Nutrient Intake, Excretion and Use Efficiency of Grazing Lactating Herds on Commercial Dairy Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Data
2.2. Dietary Intake
- (i)
- [NLactn1] and [NLactn2+] are the number of cows in their first and in their second or greater lactations, respectively;
- (ii)
- [LiveWt] is the estimated liveweight of the cows and for the purposes of estimating daily energy requirements is assumed to be constant for the day of visit to the farm;
- (iii)
- [NMidLactn] and [NLateLactn] are the number of cows in mid and late lactation respectively, where the lactation length was 305 days, divided evenly into early (102), mid (103 to 204) and late (205+) lactation;
- (iv)
- [MilkPerCow] is milk produced (L) per cow taking into consideration the number of heifers [NLactn1] and older cows [NLactn2+];
- (v)
- [WalkDist] is the distance walked (km) by the herd from the dairy shed to the middle of each paddock;
- (vi)
- [Vert] is the steepness factor according to Heard et al. [17], based on the representative terrain (flat, undulating, steep) at each farm;
- (vii)
- km: 0.02 × [MEDiet] + 0.5;
- (viii)
- kc: 0.133;
- (ix)
- kl: 0.02 × [MEDiet] + 0.4;
- (x)
- MEDiet: 10 MJ/cow per day (Heard pers comm).
2.3. Nutrient Use Efficiency
2.4. Sample Collection and Analysis
2.5. Data and Statistical Analysis
3. Results
3.1. Dairy Farm Characteristics
3.2. Dietary Intake
3.3. Feed Nutrient Intake, Excretion and Animal Use Efficiency
4. Discussion
4.1. Modified ‘Feeding Standards’ Approach
4.2. Dry Matter Intake
4.3. Nutrient Intakes
4.4. Nutrient Excretion and Animal Use Efficiency
4.5. Estimating Nutrient Excretion for Grazing System Farms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tamminga, S. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 1992, 75, 345–357. [Google Scholar] [CrossRef]
- Fangueiro, D.; Pereira, J.; Coutinho, J.; Moreira, N.; Trindade, H. NPK farm-gate nutrient balances in dairy farms from Northwest Portugal. Eur. J. Agron. 2008, 28, 625–634. [Google Scholar] [CrossRef]
- Spears, R.A.; Kohn, R.A.; Young, A.J. Whole-farm nitrogen balance on western dairy farms. J. Dairy Sci. 2003, 86, 4178–4186. [Google Scholar] [CrossRef]
- Spears, R.A.; Young, A.J.; Kohn, R.A. Whole-farm phosphorous balance on western dairy farms. J. Dairy Sci. 2003, 86, 688. [Google Scholar] [CrossRef]
- Gourley, C.J.P.; Dougherty, W.J.; Weaver, D.M.; Aarons, S.R.; Awty, I.M.; Gibson, D.M.; Hannah, M.C.; Smith, A.P.; Peverill, K.I. Farm-scale nitrogen, phosphorus, potassium and sulfur balances and use efficiencies on Australian dairy farms. Anim. Prod. Sci. 2012, 52, 929–944. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, R.; Yamada, A.; Hirooka, H.; Tabata, Y.; Zhang, J.; Nonaka, K.; Kamo, M.; Hayasaka, K.; Aoki, Y.; Kawamoto, H.; et al. Changes in the cycling of nitrogen, phosphorus, and potassium in a dairy farming system. Nutr. Cycl. Agroecosystems 2010, 87, 295–306. [Google Scholar] [CrossRef]
- Knowlton, K.F.; Wilkerson, V.A.; Casper, D.P.; Mertens, D.R. Manure nutrient excretion by Jersey and Holstein cows. J. Dairy Sci. 2010, 93, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Castillo, A.R.; St-Pierre, N.R.; Silva del Rio, N.; Weiss, W.P. Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows. J. Dairy Sci. 2013, 96, 3388–3398. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Ferguson, J.D.; Fiorini, J.; Toth, J.D.; Alexander, S.M.; Chase, L.E.; Ryan, C.M.; Knowlton, K.F.; Kohn, R.A.; Peterson, A.B.; et al. Phosphorus feeding levels and critical control points on dairy farms. J. Dairy Sci. 2003, 86, 3787–3795. [Google Scholar] [CrossRef]
- Cerosaletti, P.E.; Fox, D.G.; Chase, L.E. Phosphorus reduction through precision feeding of dairy cattle. J. Dairy Sci. 2004, 87, 2314–2323. [Google Scholar] [CrossRef]
- O’Neill, B.F.; Lewis, E.; O’Donovan, M.; Shalloo, L.; Galvin, N.; Mulligan, F.J.; Boland, T.M.; Delagarde, R. Predicting grass dry matter intake, milk yield and milk fat and protein yield of spring calving grazing dairy cows during the grazing season. Animal 2013, 7, 1379–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, M.; Fulkerson, W.; Kellaway, R.; Dove, H. A comparison of three techniques to determine the herbage intake of dairy cows grazing kikuyu (Pennisetum clandestinum) pasture. Aust. J. Exp. Agric. 1996, 36, 23–30. [Google Scholar] [CrossRef]
- Macoon, B.; Sollenberger, L.E.; Moore, J.E.; Staples, C.R.; Fike, J.H.; Portier, K.M. Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture. J. Anim. Sci. 2003, 81, 2357–2366. [Google Scholar] [CrossRef] [PubMed]
- Williams, Y.J.; Wales, W.J.; Doyle, P.T.; Heard, J.W. Dry matter intake of dairy cows graing irrigated perennial pastures estimated by three methods. In Proceedings of the Animal production in Australia: Proceedings of the Australian Society of Animal Production, Adelaide, Australia, 7 July 2002; pp. 265–268. [Google Scholar]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Russell, J.B.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- O’Neill, B.F.; Lewis, E.; O’Donovan, M.; Shalloo, L.; Mulligan, F.J.; Boland, T.M.; Delagarde, R. Evaluation of the GrazeIn model of grass dry-matter intake and milk production prediction for dairy cows in temperate grass-based production systems. 1–Sward characteristics and grazing management factors. Grass Forage Sci. 2013, 68, 504–523. [Google Scholar] [CrossRef]
- Heard, J.W.; Doyle, P.T.; Francis, S.A.; Staines, M.v.H.; Wales, W.J. Calculating dry matter consumption of dairy herds in Australia: The need to fully account for energy requirements and issues with estimating energy supply. Anim. Prod. Sci. 2011, 51, 605–614. [Google Scholar] [CrossRef]
- Hristov, A.N.; Hazen, W.; Ellsworth, J.W. Efficiency of use of imported magnesium, sulfur, copper, and zinc on Idaho dairy farms. J. Dairy Sci. 2007, 90, 3034–3043. [Google Scholar] [CrossRef]
- Hristov, A.N.; Hazen, W.; Ellsworth, J.W. Efficiency of use of imported nitrogen, phosphorus, and potassium and potential for reducing phosphorus imports on Idaho dairy farms. J. Dairy Sci. 2006, 89, 3702–3712. [Google Scholar] [CrossRef]
- Powell, J.M.; Jackson-Smith, D.B.; McCrory, D.F.; Saam, H.; Mariola, M. Validation of Feed and Manure Data Collected on Wisconsin Dairy Farms. J. Dairy Sci. 2006, 89, 2268–2278. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.M.; Aarons, S.R.; Gourley, C.J.P. Determinations of feed-milk-manure relationships on grazing-based dairy farms. Animal 2012, 6, 1702–1710. [Google Scholar] [CrossRef] [Green Version]
- Arriaga, H.; Pinto, M.; Calsamiglia, S.; Merino, P. Nutritional and management strategies on nitrogen and phosphorus use efficiency of lactating dairy cattle on commercial farms: An environmental perspective. J. Dairy Sci. 2009, 92, 204–215. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC: Arlington, VA, USA, 2000; Volume II. [Google Scholar]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Auldist, M.J.; Marett, L.C.; Greenwood, J.S.; Wright, M.M.; Hannah, M.; Jacobs, J.L.; Wales, W.J. Milk production responses to different strategies for feeding supplements to grazing dairy cows. J. Dairy Sci. 2016, 99, 657–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rugoho, I.; Gourley, C.J.P.; Hannah, M.C. Nutritive characteristics, mineral concentrations and dietary cation–anion difference of feeds used within grazing-based dairy farms in Australia. Anim. Prod. Sci. 2016, 57, 858–876. [Google Scholar] [CrossRef]
- Auldist, M.J.; Grainger, C.; Macmillan, K.L.; Marett, L.C.; Hannah, M.; Leury, B.J.; Wales, W.J. Feed conversion efficiency and marginal milk production responses of pasture-fed dairy cows offered supplementary grain during an extended lactation. Anim. Prod. Sci. 2011, 51, 204–209. [Google Scholar] [CrossRef]
- Holden, L.A.; Muller, L.D.; Fales, S.L. Estimation of intake in high producing Holstein cows grazing grass pasture. J. Dairy Sci. 1994, 77, 2332–2340. [Google Scholar] [CrossRef]
- Hellwing, A.L.F.; Lund, P.; Weisbjerg, M.R.; Oudshoorn, F.W.; Munksgaard, L.; Kristensen, T. Comparison of methods for estimating herbage intake in grazing dairy cows. Livest. Sci. 2015, 176, 61–74. [Google Scholar] [CrossRef]
- DNRE. Feeding Dairy Cows. Department of Natural Resources and Environment; Victorian State Government: Melbourne, Victoria, Australia, 2002.
- Beever, D.E.; Doyle, P.T. Feed conversion efficiency as a key determinant of dairy herd performance: A review. Aust. J. Exp. Agric. 2007, 47, 645–657. [Google Scholar] [CrossRef]
- Wales, W.J.; Heard, J.W.; Ho, C.K.M.; Leddin, C.M.; Stockdale, C.R.; Walker, G.P.; Doyle, P.T. Profitable feeding of dairy cows on irrigated dairy farms in northern Victoria. Aust. J. Exp. Agric. 2006, 46, 743–752. [Google Scholar] [CrossRef]
- Stott, K.J.; Gourley, C.J.P. Intensification, nitrogen use and recovery in grazing-based dairy systems. Agric. Syst. 2016, 144, 101–112. [Google Scholar] [CrossRef]
- Freer, M.; Dove, H.; Nolan, J. Nutrient Requirements of Domesticated Ruminants; CSIRO Publishing: Collingwood, Victoria, Australia, 2007. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Science: Washington, DC, USA, 2001. [Google Scholar]
- Poncheki, J.K.; Canha, M.L.S.; Viechnieski, S.L.; Almeida, R.D. Analysis of daily body weight of dairy cows in early lactation and associations with productive and reproductive performance. Rev. Bras. Zootec. 2015, 44, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Roche, J.R.; Lee, J.M.; Macdonald, K.A.; Berry, D.P. Relationships among body condition score, body weight, and milk production variables in pasture-based dairy cows. J. Dairy Sci. 2007, 90, 3802–3815. [Google Scholar] [CrossRef] [PubMed]
- Garner, J.B.; Douglas, M.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; DiGiacomo, K.; Leury, B.J.; Hayes, B.J. Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim. Prod. Sci. 2017, 57, 1233–1241. [Google Scholar] [CrossRef]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Hristov, A.N.; Price, W.J.; Shafii, B. A meta-analysis examining the relationship among dietary factors, dry matter intake, and milk and milk protein yield in dairy cows. J. Dairy Sci. 2004, 87, 2184–2196. [Google Scholar] [CrossRef] [Green Version]
- Britt, J.S.; Thomas, R.C.; Speer, N.C.; Hall, M.B. Efficiency of converting nutrient dry matter to milk in Holstein herds. J. Dairy Sci. 2003, 86, 3796–3801. [Google Scholar] [CrossRef]
- Fisher, L.J.; Dinn, N.; Tait, R.M.; Shelford, J.A. Effect of level of dietary potassium on the absorption and excretion of calcium and magnesium by lactating cows. Can. J. Anim. Sci. 1994, 74, 503–509. [Google Scholar] [CrossRef]
- Havilah, E.; Warren, H.; Lawrie, R.; Senn, A.; Milham, P. Fertilisers for Pastures; New South Wales Department of Primary Industries: Berry, NSW, Australia, 2005.
- Tamminga, S. Pollution due to nutrient losses and its control in European animal production. Livest. Prod. Sci. 2003, 84, 101–111. [Google Scholar] [CrossRef]
- Harrison, J.; Nennich, T.; White, R. Nutrient management and dairy cattle production. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–12. [Google Scholar] [CrossRef]
- Nordqvist, M.; Holtenius, K.; Spörndly, R. Methods for assessing phosphorus overfeeding on organic and conventional dairy farms. Animal 2014, 8, 286–292. [Google Scholar] [CrossRef]
- Powell, J.M.; Jackson-Smith, D.B.; Satter, L.D. Phosphorus feeding and manure nutrient recycling on Wisconsin dairy farms. Nutr. Cycl. Agroecosystems 2002, 62, 277–286. [Google Scholar] [CrossRef]
- Kebreab, E.; France, J.; Beever, D.E.; Castillo, A.R. Nitrogen pollution by dairy cows and its mitigation by dietary manipulation. Nutr. Cycl. Agroecosystems 2001, 60, 275–285. [Google Scholar] [CrossRef]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; France, J. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J. Anim. Feed Sci. 2000, 9, 1–32. [Google Scholar] [CrossRef]
- Aarons, S.R.; Gourley, C.J.P.; Hannah, M.C. Measuring spatial and temporal variation in dairy cow placement on diverse grazing system farms. Agric. Ecosyst. Environ. 2017, 248, 175–189. [Google Scholar] [CrossRef]
- Castillo, A.R.; Santos, J.E.P.; Tabone, T.J. Mineral balances, including in drinking water, estimated for Merced County dairy herds. Available online: http://CaliforniaAgriculture.ucop.edu (accessed on 27 February 2020). [CrossRef] [Green Version]
- Børsting, C.F.; Kristensen, T.; Misciattelli, L.; Hvelplund, T.; Weisbjerg, M.R. Reducing nitrogen surplus from dairy farms. Effects of feeding and management. Livest. Prod. Sci. 2003, 83, 165–178. [Google Scholar] [CrossRef]
- Aarons, S.R.; Connor, C.R.; Gourley, C.J.P. Dung decomposition in temperate dairy pastures. I. Changes in soil chemical properties. Aust. J. Soil Res. 2004, 42, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Jonker, J.S.; Kohn, R.A.; High, J. Dairy herd management practices that impact nitrogen utilization efficiency. J. Dairy Sci. 2002, 85, 1218–1226. [Google Scholar] [CrossRef]
- Oenema, O.; Pietrzak, S. Nutrient management in food production: Achieving agronomic and environmental targets. AMBIO J. Hum. Environ. 2002, 31, 159–168. [Google Scholar] [CrossRef]
- Dairy Australia. Fert$mart; Making Fertiliser Profitable. Available online: http://fertsmart.dairyingfortomorrow.com.au/ (accessed on 11 May 2016).
- Gourley, C.J.P.; Aarons, S.R.; Hannah, M.C.; Awty, I.M.; Dougherty, W.J.; Burkitt, L.L. Soil phosphorus, potassium and sulphur excesses, regularities and heterogeneity in grazing-based dairy farms. Agric. Ecosyst. Environ. 2015, 201, 70–82. [Google Scholar] [CrossRef]
- Hills, J.L.; Wales, W.J.; Dunshea, F.R.; Garcia, S.C.; Roche, J.R. Invited review: An evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 2015, 98, 1363–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, Z.; Galligan, D.T.; Allshouse, R.D.; Toth, J.D.; Ramberg, C.F.J.; Ferguson, J.D. Manure sampling for nutrient analysis: Variability and sampling efficacy. J. Environ. Qual. 2001, 30, 1432–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Herd and Farm Characteristics | Minimum | Mean | Median | Maximum | SD | CV |
---|---|---|---|---|---|---|
Herd size 1 | 30 | 267 | 212 | 1350 | 202.2 | 76% |
Number of lactating cows 2 | ||||||
Primiparous | 0 | 66 | 55 | 230 | 46.5 | 71% |
Multiparous | 10 | 201 | 153 | 1330 | 178.3 | 89% |
Early | 0 | 68 | 35 | 850 | 114.0 | 169% |
Mid | 0 | 119 | 85 | 900 | 132.2 | 111% |
Late | 0 | 80 | 45 | 800 | 110.0 | 137% |
Average age (y) | 2.7 | 4.0 | 4.0 | 4.5 | 0.2 | 6% |
Liveweight 3 (kg) | 430 | 525 | 500 | 680 | 41.4 | 8% |
Milk | ||||||
Yield 4 (L/day) | 7 | 21 | 22 | 36 | 5.7 | 27% |
ECM 5 (kg/day) | 9 | 22 | 22 | 36 | 5.3 | 24% |
Protein (g/L) | 30.9 | 33.1 | 33.0 | 38.3 | 1.57 | 5% |
Fat (g/L) | 36.5 | 40.9 | 40.2 | 51.3 | 2.97 | 7% |
Distance walked (km) | 0.00 | 0.99 | 0.84 | 4.08 | 0.662 | 67% |
Summary Statistics | Milk Produced | Metabolizable Energy (MJ/Herd Per Day) | Total ME | ||||||
---|---|---|---|---|---|---|---|---|---|
L 1/herd | L 2/cow | L 3/heifer | Maintenance | Grazing | Pregnancy | Milk Production | Activity | (MJ/Cow Per Day) | |
Minimum | 438 | 7 | 0 | 1571 | 157 | 0 | 2878 | 238 | 116 |
Mean | 5937 | 23 | 18 | 14,590 | 1459 | 460 | 34,249 | 2646 | 195 |
Median | 4218 | 23 | 18 | 11,473 | 1147 | 283 | 24,798 | 1595 | 194 |
Maximum | 37,800 | 38 | 31 | 80,150 | 8015 | 4140 | 208,050 | 20,186 | 289 |
SD | 5425.7 | 6.0 | 5.3 | 11,180.6 | 1118.1 | 522.8 | 30,284.9 | 2826.4 | 33.4 |
Var | 29,438,659.6 | 36.3 | 27.7 | 125,006,498.3 | 1,250,065.0 | 273,271.8 | 917,172,365.3 | 7,988,323.0 | 1115.5 |
CV | 91% | 27% | 29% | 77% | 77% | 114% | 88% | 107% | 17% |
Skew | 3.0 | 0.1 | −0.5 | 2.4 | 2.4 | 3.3 | 2.9 | 2.8 | 0.3 |
Kurt | 13.1 | 0.0 | 1.4 | 8.5 | 8.5 | 15.3 | 11.9 | 10.4 | 0.2 |
Feed Types 1 | Number | ME (MJ/kg DM) | N (%) | P (%) | K (%) | S (%) | Ca (%) | Mg (%) |
---|---|---|---|---|---|---|---|---|
Pasture | 248 | 11 (7–13) | 3.7 (1.0–5.8) | 0.45 (0.11–0.95) | 2.8 (0.5–5.9) | 0.34 (0.12–0.60) | 0.59 (0.11–2.21) | 0.31 (0.11–2.28) |
Concentrates | 163 | 13 (12–15) | 2.5 (1.0–5.2) | 0.57 (0.14–1.99) | 0.6 (0.3–1.5) | 0.21 (0.10–0.46) | 1.15 (0.01–4.92) | 0.45 (0.03–2.35) |
Silage | 114 | 9 (7–11) | 2.4 (1.1–4.4) | 0.39 (0.13–0.76) | 2.5 (0.7–4.5) | 0.26 (0.06–0.55) | 0.52 (0.12–1.09) | 0.25 (0.13–0.63) |
Hay | 94 | 8 (4–11) | 1.8 (0.2–4.4) | 0.25 (0.01–0.66) | 1.7 (0.7–2.7) | 0.19 (0.04–0.64) | 0.48 (0.10–1.99) | 0.21 (0.07–0.87) |
By-products 2 | 76 | 12 (0–17) | 3.3 (0.1–8.5) | 0.53 (0.01–1.45) | 2 (0–5) | 0.47 (0.02–1.33) | 0.54 (0.01–1.17) | 0.34 (0–0.74) |
Crops | 23 | 10 (8–11) | 2.6 (1.4–3.9) | 0.32 (0.2–0.55) | 3.0 (1.4–6.5) | 0.49 (0.09–1.05) | 1.02 (0.30–1.85) | 0.50 (0.26–0.98) |
Mixed grain | 33 | 13 (11–16) | 2.6 (1.4–3.5) | 0.40 (0.22–0.59) | 0.6 (0.4–0.8) | 0.19 (0.10–0.29) | 0.24 (0.04–0.90) | 0.23 (0.11–0.56) |
Grain | 32 | 13 (12–15) | 2.5 (1.7–6.5) | 0.36 (0.22–1.19) | 0.6 (0.3–3.4) | 0.17 (0.09–0.73) | 0.11 (0.01–0.56) | 0.15 (0.10–0.60) |
Mineral 3 | 30 | 9 (2–13) | 0.4 (0.0–1.7) | 1.81 (0–3.99) | 0.6 (0–1.9) | 1.07 (0–2.55) | 10 (0.01–40) | 3.63 (0–8.01) |
TMR 4 | 12 | 9 (9–10) | 2.7 (1.8–3.5) | 0.45 (0.28–0.55) | 1.9 (1.4–2.3) | 0.25 (0.18–0.30) | 0.90 (0.43–1.23) | 0.28 (0.25–0.31) |
Organic 5 | 4 | 13 | 0.5 | 0.14 | 1.3 | 1.12 | 11.97 | 7.11 |
Summary Statistics | Supplement Fed 1 | Calculated Intake from Pasture | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DM | ME | ME 2 | DM | N | P | K | S | Ca | Mg | |
kg/Cow Per Day | MJ/Cow Per Day | MJ/Cow Per Day | kg/Cow Per Day | g/Cow Per Day | ||||||
Minimum | 1.1 | 13 | 0.4 | 0.04 | 1.2 | 0.2 | 0.9 | 0.2 | 0.4 | 0.1 |
Mean | 9.2 | 104 | 98 | 9.1 | 336 | 42 | 260 | 32 | 55 | 28 |
Median | 8.6 | 97 | 97 | 9.1 | 320 | 39 | 247 | 30 | 52 | 25 |
Maximum | 25.4 | 251 | 236 | 22.5 | 787 | 117 | 686 | 81 | 190 | 267 |
SD | 4.91 | 52.2 | 45.4 | 4.7 | 165.9 | 23.4 | 141.4 | 17.6 | 33.3 | 21.4 |
Var | 24.07 | 2725.0 | 2056.7 | 21.9 | 27,531.5 | 546.6 | 19,988.9 | 309.3 | 1110.3 | 459.8 |
CV | 54% | 50% | 47% | 51% | 49% | 56% | 54% | 54% | 61% | 76% |
Skew | 0.56 | 0.5 | 0.1 | 0.1 | 0.2 | 0.7 | 0.4 | 0.5 | 0.8 | 6.6 |
Kurt | 0.08 | −0.1 | −0.2 | −0.2 | −0.4 | 0.4 | −0.1 | −0.1 | 0.8 | 71.4 |
Time Periods 1 | ECM 2 | ECM 3 | FCE 4 | |||
---|---|---|---|---|---|---|
(kg/day) | p | (kg/day) | p | (kg ECM/kg DMI) | p | |
Summer | ||||||
January/February 2008 | 1.55 DMI 2−7.36 | 2.87 × 10−14 | 0.39 DMIsup 3 + 16.99 | 0.00482 | 0.023 DMI + 0.72 | 0.00715 |
January/February 2009 | 1.51 DMI−5.39 | <2 × 10−16 | 0.59 DMIsup + 15.53 | 1.56 × 10−6 | 0.015 DMI + 0.93 | 0.0217 |
Autumn | ||||||
May 2008 | 1.89 DMI−10.19 | <2e × 10−16 | 0.63 DMIsup + 14.65 | 0.00148 | 0.042 DMI + 0.56 | 2.64 × 10−7 |
Winter | ||||||
July/August 2008 | 1.58 DMI−4.08 | <2e × 10−16 | 0.72 DMIsup + 17.71 | 0.000126 | 0.016 DMI + 1.07 | 0.024 |
Spring | ||||||
October/November 2008 | 1.33 DMI−1.34 | 1.67 × 10−15 | 0.18 DMIsup + 24.15 | 0.238 | 0.007 DMI + 1.12 | 0.25 |
All data | 1.51 DMI−4.89 | <2 × 10−16 | 0.39 DMIsup + 18.94 | 7.81 × 10−8 | 0.018 DMI + 0.92 | 2.65 × 10−7 |
Adjusted R2 | 0.72 < R2 > 0.86 | 0.14 < R2 > 0.40 | 0.09 < R2 > 0.45 |
Correlation Variables | R | F-prob | |
---|---|---|---|
ECM | DMI | 0.87 | 0.000 |
ECM | FCE | 0.75 | 0.000 |
ECM | DMIpas | 0.20 | 0.002 |
ECM | DMIsup | 0.36 | 1.69 × 10−8 |
ECM | Milkfat | −0.51 | 3.33 × 10−16 |
ECM | Milkprot | −0.19 | 0.003 |
FCE | DMI | 0.33 | 3.44 × 10−7 |
FCE | DMIpas | 0.006 | ns |
FCE | DMIsup | 0.21 | 0.002 |
FCE | Milkfat | −0.31 | 2.01 × 10−6 |
FCE | Milkprot | −0.05 | ns |
DMI | DMIpas | 0.29 | 1.28 × 10−5 |
DMI | DMIsup | 0.37 | 9.89 × 10−9 |
DMI | Milkfat | −0.52 | 0.000 |
DMI | Milkprot | −0.28 | 1.34 × 10−5 |
DMIpas | DMIsup | −0.79 | 0.000 |
DMIpas | Milkfat | −0.22 | 0.0007 |
DMIpas | Milkprot | −0.12 | 0.067 |
DMIsup | Milkfat | −0.12 | 0.068 |
DMIsup | Milkprot | −0.07 | ns |
Milkfat | Milkprot | 0.63 | 0.000 |
Summary Statistics | N | P | K | S | Ca | Mg |
---|---|---|---|---|---|---|
Nutrient Intake (g/Cow Per Day) | ||||||
Minimum | 268 | 27 | 175 | 24 | 30 | 22 |
Mean | 545 | 81 | 372 | 52 | 116 | 54 |
Median | 543 | 81 | 364 | 51 | 111 | 52 |
Maximum | 983 | 155 | 703 | 108 | 236 | 101 |
SD | 129.4 | 23.8 | 105.2 | 13.8 | 41.8 | 15.0 |
Var | 16,755.4 | 568.5 | 11,058.5 | 190.1 | 1744.4 | 225.1 |
CV | 24% | 29% | 28% | 26% | 36% | 28% |
Nutrient Excretion (g/Cow Per Day) | ||||||
Minimum | 199 | 20 | 140 | 19 | 10 | 21 |
Mean | 433 | 61 | 341 | 44 | 92 | 52 |
Median | 429 | 60 | 335 | 42 | 89 | 50 |
Maximum | 793 | 132 | 671 | 101 | 210 | 98 |
SD | 110.3 | 20.7 | 102.7 | 13.0 | 40.6 | 14.7 |
Var | 12,171.6 | 429.7 | 10,537.9 | 169.1 | 1651.5 | 216.0 |
CV | 25% | 34% | 30% | 30% | 44% | 28% |
Animal Nutrient Use Efficiency (%) | ||||||
Minimum | 11 | 4 | 2 | 3 | 8 | 2 |
Mean | 21 | 25 | 9 | 16 | 23 | 4 |
Median | 21 | 24 | 8 | 15 | 21 | 4 |
Maximum | 39 | 48 | 21 | 48 | 76 | 8 |
SD | 4.3 | 6.6 | 3.3 | 7.1 | 10.8 | 1.2 |
Var | 18.1 | 43.1 | 11.0 | 51.1 | 116.2 | 1.5 |
CV | 20% | 26% | 38% | 44% | 46% | 28% |
Farm Characteristics | Daily Excretion (g/Cow Per Day) | |||||
---|---|---|---|---|---|---|
N | P | K | S | Ca | Mg | |
Farm area 1 (ha) | 0.013 (0.1557) | ns | ns | ns | ns | ns |
Herd size 2 | <0.001 (0.1238) | ns | ns | 0.001 (0.01197) | 0.027 (−0.02639) | ns |
Stocking rate 3 (cows/ha) | 0.004 (25.12) | ns | ns | <0.001 (3.582) | 0.046 (−6.511) | ns |
Total milk produced 4 (L) | <0.001 (1.746 × 10−5) | 0.055 | ns | 0.001 (1.332 × 10−6) | ns | ns |
Per cow milk produced 5 (L/cow) | <0.001 (0.02555) | <0.001 (0.004571) | ns | 0.089 (0.0009186) | ns | <0.001 (0.003544) |
Per ha milk produced 6 (L/ha) | <0.001 (0.004041) | 0.019 (0.0004390) | ns | <0.001 (0.0003972) | ns | ns |
Percent of farmland irrigated | ns 8 | 0.057 (−0.08398) | ns | ns | ns | ns |
Feed ME 7 (%) | ns | <0.001 (0.4266) | 0.007 (−1.312) | ns | ns | <0.001 (0.2439) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aarons, S.R.; Gourley, C.J.P.; Powell, J.M. Nutrient Intake, Excretion and Use Efficiency of Grazing Lactating Herds on Commercial Dairy Farms. Animals 2020, 10, 390. https://doi.org/10.3390/ani10030390
Aarons SR, Gourley CJP, Powell JM. Nutrient Intake, Excretion and Use Efficiency of Grazing Lactating Herds on Commercial Dairy Farms. Animals. 2020; 10(3):390. https://doi.org/10.3390/ani10030390
Chicago/Turabian StyleAarons, Sharon R., Cameron J. P. Gourley, and J. Mark Powell. 2020. "Nutrient Intake, Excretion and Use Efficiency of Grazing Lactating Herds on Commercial Dairy Farms" Animals 10, no. 3: 390. https://doi.org/10.3390/ani10030390
APA StyleAarons, S. R., Gourley, C. J. P., & Powell, J. M. (2020). Nutrient Intake, Excretion and Use Efficiency of Grazing Lactating Herds on Commercial Dairy Farms. Animals, 10(3), 390. https://doi.org/10.3390/ani10030390