Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Phenotype Measurement
2.3. DNA Extraction and VRTN Gene g.20311_20312ins291 Genotyping
2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistics for RIB, Carcass Traits, and Body Size/Body Weight Traits in Suhuai Pig Populations
3.2. Correlation Analyses of Carcass Traits in Suhuai Fattening Pigs and Body Size/Body Weight Traits in Suhuai Gilts
3.3. Genetic Parameters of the VRTN Gene g.20311_20312ins291 in Suhuai Pig Populations
3.4. Association Analyses of the Polymorphism of VRTN Gene g.20311_20312ins291 with RIB and Carcass Traits in Suhuai Fattening Pigs and Body Size/Body Weight Traits in Suhuai Gilts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Burgos, C.; Latorre, P.; Altarriba, J.; Carrodeguas, J.; Varona, L.; López Buesa, P. Allelic frequencies of NR6A1 and VRTN, two genes that affect vertebrae number in diverse pig breeds: A study of the effects of the VRTN insertion on phenotypic traits of a Duroc×Landrace–Large White cross. Meat Sci. 2014, 100, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Borchers, N.; Reinsch, N.; Kalm, E. The number of ribs and vertebrae in a Piétrain cross: Variation, heritability and effects on performance traits. J. Anim. Breed. Genet. 2004, 121, 392–403. [Google Scholar] [CrossRef]
- Fredeen, H.T.; Newman, J.A. Rib and vertebral numbers in swine. II. Genetic aspects. Can. Vet. J. La Rev. Vet. Can. 1962, 42, 240–251. [Google Scholar] [CrossRef]
- Galis, F. Why Do Almost All Mammals Have Seven Cervical Vertebrae? Developmental Constraints, Hox Genes, And Cancer. J. Exp. Zool. 1999, 285, 19–26. [Google Scholar] [CrossRef]
- King, J.W.B.; Roberts, R.C. Carcass length in the bacon pig; its association with vertebrae numbers and prediction from radiographs of the young pig. Anim. Prod. 1960, 2, 59–65. [Google Scholar] [CrossRef]
- Berge, S. Genetical Researches on the Number of Vertebrae in the Pig. Astron. Astrophys. 1948, 553, 1–18. [Google Scholar] [CrossRef]
- Mikawa, S.; Hayashi, T.; Nii, M.; Shimanuki, S.; Morozumi, T.; Awata, T. Two quantitative trait loci on Sus scrofa chromosomes 1 and 7 affecting the number of vertebrae. J. Anim. Sci. 2005, 83, 2247–2254. [Google Scholar] [CrossRef]
- Mikawa, S.; Morozumi, T.; Shimanuki, S.-I.; Hayashi, T.; Uenishi, H.; Domukai, M.; Okumura, N.; Awata, T. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Res. 2007, 17, 586–593. [Google Scholar] [CrossRef]
- Mikawa, S.; Sato, S.; Nii, M.; Morozumi, T.; Awata, T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet. 2011, 12, 1–13. [Google Scholar] [CrossRef]
- Ren, D.R.; Ren, J.; Ruan, G.F.; Guo, Y.M.; Wu, L.H.; Yang, G.C.; Zhou, L.H.; Li, L.; Zhang, Z.Y.; Huang, L.S. Mapping and fine mapping of quantitative trait loci for the number of vertebrae in a White Duroc × Chinese Erhualian intercross resource population. Anim. Genet. 2012, 43, 545–551. [Google Scholar] [CrossRef]
- Fan, Y.; Xing, Y.; Zhang, Z.; Ai, H.; Ouyang, Z.; Ouyang, J.; Yang, M.; Li, P.; Chen, Y.; Gao, J. A Further Look at Porcine Chromosome 7 Reveals VRTN Variants Associated with Vertebral Number in Chinese and Western Pigs. PLoS ONE 2013, 8, e62534. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, H.; Zhang, Z.; Gao, J.; Yang, J.; Wu, Z.; Fan, Y.; Xing, Y.; Li, L.; Xiao, S.; et al. VRTN is Required for the Development of Thoracic Vertebrae in Mammals. Int. J. Biol. Sci. 2018, 14, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, G.A.; Nonneman, D.J.; Wiedmann, R.T.; Schneider, J.F. A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL. BMC Genet. 2015, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.C.; Yue, J.W.; Pu, L.; Wang, L.G.; Liu, X.; Liang, J.; Yan, H.; Zhao, K.B.; Li, N.; Shi, H.B. Genome-wide study refines the quantitative trait locus for number of ribs in a Large White × Minzhu intercross pig population and reveals a new candidate gene. Mol. Genet. Genom. 2016, 291, 1885–1890. [Google Scholar] [CrossRef]
- Park, H.-B.; Han, S.-H.; Lee, J.-B.; Cho, I.-C. Rapid Communication: High-resolution quantitative trait loci analysis identifies LTBP2 encoding latent transforming growth factor beta binding protein 2 associated with thoracic vertebrae number in a large F2 intercross between Landrace and Korean native pigs1. J. Anim. Sci. 2017, 95, 1957–1962. [Google Scholar] [CrossRef]
- Yue, J.; Guo, H.; Zhou, W.; Liu, X.; Wang, L.; Gao, H.; Hou, X.; Zhang, Y.; Yan, H.; Wei, X. Polymorphism Sites of TGFβ3 Gene and Its Association Analysis with Vertebral Number of Porcine. China Anim. Husb. Vet. Med. 2018, 45, 738–744. [Google Scholar]
- Pu, G.; Huang, R.H.; Niu, Q.; Wang, H.; Fan, L.J.; Gao, C.; Niu, P.P.; Zhuang, Z.P.; Wu, C.W.; Zhou, J.; et al. Effects of Dietary Defatted Rice Bran Substitute Corn Levels on Growth Performance, Intestinal Development and Apparent Digestibility of Nutrients of Suhuai Pigs. Acta Vet. Zootech. Sin. 2019, 50, 758–770. [Google Scholar]
- Wang, B.; Li, P.; Zhou, W.; Gao, C.; Liu, H.; Li, H.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs. Animals 2019, 9, 858. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; Volume 49, pp. 895–909. [Google Scholar]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Madsen, P.; Sørensen, P.; Su, G.; Damgaard, L.H.; Thomsen, H.; Labouriau, R. DMU—A Package for Analyzing Multivariate Mixed Models in quantitative Genetics and Genomics. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Minas Gerais, Brazil, 13–18 August 2006. [Google Scholar]
- Nakano, H.; Sato, S.; Uemoto, Y.; Kikuchi, T.; Shibata, T.; Kadowaki, H.; Kobayashi, E.; Suzuki, K. Effect of VRTN gene polymorphisms on Duroc pig production and carcass traits, and their genetic relationships. Anim. Sci. J. 2015, 86, 125–131. [Google Scholar] [CrossRef]
- Jian, Y.E.; Xiao-Xiang, H.U.; Sheng-Li, Q.U.; Zeng, J.Y.; Zhang, C.H.; Cai, G.Y.; Liu, D.W.; Zheng, E.Q.; Wang, A.G.; Zhen-Fang, W.U. Estimation of Genetic Parameters of Type Traits and It′s Correlation with Production Traits in Large White Pigs. Chin. J. Anim. Sci. 2016, 52, 6–8. [Google Scholar]
- Zhan-wei, Z.; Di-sheng, F.; Rong-rong, D.; Ming, Y.; Shao-yun, L.; Zhen-fang, W.; Jie, Y.; En-qin, Z. Estimation of genetic parameters of body measurements traits and the relationship with growth traits in an American Duroc population. Guangdong Agric. Sci. 2018, 45, 121–125. [Google Scholar]
- Huang, J.; Zhang, M.; Ye, R.; Ma, Y.; Lei, C. Effects of increased vertebral number on carcass weight in PIC pigs. Anim. Sci. J. 2017, 88, 2057–2062. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, L.; Yang, M.; Fan, Y.; Li, L.; Fang, S.; Deng, W.; Cui, L.; Zhang, Z.; Ai, H.; et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci. Rep. 2016, 6, 19240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, M.; Yuan, J.; Zhou, X.; Liu, B. Association of polymorphisms in NR6A1, PLAG1 and VRTN with the number of vertebrae in Chinese Tongcheng × Large White crossbred pigs. Anim. Genet. 2018, 49, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Mikawa, S.; Okumura, N.; Noguchi, G.; Fukawa, K.; Kanaya, N.; Mikawa, A.; Arakawa, A.; Ito, T.; Hayashi, Y.; et al. Association of swine vertnin(VRTN) gene with production traits in Duroc pigs improved by closed nucleus breeding system. Anim. Sci. J. 2013, 84, 213–221. [Google Scholar] [CrossRef]
- Okumura, N.; Matsumoto, T.; Hayashi, T.; Hirose, K.; Fukawa, K.; Itou, T.; Uenishi, H.; Mikawa, S.; Awata, T. Genomic regions affecting backfat thickness and cannon bone circumference identified by genome-wide association study in a Duroc pig population. Anim. Genet. 2012, 44, 454–457. [Google Scholar] [CrossRef]
- Uemoto, Y.; Nagamine, Y.; Kobayashi, E.; Sato, S.; Tayama, T.; Suda, Y.; Shibata, T.; Suzuki, K. Quantitative trait loci analysis on Sus scrofa chromosome 7 for meat production, meat quality, and carcass traits within a Duroc purebred population. J. Anim. Sci. 2008, 86, 2833–2839. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Yan, H.; Liu, X.; Li, N.; Liang, J.; Pu, L.; Zhang, Y.; Shi, H.; Zhao, K.; et al. Genome-Wide Association Studies Identify the Loci for 5 Exterior Traits in a Large White × Minzhu Pig Population. PLoS ONE 2014, 9, e103766. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, L.; Guo, Y.; Huang, L.; Ma, J. Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc × Erhualian F2 intercross population. Asian Australas. J. Anim. Sci. 2017, 30, 1066–1073. [Google Scholar] [CrossRef]
Populations | Traits | Numbers | Ranges | Mean ± SE | CVs, % | Medians |
---|---|---|---|---|---|---|
SH-F | RIB | 335 | 28.00–34.00 | 30.51 ± 0.13 | 11.08 | 30.00 |
CSL (cm) | 69.00–108.00 | 88.63 ± 0.32 | 10.57 | 88.20 | ||
CDL (cm) | 58.00–93.00 | 75.03 ± 0.29 | 7.25 | 75.00 | ||
CWT (kg) | 40.05–84.40 | 55.96 ± 0.19 | 6.00 | 59.23 | ||
SH-G | CC (cm) | 320 | 75.00–108.00 | 89.80 ± 0.27 | 6.57 | 88.70 |
AC (cm) | 80.00–120.00 | 101.16 ± 0.34 | 7.36 | 100.00 | ||
CBC (cm) | 11.00–20.00 | 14.67 ± 0.06 | 8.39 | 14.50 | ||
RC (cm) | 50.00–90.00 | 72.67 ± 0.30 | 8.81 | 72.00 | ||
BL (cm) | 70.00–115.00 | 96.16 ± 0.31 | 7.01 | 95.00 | ||
BW (kg) | 36.80–85.00 | 57.81 ± 0.35 | 12.68 | 57.60 |
Traits | RIB | CSL | CDL | CWT |
---|---|---|---|---|
RIB | 0.60 ** (0.25) | 0.58 ** (0.29) | 0.09 (0.35) | |
CSL | 0.28 ** | 0.83 ** (0.12) | 0.68 ** (0.17) | |
CDL | 0.25 ** | 0.71 ** | 0.95 ** (0.12) | |
CWT | 0.04 | 0.51 ** | 0.53 ** |
Traits | CC | CBC | AC | RC | BL | BW |
---|---|---|---|---|---|---|
CC | 0.64 ** (0.13) | 0.98 ** (0.03) | 0.63 ** (0.12) | 0.92 ** (0.08) | 0.93 ** (0.05) | |
CBC | 0.49 ** | 0.65 ** (0.15) | 0.89 ** (0.08) | 0.22 ** (0.19) | 0.15 * (0.17) | |
AC | 0.80 ** | 0.48 ** | 0.61 ** (0.15) | 0.94 ** (0.06) | 0.89 ** (0.07) | |
RC | 0.49 ** | 0.46 ** | 0.42 ** | 0.59 ** (0.16) | 0.25 ** (0.14) | |
BL | 0.64 ** | 0.43 ** | 0.64 ** | 0.41 ** | 0.82 ** (0.09) | |
BW | 0.72 ** | 0.40 ** | 0.68 ** | 0.33 ** | 0.60 ** |
Groups | Numbers | Genotype Frequencies | Allele Frequencies | Ho | He | Ne | PIC | |||
---|---|---|---|---|---|---|---|---|---|---|
ins/ins | ins/del | del/del | ins | del | ||||||
SH-F | 335 | 0.3463 (116) | 0.4955 (166) | 0.1582 (53) | 0.5940 | 0.4060 | 0.5177 | 0.4823 | 1.9317 | 0.3660 |
SH-G | 320 | 0.3375 (108) | 0.4750 (152) | 0.1875 (60) | 0.5750 | 0.4250 | 0.5113 | 0.4887 | 1.9560 | 0.3693 |
T-Ps | 655 | 0.3420 (224) | 0.4855 (318) | 0.1725 (113) | 0.5847 | 0.4153 | 0.5143 | 0.4857 | 1.9442 | 0.3677 |
Populations | Traits | VRTN Genotypes | p Values | ||
---|---|---|---|---|---|
ins/ins | ins/del | del/del | |||
SH-F | (n = 116) | (n = 166) | (n = 53) | ||
RIB | 31.00 ± 1.21 A | 30.46 ± 1.08 B | 29.55 ± 1.15 C | 0.00 | |
CSL (cm) | 88.99 ± 1.30 | 88.17 ± 1.25 | 87.93 ± 1.45 | 0.06 | |
CDL (cm) | 75.60 ± 1.27 A,a | 74.50 ± 1.23 A,B,b | 74.00 ± 1.40 B,c | 0.00 | |
CWT (kg) | 61.77 ± 1.56 | 59.63 ± 1.26 | 59.06 ± 1.10 | 0.57 | |
SH-G | (n = 108) | (n = 152) | (n = 60) | ||
CC (cm) | 89.27 ± 0.70 | 88.22 ± 0.62 | 88.21 ± 0.83 | 0.26 | |
AC (cm) | 100.21 ± 0.76 | 99.63 ± 0.60 | 99.10 ± 0.92 | 0.50 | |
CBC (cm) | 15.38 ± 0.13 | 15.12 ± 0.11 | 14.95 ± 0.15 | 0.04 | |
RC (cm) | 73.38 ± 0.58 | 72.66 ± 0.50 | 71.32 ± 0.71 | 0.07 | |
BL (cm) | 94.60 ± 0.71 | 94.98 ± 0.63 | 93.81 ± 0.87 | 0.41 | |
BW (kg) | 57.03 ± 0.89 | 56.28 ± 0.80 | 55.35 ± 1.07 | 0.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Liu, C.; Lan, T.; Zhang, Q.; Cao, Y.; Pu, G.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals 2020, 10, 484. https://doi.org/10.3390/ani10030484
Jiang N, Liu C, Lan T, Zhang Q, Cao Y, Pu G, Niu P, Zhang Z, Li Q, Zhou J, et al. Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals. 2020; 10(3):484. https://doi.org/10.3390/ani10030484
Chicago/Turabian StyleJiang, Nengjing, Chenxi Liu, Tingxu Lan, Qian Zhang, Yang Cao, Guang Pu, Peipei Niu, Zongping Zhang, Qiang Li, Juan Zhou, and et al. 2020. "Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs" Animals 10, no. 3: 484. https://doi.org/10.3390/ani10030484
APA StyleJiang, N., Liu, C., Lan, T., Zhang, Q., Cao, Y., Pu, G., Niu, P., Zhang, Z., Li, Q., Zhou, J., Li, X., Hou, L., Huang, R., & Li, P. (2020). Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals, 10(3), 484. https://doi.org/10.3390/ani10030484