Next Article in Journal
Reconstruction and Analysis of Cattle Metabolic Networks in Normal and Acidosis Rumen Tissue
Previous Article in Journal
The Presence and Distribution of TRPM7 in the Canine Mammary Glands
Open AccessArticle

MiRNAs and mRNAs Analysis during Abdominal Preadipocyte Differentiation in Chickens

College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
*
Author to whom correspondence should be addressed.
Animals 2020, 10(3), 468; https://doi.org/10.3390/ani10030468
Received: 12 February 2020 / Revised: 2 March 2020 / Accepted: 7 March 2020 / Published: 11 March 2020
(This article belongs to the Section Animal Genetics and Genomics)
We sequenced the miRNAs and mRNAs of preabdominal fat cells and differentiated adipocytes, and target genes of miRNA combined with mRNA transcriptome data jointly. We found that the MAPK signal pathway, insulin signal pathway, fatty acid metabolism, ECM( extracellular matrix)–receptor interaction, and other signal pathways were involved in the differentiation of preabdominal fat cells. In addition, we found that some miRNAs–mRNAs combinations were strongly related to the differentiation of fat cells (miR-214−ACSBG2, NFKB2, CAMK2A, ACLY, CCND3, PLK3, ITGB2; miR-148a-5p−ROCK2; miR-10a-5p−ELOVL5; miR-146b-5p−LAMA4; miR-6615-5p−FLNB; miR-1774−COL6A1). Our findings provide important resources for the study of adipocyte differentiation.
The excessive deposition of abdominal fat has become an important factor in restricting the production efficiency of chickens, so reducing abdominal fat deposition is important for improving growth rate. It has been proven that miRNAs play an important role in regulating many physiological processes of organisms. In this study, we constructed a model of adipogenesis by isolating preadipocytes (Ab-Pre) derived from abdominal adipose tissue and differentiated adipocytes (Ab-Ad) in vitro. Deep sequencing of miRNAs and mRNAs expressed in Ab-Pre and Ab-Ad groups was conducted to explore the effect of miRNAs and mRNAs on fat deposition. We identified 80 differentially expressed miRNAs (DEMs) candidates, 58 of which were up-regulated and 22 down-regulated. Furthermore, six miRNAs and six mRNAs were verified by qRT-PCR, and the results showed that the expression of the DEMs and differentially expressed genes (DEGs) in the two groups was consistent with our sequencing results. When target genes of miRNA were combined with mRNA transcriptome data, a total of 891 intersection genes were obtained, we predicted the signal pathways of cross genes enrichment to the MAPK signal pathway, insulin signal pathway, fatty acid metabolism, and ECM–receptor interaction. Meanwhile, we constructed miRNA and negatively correlated mRNA target networks, including 12 miRNA–mRNAs pairs, which showed a strong association with the abdominal adipocyte differentiation (miR-214−ACSBG2, NFKB2, CAMK2A, ACLY, CCND3, PLK3, ITGB2; miR-148a-5p−ROCK2; miR-10a-5p−ELOVL5; miR-146b-5p−LAMA4; miR-6615-5p−FLNB; miR-1774−COL6A1). Overall, these findings provide a background for further research on lipid metabolism. Thus, we can better understand the molecular genetic mechanism of chicken abdominal fat deposition. View Full-Text
Keywords: RNA sequencing; abdominal fat cells; abdominal fat deposition RNA sequencing; abdominal fat cells; abdominal fat deposition
Show Figures

Figure 1

MDPI and ACS Style

Ma, X.; Sun, J.; Zhu, S.; Du, Z.; Li, D.; Li, W.; Li, Z.; Tian, Y.; Kang, X.; Sun, G. MiRNAs and mRNAs Analysis during Abdominal Preadipocyte Differentiation in Chickens. Animals 2020, 10, 468.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop