mertens, D.R. Measuring fiber and its effectiveness in ruminant diets. In Proceedings of the Plains Nutrition Council Spring Conference, AREC 2-20, San Antonio, TX, USA, 25–26 April 2002; pp. 40–66. [Google Scholar]
Pen | Initial SKD | Average SKD P1 | Average SKD P2 | ||||||
---|---|---|---|---|---|---|---|---|---|
N | m2/head | Class | N | m2/head | Class | N | m2/head | Class | |
Pen 1 | 8 | 4.37 | LD | 8 | 4.37 | LD | 8 | 4.37 | LD |
Pen 2 | 10 | 3.50 | HD | 9.5 | 3.68 | HD | 8.5 | 4.12 | HD |
Pen 3 | 8 | 4.37 | LD | 8 | 4.37 | LD | 8 | 4.37 | LD |
Pen 4 | 10 | 3.50 | HD | 9.5 | 3.68 | HD | 8.5 | 4.12 | HD |
Pen 5 | 8 | 4.37 | LD | 8 | 4.37 | LD | 7.5 | 4.66 | LD |
Pen 6 | 10 | 3.50 | HD | 10 | 3.50 | HD | 9.5 | 3.68 | HD |
Pen 7 | 8 | 4.37 | LD | 8 | 4.37 | LD | 7.5 | 4.66 | LD |
Pen 8 | 10 | 3.50 | HD | 10 | 3.50 | HD | 10 | 3.50 | HD |
Pen 9 | 8 | 4.37 | LD | 8 | 4.37 | LD | 7.5 | 4.66 | LD |
Pen 10 | 10 | 3.50 | HD | 9.5 | 3.68 | HD | 8 | 4.37 | LD |
Pen 11 | 8 | 4.37 | LD | 7.5 | 4.66 | LD | 7 | 5.00 | LD |
Pen 12 | 10 | 3.50 | HD | 8.5 | 4.12 | HD | 7 | 5.00 | LD |
Items | Period | |
---|---|---|
P1 | P2 | |
Ingredients (% of DM) | ||
Bran | 17.3 | 15.0 |
Corn meal | 24.9 | 34.8 |
Straw | 6.52 | 5.67 |
Corn silage | 20.5 | 17.8 |
Soybean meal | 6.52 | 5.67 |
Pressed beet pulps | 20.5 | 17.8 |
Protein, vit/min mix | 3.68 | 3.20 |
Proximate composition (% of DM) | ||
DM | 47.8 ± 2.42 | 47.3 ± 2.10 |
CP | 13.7 ± 0.74 | 13.3 ± 0.88 |
NDF | 35.2 ± 1.68 | 28.8 ± 1.42 |
peNDF | 22.7 ± 0.89 | 18.6 ± 0.33 |
Starch | 28. 9 ± 1.50 | 34.2 ± 1.67 |
Health Data | SKD | p-Value | |
---|---|---|---|
LD | HD | ||
Treated bulls (%) 1 | 14.7 | 21.5 | 0.271 |
Treated bulls for lameness (%) 1 | 12.7 | 18.7 | 0.319 |
Early culled bulls (%) 2 | 8.33 | 20 | 0.108 |
Prevalence of total diseases (% per pen) 3 | 0.24 | 0.15 | 0.432 |
Prevalence of lameness (% per pen) 3 | 0.21 | 0.14 | 0.431 |
Number of treatments per sick animal (average per pen) 3 | 1.23 | 2.60 | 0.011 |
Number of treatments per lame animal (average per pen) 3 | 1.01 | 2.30 | 0.032 |
Particle Length Distribution (%) | Period | SEM | p-Value | |
---|---|---|---|---|
P1 | P2 | |||
>19 mm | 5.05 | 4.48 | 0.39 | 0.232 |
8–19 mm | 16.5 | 21.8 | 0.81 | <0.001 |
4–8 mm | 44.1 | 39.9 | 0.84 | <0.001 |
Bottom pan | 34.3 | 33.8 | 0.97 | 0.654 |
Items | Period | SKD | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
P1 | P2 | LD | HD | Period | SKD | ||
Initial BW | 512 | 604 | 567 | 548 | 12.4 | <0.001 | 0.256 |
Final BW | 603 | 681 | 651 | 630 | 14.3 | <0.001 | 0.326 |
ADG | 1.33 | 1.25 | 1.32 | 1.24 | 0.110 | 0.418 | 0.466 |
DMI | 9.88 | 10.6 | 10.1 | 10.6 | 0.31 | <0.001 | 0.256 |
FCR | 7.84 | 8.62 | 7.99 | 8.82 | 0.720 | 0.208 | 0.276 |
DMD | 66.7 | 63.2 | 64.2 | 65.7 | 1.58 | 0.028 | 0.397 |
CPD | 51.7 | 53.0 | 51.1 | 53.5 | 1.84 | 0.517 | 0.235 |
NDFD | 53.6 | 48.1 | 50.4 | 51.3 | 1.85 | 0.007 | 0.640 |
Starch_D | 97.2 | 97.4 | 97.2 | 97.4 | 0.55 | 0.647 | 0.651 |
Items | Period | SKD | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
P1 | P2 | LD | HD | Period | SKD | ||
Daily activity (bit) | 373 | 378 | 384 | 368 | 5.6 | 0.355 | 0.015 |
Daily rumination (min) | 342 | 299 | 320 | 321 | 11.6 | <0.001 | 0.936 |
DA | 0.125 | 0.105 | 0.114 | 0.117 | 0.004 | <0.001 | 0.523 |
DR | 0.291 | 0.260 | 0.279 | 0.271 | 0.008 | <0.001 | 0.417 |
Behavioral Activity (% of bulls) | LD | HD | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st | 2nd | 3rd | Obs × SKD | ||
Lying | 49.0 | 57.2 | 51.8 | 45.7 | 55.8 | 51.6 | 3.08 | 0.865 |
Eating | 8.58 | 9.37 | 8.47 | 8.12 | 6.93 | 8.36 | 1.001 | 0.408 |
Ruminating | 14.2 ab | 13.7 b | 16.5 a | 13.6 b | 15.2 ab | 11.3 b | 1.07 | 0.024 |
Exploring | 1.13 | 1.39 | 1.44 | 0.91 | 1.11 | 0.63 | 0.195 | 0.369 |
Allogrooming | 2.62 | 2.99 | 3.11 | 1.89 | 1.96 | 3.17 | 0.426 | 0.471 |
Self-grooming | 2.57 | 3.49 | 2.92 | 1.80 | 3.50 | 2.60 | 0.437 | 0.557 |
Resting | 13.8 | 28.1 | 18.1 | 13.8 | 25.6 | 15.7 | 2.04 | 0.653 |
Inactive | 48.3 | 31.4 | 39.7 | 50.2 | 36.3 | 49.0 | 2.36 | 0.135 |
Others | 9.75 | 10.53 | 9.63 | 9.70 | 9.26 | 10.30 | 0.720 | 0.256 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortese, M.; Brščić, M.; Ughelini, N.; Andrighetto, I.; Contiero, B.; Marchesini, G. Effectiveness of Stocking Density Reduction on Mitigating Lameness in a Charolais Finishing Beef Cattle Farm. Animals 2020, 10, 1147. https://doi.org/10.3390/ani10071147
Cortese M, Brščić M, Ughelini N, Andrighetto I, Contiero B, Marchesini G. Effectiveness of Stocking Density Reduction on Mitigating Lameness in a Charolais Finishing Beef Cattle Farm. Animals. 2020; 10(7):1147. https://doi.org/10.3390/ani10071147
Chicago/Turabian StyleCortese, Martina, Marta Brščić, Nicola Ughelini, Igino Andrighetto, Barbara Contiero, and Giorgio Marchesini. 2020. "Effectiveness of Stocking Density Reduction on Mitigating Lameness in a Charolais Finishing Beef Cattle Farm" Animals 10, no. 7: 1147. https://doi.org/10.3390/ani10071147