Physiological State of Therapy Dogs during Animal-Assisted Activities in an Outpatient Setting
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Therapy Dogs
2.3. Volunteers
2.4. Animal-Assisted Activity
2.5. Measures and Analyses
2.5.1. Salivary Cortisol and Oxytocin Concentrations
2.5.2. Tympanic Membrane Temperature
2.5.3. Cardiac Activity
2.6. Statistical Analysis
3. Results
3.1. Salivary Cortisol Concentrations
3.2. Salivary Oxytocin Concentrations
3.3. Tympanic Membrane Temperature
3.4. Cardiac Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IAHAIO. The IAHAIO Definitions for Animal Assisted Intervention and Guidelines for Wellness of Animals Involved in AAI. Available online: https://iahaio.org/wp/wp-content/uploads/2018/04/iahaio_wp_updated-2018-final.pdf (accessed on 1 April 2020).
- Pet Partners. Position Statements on Therapy Animal Health and Welfare. Available online: https://petpartners.org/learn/position-statements/ (accessed on 1 April 2020).
- AVMA. Animal-Assisted Interventions: Guidelines. Available online: https://www.avma.org/policies/animal-assisted-interventions-guidelines (accessed on 1 April 2020).
- Mazzotti, G.A.; Boere, V. The right ear but not the left ear temperature is related to stress-induced cortisolaemia in the domestic cat (Felis catus). Laterality 2009, 14, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Riemer, S.; Assis, L.; Pike, T.W.; Mills, D.S. Dynamic changes in ear temperature in relation to separation distress in dogs. Physiol. Behav. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serpell, J.A.; Coppinger, R.; Fine, A.H.; Peralta, J.M. Welfare considerations in therapy and assistance animals. In Handbook on Animal-Assisted Therapy: Theoretical Foundations and Guidelines for Practice, 3rd ed.; Fine, A.H., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2010; Volume 23, pp. 26–200. [Google Scholar]
- Heimlich, K. Animal-assisted therapy and the severely disabled child: A quantitative study. J. Rehab. 2001, 67, 48–54. [Google Scholar]
- Glenk, L.M. Current perspectives on therapy dog welfare in animal-assisted interventions. Animals 2017, 7, 7. [Google Scholar] [CrossRef]
- Marinelli, L.; Normando, S.; Siliprandi, C.; Salvadoretti, M.; Mongillo, P. Dog assisted interventions in a specialized center and potential concerns for animal welfare. Vet. Res. Commun. 2009, 33, S93–S95. [Google Scholar] [CrossRef]
- Pastore, C.; Pirrone, F.; Balzarotti, F.; Faustini, M.; Pierantoni, L.; Albertini, M. Evaluation of physiological and behavioral stress-dependent parameters in agility dogs. J. Vet Behav. 2011, 6, 188–194. [Google Scholar] [CrossRef]
- Clark, S.D.; Smidt, J.M.; Bauer, B.A. Welfare consideration: Salivary cortisol concentrations on frequency of therapy dog visits in an outpatient hospital setting: A pilot study. J. Vet. Behav. 2018, 30, 88–91. [Google Scholar] [CrossRef]
- McCullough, A.; Jenkins, M.; Ruehrdanz, A.; Gilmer, M.J.; Olson, J.; Pawar, A.; Holley, L.; Sierra-Rivera, S.; Linder, D.E.; Pinchette, D.; et al. Physiological and behavioral effects of animal-assisted interventions on therapy dogs in pediatric oncology settings. Appl. Anim. Behav. Sci. 2018, 200, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Melco, A.L.; Goldman, L.; Fine, A.H.; Peralta, J.M. Investigation of physiological and behavioral responses in dogs participating in animal-assisted therapy with children diagnosed with attention-deficit hyperactivity disorder. J. Appl. Anim. Welf. Sci. 2020. [Google Scholar] [CrossRef]
- King, C.; Watters, J.; Mungre, S. Effect of a time-out session with working animal-assisted therapy dogs. J. Vet. Behav. 2011, 6, 232–238. [Google Scholar] [CrossRef]
- Palestrini, C.; Calcaterra, V.; Cannas, S.; Talamonti, Z.; Papotti, F.; Buttram, D.; Pelizzo, G. Stress level evaluation in a dog during animal-assisted therapy in pediatric surgery. J. Vet. Behav. 2016. [Google Scholar] [CrossRef]
- Haubenhofer, D.K.; Kirchengast, S. Physiological arousal for companion dogs working with their owners in animal-assisted activities and animal-assisted therapy. J. Appl. Anim. Welf. Sci. 2006, 9, 165–172. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, I.R.; Nunes, T.; de Sousa, L.; Almeida, V. The combined use of salivary cortisol concentrations, heart rate and respiratory rate for the welfare assessment of dogs involved in AAI programs. J. Vet. Behav. 2019. [Google Scholar] [CrossRef]
- Clark, S.D.; Martin, F.; McGowan, R.T.S.; Smidt, J.M.; Anderson, A.; Wang, L.; Turpin, T.; Langenfeld-McCoy, N.; Bauer, B.A.; Mohabbat, A.B. The Impact of a 20-Minute Animal-Assisted Activity Session on the Physiological and Emotional States in Patients with Fibromyalgia. Mayo Clinic Proc. 2020. Accepted for publication. [Google Scholar]
- Schlesinger, D.P.; Joffe, D.J. Raw food diets in companion animals: A critical review. Can. Vet. J. 2011, 52, 50–54. [Google Scholar]
- AVMA. Raw Pet Foods and the AVMA’s Policy: FAQ. Available online: https://www.avma.org/KB/Resources/FAQs/Pages/Raw-Pet-Foods-and-the-AVMA-Policy-FAQ.aspx (accessed on 5 September 2019).
- Funkenstein, A.B.; Kessler, K.A.; Schen, C.R. Learning through the lens: Ethical considerations in videotaping psychotherapy. Harvard. Rev. Psych. 2014, 22, 316–322. [Google Scholar] [CrossRef]
- O’Reilly, M.; Parker, N.; Hutchby, I. Ongoing processes of managing consent: The empirical ethics of using video-recording in clinical practice and research. Clin. Ethics. 2011, 6, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Marti, D.W.; Anderson, R.E. Development and validation of a simple LC-MS a method for the quantification of oxytocin in dog saliva. Molecules 2019, 24, 3079. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 9 September 2019).
- SchoÈberl, I.; Wedl, M.; Bauer, B.; Day, J.; MoÈ stl, E.; Kotrschal, K. Effects of owner-dog relationship and owner personality on cortisol modulation in human dog dyads. Anthrozoo 2012, 25, 199–214. [Google Scholar] [CrossRef]
- SchoÈberl, I.; Beetz, A.; Solomon, J.; Wedl, M.; Gee, N.; Kotrschal, K. Social factors influencing cortisol modulation in dogs during a strange situation procedure. J. Vet. Behav. 2016, 11, 77–85. [Google Scholar] [CrossRef] [Green Version]
- McGowan, R.T.S.; Bolte, C.; Barnett, H.R.; Perez-Camargo, G.; Martin, F. Can you spare 15 minutes? The measurable positive impact of a 15-min petting session on shelter dog well-being. Appl. Anim. Behav. Sci. 2018, 203, 42–54. [Google Scholar] [CrossRef]
- Meyer, I.; Forkman, B. Dog and owner characteristics affecting the dog owner relationship. J. Vet. Behav. 2014, 9, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Cobb, M.L.; Iskandarani, K.; Chinchilli, V.M.; Dreschel, N.A. A systematic review and meta-analysis of salivary cortisol measurement in domestic canines. Dom. Anim. Endocrinol. 2016, 57, 31–42. [Google Scholar] [CrossRef]
- Handlin, L.; Hydbring-Sandberg, E.; Nilsson, A.; Ejdebäck, M.; Jansson, A.; Uvnäs-Moberg, K. Short-term interaction between dogs and their owners: Effects on oxytocin, cortisol, insulin and heart rate—An exploratory study. Anthrozoös 2011, 24, 301–315. [Google Scholar] [CrossRef]
- Odendaal, J.S.; Meintjes, R.A. Neurophysiological correlates of affiliative behavior between humans and dogs. Vet. J. 2003, 165, 296–301. [Google Scholar] [CrossRef]
- Hritcu, L.D.; Horhogea, C.; Ciobica, A.; Spataru, M.C.; Spataru, C.; Kis, A. Conceptual replication of canine serum oxytocin increase following a positive dog-human interaction. Rev. Chim. 2019, 70, 1579–1581. [Google Scholar] [CrossRef]
- Edgar, J.L.; Nicol, C.J.; Clark, C.C.A.; Paul, E.S. Measuring empathic responses in animals. Appl. Anim. Behav. Sci. 2012, 138, 182–193. [Google Scholar] [CrossRef]
- Hellhammer, D.H.; Wust, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2008, 34, 163–171. [Google Scholar] [CrossRef]
- Mesacova, L.; Kottferova, L.; Skurkova, L.; Leskova, L.; Kmecova, L. Analysis of cortisol in dog hair A potential biomarker of chronic stress: A review. Vet. Med. 2017, 62, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Marinelli, L.; Mongillo, P.; Salvadoretti, M.; Normando, S.; Bono, G.G. Welfare assessment of dogs involved in animal assisted activities. J. Vet. Behav. Clin. App. Res. 2009, 4, 84–85. [Google Scholar] [CrossRef]
- Ng, Z.Y.; Pierce, B.J.; Otto, C.M.; Buechner-Maxwell, V.A.; Siracusa, C.; Werre, S.R. The effect of dog–human interaction on cortisol and behavior in registered animal-assisted activity dogs. Appl. Anim. Behav. Sci. 2014, 159, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Glenk, L.M.; Kothgassner, O.D.; Stetina, B.U.; Palme, R.; Kepplinger, B.; Baran, H. Therapy dogs’ salivary cortisol levels vary during animal-assisted interventions. Anim. Welf. 2013, 22, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Glenk, L.M.; Kothgassner, O.D.; Stetina, B.U.; Palme, R.; Kepplinger, B.; Baran, H. Salivary cortisol and behavior in therapy dogs during animal-assisted interventions: A pilot study. J. Vet. Behav. 2014, 9, 98–106. [Google Scholar] [CrossRef]
- Olff, M.; Frijling, J.L.; Kubzansky, L.D.; Bradley, B.; Ellenbogen, M.A.; Cardoso, C.; Bartz, J.A.; Yee, J.R.; van Zuiden, M. The role of oxytocin in social bonding, stress regulation, and mental health: An update on the moderating effects of context and inter individual differences. Psychoneuroendocrinology 2013, 38, 1883–1894. [Google Scholar] [CrossRef] [Green Version]
- Beetz, A.; Uvnas-Moberg, K.; Juilus, H.; Kotrchal, K. Psychosocial and psychophysiological effects of human-animal interactions: The possible role of oxytocin. Front. Psychol. 2012, 3, 234. [Google Scholar] [CrossRef] [Green Version]
- MacLean, E.L.; Gesquiere, L.R.; Gruen, M.E.; Sherman, B.L.; Martin, W.L.; Carter, C.S. Endogenous oxytocin, vasopressin, and aggression in domestic dogs. Front. Psychol. 2017, 8, 1613. [Google Scholar] [CrossRef] [Green Version]
- Rehn, T.; Handlin, L.; Uvnäs-Moberg, L.; Keeling, J. Dogs’ endocrine and behavioral responses at reunion are affected by how the human initiates contact. Physiol. Behav. 2014, 124, 45–53. [Google Scholar] [CrossRef]
- Hopkins, W.D.; Fowler, L.A. Lateralized changes in tympanic membrane temperature in relation to difference cognitive tasks in Chimpanzees (Pan troglodytes). Behav. Neurosci. 1998, 112, 83–88. [Google Scholar] [CrossRef]
- Rogers, L.J. Relevance of brain and behavioural lateralization to animal welfare. Appl. Anim. Behav. Sci. 2010, 127, 1–11. [Google Scholar] [CrossRef]
- Ocklenberg, S.; Korte, S.M.; Peterburs, J.; Wolf, O.T.; Güntürkün, O. Stress and laterality The comparative perspective. Physiol. Behav. 2016, 164, 321–329. [Google Scholar] [CrossRef]
- Siniscalchi, M.; d’Ingeo, S.; Fornelli, S.; Quaranta, A. Lateralized behavior and cardiac activity of dogs in response to human emotional vocalizations. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kuhne, F.; Hobler, J.C.; Struwe, R. Behavioral and cardiac responses by dogs to physical human-dog contact. J. Vet. Behav. 2014, 9, 93–97. [Google Scholar] [CrossRef]
- Varga, B.; Gergely, A.; Galambos, A.; Kis, A. Heart rate and heart rate variability during sleep in family dogs (Canis familiaris). Moderate effect of pre-sleep emotions. Animals 2018, 8, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Abbott, J.A. Heart rate and heart rate variability in healthy cats at home and in hospital environments. J. Feline Med. Surg. 2004, 7, 195–202. [Google Scholar] [CrossRef]
- Katayama, M.; Kubo, T.; Mogi, K.; Iked, K.; Nagasawa, M.; Kikusiu, T. Heart rate variability predicts the emotional state in dogs. Behav. Proc. 2016, 128, 108–112. [Google Scholar] [CrossRef]
- Palestrini, C.; Previde, P.E.; Spiezio, C.; Verga, M. Heart rate and behavioral response of dogs in Ainsworth’s Strange Situation: A pilot study. Appl. Anim. Behav. Sci. 2005, 94, 75–88. [Google Scholar] [CrossRef]
- Larsen, H.R. Heart Rate Variability and Atrial Fibrillation. Available online: http://afibbers.org/resources/HRV.pdf (accessed on 9 September 2019).
Dog | SEX | WT 1 | AGE (yr) | BREED | AAT 2 Experience (yr) | CERTIFIED WITH |
---|---|---|---|---|---|---|
A | F | 74 | 5 | Golden | 5 | Helping Paws |
B | F | 65 | 3 | Lab | 0.3 | Pet Partners |
C | M | 22 | 7 | Chug | 0.4 | Pet Partners |
Da | M | 70 | 4 | Wirehair Griffon | 4.3 | Alliance of Therapy Dogs |
E | F | 65 | 11 | Golden Mix | 8 | TDI 3 |
F | F | 42 | 5 | Australian Shepherd | 2 | Pet Partners |
Ga | F | 45 | 4 | Australian Shepherd | 1 | Pet Partners |
H | M | 60 | 2 | Lab Mix | 2.3 | Alliance of Therapy Dogs |
I | F | 68 | 3 | Golden | 0.6 | Pet Partners |
J | M | 26 | 10 | Cockachon | 0.25 | Pet Partners |
K | M | 70 | 1.5 | English Cream Golden | 0.1 | Pet Partners |
L | F | 25 | 6 | Cocker Spaniel | 1.2 | Alliance of Therapy Dogs |
M | M | 92 | 4 | Lab | 2 | Pet Partners |
N | F | 65 | 7 | Standard Poodle | 0.2 | TDI 3 |
O | F | 50 | 5 | Golden | 1.5 | Pet Partners |
Pa | F | 60 | 4 | Goldendoodle | 0.3 | Pet Partners |
R | M | 25 | 3 | Mixed | 0.3 | Alliance of Therapy Dogs |
Sa | M | 70 | 4 | Wirehair Griffon | 0.3 | Alliance of Therapy Dogs |
T | F | 60 | 12 | Golden | 10 | TDI |
Event | Description |
---|---|
Pre-session (preparation room) | Saliva samples collected, using VersiSALs (Oasis, Vancouver, WA, USA) collection devices, for cortisol and oxytocin concentrations. Collections were within a 2-min timeframe. |
Tympanic membrane temperatures were collected, left and right ears simultaneously. | |
The dog was fitted with the cardiac monitor. | |
Interaction—20 min (observation room) | The volunteer and dog entered the observation room where the patient was waiting. |
Dog was let off leash to move freely around the room. | |
Dog and patient could choose to interact with one another. | |
The volunteer could choose to sit in a chair or on the floor, according to their preference. | |
A study staff member sat at a desk in the room, and did not interact with the patient unless to adjust the cardiac monitor. | |
Continuous heart rate and heart rate variability were recorded throughout the entire interaction. | |
Post-session (preparation room) | The volunteer and the dog exited the observation room and went back into the preparation room. |
A saliva sample was collected, tympanic membrane temperatures were taken, and the cardiac monitor was removed. | |
At the end, the dog and volunteer were free to go home. |
Parameters | Pre-Session | Post-Session | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dogs | n 6 | Means | Min | Max | SD 7 | Dogs | n 6 | Means | Min | Max | SD 7 | p-Value | |
Salivary Cortisol (µg/dL) | 17 | 43 | 0.53 | 0.13 | 1.53 | 0.38 | 15 | 40 | 0.53 | 0.16 | 1.33 | 0.30 | 0.78 |
Salivary Oxytocin (nmol/L) | 18 | 76 | 1.00 | 0.09 | 2.35 | 0.50 | 8 | 76 | 1.00 | 0.26 | 2.41 | 0.48 | 0.85 |
Right Tympanic Membrane Temperature (°C) | 19 | 107 | 38.32 | 37.20 | 39.30 | 0.45 | 19 | 107 | 38.21 | 37.20 | 39.20 | 0.41 | 0.0036 a |
Left Tympanic Membrane Temperature (°C) | 19 | 110 | 38.19 | 36.80 | 39.40 | 0.57 | 19 | 109 | 38.17 | 37.10 | 39.30 | 0.50 | 0.22 |
Heart Rate (bpm 1) | 17 | 40 | 102.15 | 59.99 | 161.31 | 21.42 | 15 | 34 | 90.45 | 60.20 | 127.67 | 15.56 | 0.0003 a |
HF 2 | 17 | 40 | 954.23 | 0.05 | 2773.90 | 757.29 | 15 | 32 | 1090.49 | 6.30 | 4162.40 | 1057.09 | 0.56 |
RMSSD 3 | 17 | 42 | 54.80 | 0.00 | 110.43 | 24.11 | 15 | 33 | 60.17 | 8.68 | 121.05 | 32.46 | 0.13 |
PNN50 4 | 17 | 44 | 27.63 | 0.00 | 73.11 | 16.84 | 15 | 36 | 29.06 | 0.00 | 66.66 | 20.88 | 0.51 |
LF/HF Ratio 5 | 17 | 42 | 2.12 | 0.06 | 6.92 | 1.88 | 15 | 33 | 1.89 | 0.20 | 6.74 | 1.50 | 0.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, S.D.; Martin, F.; McGowan, R.T.S.; Smidt, J.M.; Anderson, R.; Wang, L.; Turpin, T.; Langenfeld-McCoy, N.; Bauer, B.A.; Mohabbat, A.B. Physiological State of Therapy Dogs during Animal-Assisted Activities in an Outpatient Setting. Animals 2020, 10, 819. https://doi.org/10.3390/ani10050819
Clark SD, Martin F, McGowan RTS, Smidt JM, Anderson R, Wang L, Turpin T, Langenfeld-McCoy N, Bauer BA, Mohabbat AB. Physiological State of Therapy Dogs during Animal-Assisted Activities in an Outpatient Setting. Animals. 2020; 10(5):819. https://doi.org/10.3390/ani10050819
Chicago/Turabian StyleClark, Stephanie D., François Martin, Ragen T.S. McGowan, Jessica M. Smidt, Rachel Anderson, Lei Wang, Tricia Turpin, Natalie Langenfeld-McCoy, Brent A. Bauer, and Arya B. Mohabbat. 2020. "Physiological State of Therapy Dogs during Animal-Assisted Activities in an Outpatient Setting" Animals 10, no. 5: 819. https://doi.org/10.3390/ani10050819
APA StyleClark, S. D., Martin, F., McGowan, R. T. S., Smidt, J. M., Anderson, R., Wang, L., Turpin, T., Langenfeld-McCoy, N., Bauer, B. A., & Mohabbat, A. B. (2020). Physiological State of Therapy Dogs during Animal-Assisted Activities in an Outpatient Setting. Animals, 10(5), 819. https://doi.org/10.3390/ani10050819