Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. S. typhimurium Culture and Determination of Colony Forming Unit (CFU)
2.2. Probiotics Culture
2.3. Adhesion of Probiotic Strains to Caco-2 Cells
2.4. Birds and Housing
2.5. Experimental Design
2.6. Determination of Serum IFN-γ and TNF-α
2.7. Statistical Analysis
3. Results
3.1. LAB-Epithelial Adherence
3.2. Clinical Signs and Postmortem (PM) Lesions
3.3. Probiotics Improve Growth Performance in S. typhimurium-Infected Broiler Chickens
3.4. Effect of Probiotics on Serum TNF-α and IFN-γ Levels in and S. typhimurium-Infected Broiler Chickens
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fantasia, M.; Filetici, E. Salmonella enteritidis in Italy. Int. J. Food Microbiol. 1994, 21, 7–13. [Google Scholar] [CrossRef]
- Omwandho, C.O.A.; Kubota, T. Salmonella enterica serovar enteritidis: A mini-review of contamination routes and limitations to effective control. Jpn. Agric. Res. Q. JARQ 2010, 44, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Padron, M. Salmonella typhimurium outbreak in broiler chicken flocks in Mexico. Avian Dis. 1990, 34, 221–223. [Google Scholar] [PubMed]
- El-Sharkawy, H.; Tahoun, A.; El-Gohary, A.E.-G.A.; El-Abasy, M.; El-Khayat, F.; Gillespie, T.; Kitade, Y.; Hafez, H.M.; Neubauer, H.; El-Adawy, H. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog. 2017, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sean, F.A.; Nathan, B.; Amy, C.; Robert, D.; Alecia, N.; Wayne, S.; Robert, U.; Patricia, W. Salmonella enteritidis in broiler chickens, United States, 2000–2005. Emerg. Infect. Dis. J. 2006, 12, 1848. [Google Scholar]
- Coble, D.J.; Sandford, E.E.; Ji, T.; Abernathy, J.; Fleming, D.; Zhao, H.; Lamont, S.J. Impacts of Salmonella enteritidis infection on liver transcriptome in broilers. Genesis 2013, 51, 357–364. [Google Scholar] [CrossRef]
- Casas, I.A.; Dobrogosz, W.J. Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health Dis. 2000, 12, 247–285. [Google Scholar]
- Spinler, J.K.; Taweechotipatr, M.; Rognerud, C.L.; Ou, C.N.; Tumwasorn, S.; Versalovic, J. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 2008, 14, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Talarico, T.L.; Dobrogosz, W.J. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother. 1989, 33, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, A.R.; Sperandio, V. Enteric pathogens exploit the microbiota-generated nutritional environment of the gut. Microbiol. Spectr. 2015, 3, 279–296. [Google Scholar]
- Rostami, F.M.; Mousavi, H.; Mousavi, M.R.N.; Shahsafi, M. Efficacy of probiotics in prevention and treatment of infectious diseases. Clin. Microbiol. Newsl. 2018, 40, 97–103. [Google Scholar] [CrossRef]
- Lebeer, S.; Bron, P.A.; Marco, M.L.; Van Pijkeren, J.-P.; O’Connell Motherway, M.; Hill, C.; Pot, B.; Roos, S.; Klaenhammer, T. Identification of probiotic effector molecules: Present state and future perspectives. Curr. Opin. Biotechnol. 2018, 49, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Wang, L.; Zhou, L.; Yang, X.; Zhao, X. Using in vitro immunomodulatory properties of lactic acid bacteria for selection of probiotics against Salmonella infection in broiler chicks. PLoS ONE 2016, 11, e0147630. [Google Scholar] [CrossRef] [PubMed]
- El-Shall, N.A.; Awad, A.M.; El-Hack, M.E.A.; Naiel, M.A.E.; Othman, S.I.; Allam, A.A.; Sedeik, M.E. The simultaneous administration of a probiotic or prebiotic with live Salmonella vaccine improves growth performance and reduces fecal shedding of the bacterium in Salmonella-challenged broilers. Animals 2019, 10, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazorla, S.I.; Maldonado-Galdeano, C.; Weill, R.; De Paula, J.; Perdigón, G.D.V. Oral administration of probiotics increases paneth cells and intestinal antimicrobial activity. Front. Microbiol. 2018, 9, 736. [Google Scholar] [CrossRef]
- Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des. 2009, 15, 2377–2392. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.R.; Haghighi, H.R.; Chambers, J.R.; Brisbin, J.; Read, L.R.; Sharif, S. Expression of antimicrobial peptides in cecal tonsils of chickens treated with probiotics and infected with salmonella enterica serovar typhimurium. Clin. Vaccine Immunol. CVI 2008, 15, 1689–1693. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Wang, H.; Yu, Y.; Zhang, D.; Liu, S. Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray. J. Vet. Diagn. Investig. 2007, 19, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Higgins, S.E.; Wolfenden, A.D.; Henderson, S.N.; Torres-Rodriguez, A.; Vicente, J.L.; Hargis, B.M.; Tellez, G. Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella enteritidis in neonatal broilers. Poult. Sci. 2010, 89, 243–247. [Google Scholar] [CrossRef]
- Tahoun, A.; Masutani, H.; El-Sharkawy, H.; Gillespie, T.; Honda, R.P.; Kuwata, K.; Inagaki, M.; Yabe, T.; Nomura, I.; Suzuki, T. Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-a to enterocyte-like caco-2 cells and phagocytosis by macrophages. Gut Pathog. 2017, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Poultry: Ninth Revised Edition; The National Academies Press: Washington, DC, USA, 1994; p. 176. [Google Scholar]
- Salminen, S.; Laine, M.; Vonwright, A.; Vuopio-Varkila, J.; Korhonen, T.; Mattila-Sandholm, T. Development of selection criteria for probiotic strains to assess their potential in functional foods: A Nordic and European approach. Biosci. Microflora 1996, 15, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.N.; Rosenfeldt Nielsen, V.; Hayford, A.E.; Møller, P.L.; Michaelsen, K.F.; Paerregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 1999, 65, 4949–4956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crociani, J.; Grill, J.P.; Huppert, M.; Ballongue, J. Adhesion of different Bifidobacteria strains to human enterocyte-like caco-2 cells and comparison with in vivo study. Lett. Appl. Microbiol. 1995, 21, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Alander, M.; Korpela, R.; Saxelin, M.; Vilpponen-Salmela, T.; Mattila-Sandholm, T.; Von Wright, A. Recovery of Lactobacillus rhamnosus gg from human colonic biopsies. Lett. Appl. Microbiol. 1997, 24, 361–364. [Google Scholar] [CrossRef] [PubMed]
- La Fata, G.; Weber, P.; Mohajeri, M.H. Probiotics and the gut immune system: Indirect regulation. Probiotics Antimicrob. Proteins 2018, 10, 11–21. [Google Scholar] [CrossRef]
- Bao, S.; Beagley, K.W.; France, M.P.; Shen, J.; Husband, A.J. Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 2000, 99, 464–472. [Google Scholar] [CrossRef]
- Raupach, B.; Kaufmann, S.H. Bacterial virulence, proinflammatory cytokines and host immunity: How to choose the appropriate salmonella vaccine strain? Microbes Infect. 2001, 3, 1261–1269. [Google Scholar] [CrossRef]
- Held, T.K.; Weihua, X.; Yuan, L.; Kalvakolanu, D.V.; Cross, A.S. Gamma interferon augments macrophage activation by lipopolysaccharide by two distinct mechanisms, at the signal transduction level and via an autocrine mechanism involving tumor necrosis factor alpha and interleukin-1. Infect. Immun. 1999, 67, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Ibuki, M.; Kovacs-Nolan, J.; Fukui, K.; Kanatani, H.; Mine, Y. Β 1-4 mannobiose enhances Salmonella-killing activity and activates innate immune responses in chicken macrophages. Vet. Immunol. Immunopathol. 2011, 139, 289–295. [Google Scholar] [CrossRef]
- Fasina, Y.O.; Holt, P.S.; Moran, E.T.; Moore, R.W.; Conner, D.E.; McKee, S.R. Intestinal cytokine response of commercial source broiler chicks to Salmonella typhimurium infection. Poult. Sci. 2008, 87, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Foster, N.; Hulme, S.D.; Barrow, P.A. Induction of antimicrobial pathways during early-phase immune response to Salmonella spp. In murine macrophages: Gamma interferon (ifn-gamma) and upregulation of ifn-gamma receptor alpha expression are required for nadph phagocytic oxidase gp91-stimulated oxidative burst and control of virulent salmonella spp. Infect. Immun. 2003, 71, 4733–4741. [Google Scholar] [PubMed] [Green Version]
- Rantala, M.; Nurmi, E. Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chickens. Br. Poult. Sci. 1973, 14, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, L.C.; Bailey, J.S.; Cox, N.A.; Stern, N.J.; Brewer, R.; Williams, O. Two-step mucosal competitive exclusion flora treatment to diminish salmonellae in commercial broiler chickens. Poult. Sci. 1993, 72, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Corrier, D.E.; Hinton, A., Jr.; Ziprin, R.L.; Beier, R.C.; DeLoach, J.R. Effect of dietary lactose on cecal ph, bacteriostatic volatile fatty acids, and Salmonella typhimurium colonization of broiler chicks. Avian Dis. 1990, 34, 617–625. [Google Scholar] [CrossRef]
- Schneitz, C. Competitive exclusion in poultry––30 years of research. Food Control 2005, 16, 657–667. [Google Scholar] [CrossRef]
- Eckmann, L.; Kagnoff, M.F. Cytokines in host defense against Salmonella. Microbes Infect. 2001, 3, 1191–1200. [Google Scholar] [CrossRef]
- Vanderpool, C.; Yan, F.; Polk, D.B. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis. 2008, 14, 1585–1596. [Google Scholar] [CrossRef]
- Zuo, L.; Yuan, K.T.; Yu, L.; Meng, Q.H.; Chung, P.C.; Yang, D.H. Bifidobacterium infantis attenuates colitis by regulating t cell subset responses. World J. Gastroenterol. 2014, 20, 18316–18329. [Google Scholar] [CrossRef] [PubMed]
- Revolledo, L.; Ferreira, C.S.; Ferreira, A.J. Prevention of Salmonella typhimurium colonization and organ invasion by combination treatment in broiler chicks. Poult. Sci. 2009, 88, 734–743. [Google Scholar] [CrossRef]
- Abd El-Ghany, A.W.; El-Shafii, S.A.S.; Hatem, M.E.; Dawood, E. A trial to prevent Salmonella enteritidis infection in broiler chickens using autogenous bacterin compared with probiotic preparation. J. Agric. Sci. 2012, 4, 91–108. [Google Scholar] [CrossRef] [Green Version]
Ingredients (%) | Starter | Grower | Finisher |
---|---|---|---|
Corn grains | 56.9 | 61.6 | 66.4 |
Soybean meal 48% | 34.31 | 29.71 | 24.6 |
Corn gluten meal 60% | 3.5 | 3 | 3 |
Soybean oil | 1.5 | 2 | 2.71 |
Dicalcium phosphate | 1.6 | 1.37 | 1.27 |
Limestone | 1.05 | 1.11 | 1 |
Salt | 0.22 | 0.24 | 0.25 |
Sodium bicarbonate | 0.32 | 0.37 | 0.24 |
Lysine hydrochloride | 0.2 | 0.2 | 0.15 |
D.L Methionine | 0.1 | 0.1 | 0.08 |
Premix | 0.3 | 0.3 | 0.3 |
Nutrients content | |||
Metabolizable energy (K Cal/kg) | 3050 | 3120 | 3150 |
Crude protein % | 23.12 | 21.02 | 19.01 |
Crude fat % | 4.01 | 4.8 | 5.5 |
Ash | 6.1 | 5.5 | 5.0 |
Acid detergent fiber % | 4.51 | 4.34 | 4.3 |
Calcium % | 0.97 | 0.92 | 0.86 |
Available phosphorus % | 0.45 | 0.4 | 0.38 |
Groups | Treatment |
---|---|
Control | Inoculated orally with saline. |
S. typhimurium | Inoculated orally with S. typhimurium. |
B. breve JCM1192 + S. typhimurium | Inoculated orally with B. breve JCM1192 and S. typhimurium. |
L. casei ATTC334 + S. typhimurium | Inoculated orally with L. casei ATTC334 and S. typhimurium. |
B. longum Ncc2785 + S. typhimurium | Inoculated orally with B. longum Ncc2785 and S. typhimurium. |
B infantis BL2416 + S. typhimurium | Inoculated orally with B infantis BL2416 and S. typhimurium. |
Group | S. typhimurium-Positive Cecal Tonsils/Total Cecal Tonsils (%) | S. typhimurium-Cecal Recovery (×104) |
---|---|---|
S. typhimurium | 10/10 (100%) | 230.0 ± 4.14 |
B. breve JCM1192 + S. typhimurium | 2/10 (20%) * | 26.4 ± 8.067 *** |
L. casei ATTC334 + S. typhimurium | 1/10 (10%) * | 17.18 ± 3.45 *** |
B. longum Ncc2785 + S. typhimurium | 9/10 (90%) | 179.03 ± 7.81 |
B infantis BL2416 + S. typhimurium | 3/10 (30%) | 22.61 ± 6.65 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sharkawy, H.; Tahoun, A.; Rizk, A.M.; Suzuki, T.; Elmonir, W.; Nassef, E.; Shukry, M.; Germoush, M.O.; Farrag, F.; Bin-Jumah, M.; et al. Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens. Animals 2020, 10, 1023. https://doi.org/10.3390/ani10061023
El-Sharkawy H, Tahoun A, Rizk AM, Suzuki T, Elmonir W, Nassef E, Shukry M, Germoush MO, Farrag F, Bin-Jumah M, et al. Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens. Animals. 2020; 10(6):1023. https://doi.org/10.3390/ani10061023
Chicago/Turabian StyleEl-Sharkawy, Hanem, Amin Tahoun, Amira M. Rizk, Tohru Suzuki, Walid Elmonir, Eldsokey Nassef, Mustafa Shukry, Mousa O. Germoush, Foad Farrag, May Bin-Jumah, and et al. 2020. "Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens" Animals 10, no. 6: 1023. https://doi.org/10.3390/ani10061023
APA StyleEl-Sharkawy, H., Tahoun, A., Rizk, A. M., Suzuki, T., Elmonir, W., Nassef, E., Shukry, M., Germoush, M. O., Farrag, F., Bin-Jumah, M., & Mahmoud, A. M. (2020). Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens. Animals, 10(6), 1023. https://doi.org/10.3390/ani10061023