Effects of Dietary Vibroactivated Clinoptilolite Supplementation on the Intramammary Microbiological Findings in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Feeding
2.2. Milk Sampling and Analytical Procedures
2.3. Clinoptilolite Specification
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rhodes, C.J. Properties and applications of zeolites. Sci. Prog. 2010, 93, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Valpotic, H.; Terzic, S.; Vince, S.; Samardzija, M.; Turk, R.; Lackovic, G.; Habrun, B.; Djuricic, D.; Sadikovic, M.; Valpotic, I. In-feed supplementation of a clinoptilolite favorably modulates intestinal and systemic immunity and some production parameters in weaned pigs. Vet. Med. 2016, 61, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Pavelić, K.; Hadžija, M.; Bedrica, L.; Pavelić, J.; Dikić, I.; Katić, M.; Kralj, M.; Bosnar, M.H.; Kapitanović, S.; Poljak-Blazi, M.; et al. Natural zeolite clinoptilolite new adjuvant in anticancer therapy. J. Mol. Med. 2001, 78, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Fonseca, A.M.; Botelho, G.; Almeida-Aguiar, C.; Neves, I.C. Antimicrobial activity of faujasite zeolites doped with silver. Microporous Mesoporous Mater. 2012, 160, 126–132. [Google Scholar] [CrossRef]
- Hrenovic, J.; Milenkovic, J.; Goic-Barisic, I.; Rajic, N. Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii. Microporous Mesoporous Mater. 2013, 169, 148–152. [Google Scholar] [CrossRef]
- Karatzia, M.A.; Katsoulos, P.D.; Karatzias, H. Diet supplementation with clinoptilolite improves energy status, reproductive efficiency and increases milk yield in dairy heifers. Anim. Prod. Sci. 2013, 53, 234–239. [Google Scholar] [CrossRef]
- Hogeveen, H.; Huijps, K.; Lam, T.J. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef]
- Ruegg, P.L. Investigation of mastitis problems on farms. Vet. Clin. Food Anim. 2003, 19, 47–73. [Google Scholar] [CrossRef]
- Đuričić, D.; Samardžija, M.; Grizelj, J.; Dobranić, T. Effet du traitement intramammaire des mammites subcliniques pendant la lactation en élevages bovins laitiers au nord-ouest de la Croatie. Ann. Med. Vet. 2014, 158, 121–125. [Google Scholar]
- Đuričić, D.; Benić, M.; Maćešić, N.; Valpotić, H.; Turk, R.; Dobranić, V.; Cvetnić, L.; Gračner, D.; Vince, S.; Grizelj, J.; et al. Dietary zeolite clinoptilolite supplementation influences chemical composition of milk and udder health in dairy cows. Vet. Stn. 2017, 48, 257–265. [Google Scholar]
- Wald, R.; Hess, C.; Urbantke, V.; Wittek, T.; Baumgartner, M. Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples. Animals 2019, 9, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalmus, P.; Aasmäe, B.; Kärssin, A.; Orro, T.; Kask, K. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. Acta Vet. Scand. 2011, 53, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, Y.; Nyman, A.K.; Grönlund-Andersson, U. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet. Scand. 2011, 53, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenhagen, B.-A.; Köster, G.; Wallmann, J.; Heuwieser, W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci. 2006, 89, 2542–2551. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010, 141, 1–4. [Google Scholar] [CrossRef]
- McDougall, S.; Hussein, H.; Petrovski, K. Antimicrobial resistance in Staphylococcus aureus, Streptococcus uberis and Streptococcus dysgalactiae from dairy cows with mastitis. N. Z. Vet. J. 2014, 62, 68–76. [Google Scholar] [CrossRef]
- Boireau, C.; Cazeau, G.; Jarrige, N.; Calavas, D.; Madec, J.-Y.; Leblond, A.; Haenni, M.; Gay, É. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016. J. Dairy Sci. 2018, 101, 9451–9462. [Google Scholar] [CrossRef]
- National Mastitis Council. Laboratory Handbook on Bovine Mastitis; Rev. ed.; National Mastitis Council: Madison, WI, USA, 1999. [Google Scholar]
- Różańska, H.; Lewtak-Piłat, A.; Kubajka, M.; Weiner, M. Occurrence of Enterococci in Mastitic Cow’s Milk and their Antimicrobial Resistance. J. Vet. Res. 2019, 63, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Condas, L.A.Z.; de Buck, J.; Nobrega, D.B.; Carson, D.A.; Roy, J.P.; Keefe, G.P.; DeVries, T.J.; Middleton, J.R.; Dufour, S.; Barkema, H.W. Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J. Dairy Sci. 2017, 100, 5613–5627. [Google Scholar] [CrossRef]
- Minst, K.; Märtlbauer, E.; Miller, T.; Meyer, C. Short communication: Streptococcus species isolated from mastitis milk samples in Germany and their resistance to antimicrobial agents. J. Dairy Sci. 2012, 95, 6957–6962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denamiel, G.; Llorente, P.; Carabella, M.; Rebuelto, M.; Gentilini, E. Anti-microbial susceptibility of Streptococcus spp. isolated from bovine mastitis in Argentina. J. Vet. Med. 2005, 52, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Saras, E.; Madec, J.Y. Demonstration of a shift towards penicillin resistance in the Streptococcus uberis population. J. Med. Microbiol. 2010, 59, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Guérin-Faublée, V.; Tardy, F.; Bouveron, C.; Carret, G. Antimicrobial susceptibility of Streptococcus species isolated from clinical mastitis in dairy cows. Int. J. Antimicrob. Agents 2002, 19, 219–226. [Google Scholar] [CrossRef]
- Nam, H.M.; Lim, S.K.; Kang, H.M.; Kim, J.M.; Moon, J.S.; Jang, K.C.; Joo, Y.S.; Kang, M.I.; Jung, S.C. Antimicrobial resistance of streptococci isolated from mastitic bovine milk samples in Korea. J. Vet. Diagn. Investig. 2009, 21, 698–701. [Google Scholar] [CrossRef]
- Pitkälä, A.; Koort, J.; Bjorkroth, J. Identification and antimicrobial resistance of Streptococcus uberis and Streptococcus parauberis isolated from bovine milk samples. J. Dairy Sci. 2008, 91, 4075–4081. [Google Scholar] [CrossRef]
- Rossitto, P.V.; Ruiz, L.; Kikuchi, Y.; Glenn, K.; Luiz, K.; Watts, J.L.; Cullor, J.S. Antibiotic susceptibility patterns for environmental streptococci isolated from bovine mastitis in central California dairies. J. Dairy Sci. 2002, 85, 132–138. [Google Scholar] [CrossRef]
- Käppeli, N.; Morach, M.; Zurfluh, K.; Corti, S.; Nüesch-Inderbinen, M.; Stephan, R. Sequence Types and Antimicrobial Resistance Profiles of Streptococcus uberis Isolated From Bovine Mastitis. Front. Vet. Sci. 2019, 6, 234. [Google Scholar] [CrossRef] [Green Version]
- Botrel, M.A.; Haenni, M.; Morignat, E.; Sulpice, P.; Madec, J.Y.; Calavas, D. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhone—Alpes, France. Foodborne Pathog. Dis. 2010, 7, 479–487. [Google Scholar] [CrossRef]
- Karatzia, M. Effect of dietary inclusion of clinoptilolite on antibody production by dairy cows vaccinated against Escherichia coli. Livest. Sci. 2010, 128, 149–153. [Google Scholar] [CrossRef]
- Ivkovic, S.; Deutsch, U.; Silberbach, A.; Walraph, E.; Mannel, M. Dietary supplementation with the tribomechanically activated zeolite clinoptilolite in immunodeficiency: Effects on the immune system. Adv. Ther. 2004, 21, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Sverko, V.; Sandra, S.; Balog, T.; Colic, M.; Tatjana, M. Natural micronised clinoptilolite mixtures with Urtica dioica L extract as possible antioxidants. Food Technol. Biotechnol. 2004, 42, 189–192. [Google Scholar]
Group | CON (n = 57) | CPL (n = 29) | Both Groups | |||||
---|---|---|---|---|---|---|---|---|
Sensitivity to Antibiotics | Sensitive | Sensitive | Resistant | Moderately Resistant | ||||
antibiotics | n | % | n | % | n | % | n | n |
ampicilin | 45 | 78.95 | 24 | 82.76 | 69 | 80.23 | 17 | 0 |
amoxicillin-klavulanic acid | 48 | 84.21 | 23 | 79.31 | 71 | 82.56 | 15 | 0 |
cefoperazone | 50 | 87.72 | 28 | 96.55 | 78 | 90.70 | 4 | 4 |
enrofloxacin | 25 | 43.86 | 16 | 55.17 | 41 | 47.67 | 39 | 6 |
kanamycin | 22 | 38.60 | 8 | 27.59 | 30 | 34.88 | 51 | 5 |
cloxacilin | 10 | 17.54 | 4 | 13.79 | 14 | 16.27 | 72 | 0 |
linkomycin | 20 | 35.09 | 14 | 48.28 | 34 | 40.70 | 52 | 0 |
neomycin | 26 | 45.61 | 9 | 31.03 | 35 | 40.70 | 51 | 0 |
novobiocin | 19 | 33.33 | 12 | 41.38 | 31 | 36.05 | 55 | 0 |
penicillin | 30 | 52.63 | 21 | 72.41 | 51 | 59.30 | 28 | 7 |
streptomycin | 14 | 24.56 | 4 | 13.79 | 18 | 20.93 | 64 | 4 |
sulphametoxazole-trimethoprim | 35 | 61.40 | 23 | 79.31 | 58 | 67.44 | 26 | 2 |
tetracycline | 13 | 22.81 | 3 | 10.34 | 16 | 18.60 | 70 | 0 |
Quarter | Front Left | Rear Left | Rear Right | Front Right |
---|---|---|---|---|
quarter tag | 1 | 2 | 3 | 4 |
n (positive) | 27 | 18 | 16 | 25 |
% | 31.40 | 20.93 | 18.60 | 29.07 |
total front (1 and 4) | n = 52 | 60.47% | ||
total rear (2 and 3) | n = 34 | 39.53% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đuričić, D.; Sukalić, T.; Marković, F.; Kočila, P.; Žura Žaja, I.; Menčik, S.; Dobranić, T.; Benić, M.; Samardžija, M. Effects of Dietary Vibroactivated Clinoptilolite Supplementation on the Intramammary Microbiological Findings in Dairy Cows. Animals 2020, 10, 202. https://doi.org/10.3390/ani10020202
Đuričić D, Sukalić T, Marković F, Kočila P, Žura Žaja I, Menčik S, Dobranić T, Benić M, Samardžija M. Effects of Dietary Vibroactivated Clinoptilolite Supplementation on the Intramammary Microbiological Findings in Dairy Cows. Animals. 2020; 10(2):202. https://doi.org/10.3390/ani10020202
Chicago/Turabian StyleĐuričić, Dražen, Tomislav Sukalić, Franjo Marković, Predrag Kočila, Ivona Žura Žaja, Sven Menčik, Tomislav Dobranić, Miroslav Benić, and Marko Samardžija. 2020. "Effects of Dietary Vibroactivated Clinoptilolite Supplementation on the Intramammary Microbiological Findings in Dairy Cows" Animals 10, no. 2: 202. https://doi.org/10.3390/ani10020202
APA StyleĐuričić, D., Sukalić, T., Marković, F., Kočila, P., Žura Žaja, I., Menčik, S., Dobranić, T., Benić, M., & Samardžija, M. (2020). Effects of Dietary Vibroactivated Clinoptilolite Supplementation on the Intramammary Microbiological Findings in Dairy Cows. Animals, 10(2), 202. https://doi.org/10.3390/ani10020202