Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Experimental Procedure
2.3. Carcass and Meat Characteristics
2.4. In Vitro Fermentation
2.5. Protein Degradability
2.6. Chemical Analysis
2.7. Calculations
2.8. Statistical Analysis
3. Results
3.1. Feed Intake, Animal Performance and Fermentation Pattern
3.2. Blood Acid–Base Status and Metabolic Profile
3.3. Carcass and Meat Characteristics
3.4. Feeding Costs
4. Discussion
4.1. Feed Intake, Animal Performance and Ruminal Fermentation Pattern
4.2. Blood Acid–Base Status and Biochemical Profile
4.3. Carcass and Meat Characteristics, and Feeding Costs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ugarte, E.; Ruiz, R.; Gabia, D.; Beltrán de Heredia, I. Impact of high-yielding foreign breeds on the Spanish dairy sheep industry. Livest. Prod. Sci. 2001, 71, 3–10. [Google Scholar] [CrossRef]
- Pollott, G.E.; Gootwine, E. Reproductive Performance and Milk Production of Assaf Sheep in an Intensive Management System. J. Dairy Sci. 2010, 87, 3690–3703. [Google Scholar] [CrossRef]
- Milán, M.J.; Caja, G.; González-González, R.; Fernández-Pérez, A.M.; Such, X. Structure and performance of Awassi and Assaf dairy sheep farms in northwestern Spain. J. Dairy Sci. 2011, 94, 771–784. [Google Scholar] [CrossRef] [Green Version]
- De Rancourt, M.; Fois, N.; Lavín, M.P.; Tchakérian, E.; Vallerand, F. Mediterranean sheep and goats production: An uncertain future. Small Rumin. Res. 2006, 62, 167–179. [Google Scholar] [CrossRef]
- Milán, M.J.; Frendi, F.; González-González, R.; Caja, G. Cost structure and profitability of Assaf dairy sheep farms in Spain. J. Dairy Sci. 2014, 97, 5239–5249. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Manso, T.; Mantecón, A.R.; Giraldez, F.J.; Lavín, P.; Castro, T. Animal performance and chemical body composition of lambs fed diets with different protein supplements. Small Rumin. Res. 1998, 29, 185–191. [Google Scholar] [CrossRef]
- Dabiri, N.; Thonney, M.L. Source and level of supplemental protein for growing lambs. J. Anim. Sci. 2004, 82, 3237–3244. [Google Scholar] [CrossRef] [Green Version]
- Schader, C.; Muller, A.; El-Hage Scialabba, N.; Hecht, J.; Isensee, A.; Erb, K.H.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F.; et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ghedalia, D.; Miron, J.; Est, Y.; Yosef, E. SO2 Treatment for converting straw into a concentrate-like feed: A growth study with lambs. Animal Feed Sci. Technol. 1988, 19, 219–229. [Google Scholar] [CrossRef]
- Solomon, R.; Miron, J.; Rubinstein, A.; Ben-Ghedalia, D. Ozone-treated cotton stalks as a component of a ration for growing lambs. Anim. Feed Sci. Technol. 1992, 37, 185–192. [Google Scholar] [CrossRef]
- Miron, J.; Kabala, A.; Tock, R.W.; Ben-Ghedalia, D. Use of chemically treated cotton gin trash as a silage additive: A growth study with lambs. Small Rumin. Res. 1995, 18, 19–25. [Google Scholar] [CrossRef]
- Görgülü, M.; Yurtseven, S.; Ünsal, İ.; Kutlu, H.R. Effect of dietary supplemental yucca schidigera powder on fattening performance of male lambs. J. Appl. Anim. Res. 2004, 25, 33–36. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Orlov, A.; Trofimyuk, O.; Agmon, R.; Kabiya, R.; Shor-Shimoni, E.; Wagner, E.K.; Hussey, K.; Leibovich, H.; Miron, J.; et al. Dietary supplementation of Moringa oleifera silage increases meat tenderness of Assaf lambs. Small Rumin. Res. 2017, 151, 110–116. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Sheep, 6th ed.; National Academy of Sciences: Washington, DC, USA, 1985. [Google Scholar]
- AFRC. Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Abo Omar, J.M.; Naser, O. Effects of crude protein contents and sources on the growth performance and the visceral organ mass in fattening Assaf lambs. Rev. Med. Vet. 2011, 162, 377–383. [Google Scholar]
- Fernández, M.; Giráldez, F.J.; Frutos, P.; Hervás, G.; Mantecón, A.R. Effect of undegradable protein concentration in the post-weaning diet on body growth and reproductive development of Assaf rams. Theriogenology 2005, 63, 2206–2218. [Google Scholar] [CrossRef]
- Rodríguez, A.B.; Bodas, R.; Prieto, N.; Landa, R.; Mantecón, A.R.; Giráldez, F.J. Effect of sex and feeding system on feed intake, growth, and meat and carcass characteristics of fattening Assaf lambs. Livest. Sci. 2008, 116, 118–125. [Google Scholar] [CrossRef]
- Rodríguez, A.B.; Landa, R.; Bodas, R.; Prieto, N.; Mantecón, A.R.; Giráldez, F.J. Carcass and meat quality of Assaf milk fed lambs: Effect of rearing system and sex. Meat Sci. 2008, 80, 225–230. [Google Scholar] [CrossRef]
- Commission Internationale de l’eclairage. Colourimetry; Publications CIE: Vienna, Austria, 1986. [Google Scholar]
- Boccard, R.; Dumont, B.L.; Peyron, C. Étude De La Production De La Viande Chez Les Ovins. Viii.—Relations Entre Les Dimensions De La Carcasse D’Agneau. Ann. Zootech. 1964, 13, 367–378. [Google Scholar] [CrossRef]
- Colomer-Rocher, F.; Morand-Fehr, P.; Delfa, R.; Sierra Alfranca, I. Metodos normalizados para el estudio de los caracteres cuantitativos y cualitativos de las canales caprinas y ovinas. Cuad. INIA 1988, 17, 19–41. [Google Scholar]
- Fisher, A.V.; de Boer, H. The EAAP standard method of sheep carcass assessment. Carcass measurements and dissection procedures report of the EAAP working group on carcass evaluation, in cooperation with the CIHEAM instituto agronomico Mediterraneo of Zaragoza and the CEC directora. Livest. Prod. Sci. 1994, 38, 149–159. [Google Scholar] [CrossRef]
- AMSA. Meat Color Measurement Guuidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Santos, A.; Giráldez, F.J.; Mateo, J.; Frutos, J.; Andrés, S. Programming Merino lambs by early feed restriction reduces growth rates and increases fat accretion during the fattening period with no effect on meat quality traits. Meat Sci. 2018, 135, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Goering, M.K.; Van Soest, P.J. Forage fiber analysis (apparatus, reagents, procedures and some applications). In Agricultural Handbook No. 379; USDA: Washington, DC, USA, 1970. [Google Scholar]
- ISO. Animal Feeding Stuffs—Determination of Moisture and Other Volatile Matter Content; No. 6496; International Organization for Standarization (ISO): Geneva, Switzerland, 1999. [Google Scholar]
- ISO. Animal Feeding Stuffs—Determination of Crude Ash; No. 5984; International Organization for Standarization (ISO): Geneva, Switzerland, 2002. [Google Scholar]
- ISO. Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method; No. 5983; International Organization for Standarization (ISO): Geneva, Switzerland, 2009. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemistry Society, 5th ed.; American Oil Chemists’ Society: Urbana, IL, USA, 2008. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Carro, M.D.; Ranilla, M.J.; Giráldez, F.J.; Mantecón, A.R. Effects of malate on diet digestibility, microbial protein synthesis, plasma metabolites, and performance of growing lambs fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orskov, E.R.; Mcdonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of Feed Use in Beef Cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Blanco, C.; Bodas, R.; Prieto, N.; Andrés, S.; López, S.; Giráldez, F.J. Concentrate plus ground barley straw pellets can replace conventional feeding systems for light fattening lambs. Small Rumin. Res. 2014, 116, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Rincón, F.G.; Estrada-Angulo, A.; Plascencia, A.; López-Soto, M.A.; Castro-Pérez, B.I.; Portillo-Loera, J.J.; Robles-Estrada, J.C.; Calderón-Cortes, J.F.; Dávila-Ramos, H. Influence of protein and energy level in finishing diets for feedlot hair lambs: Growth performance, dietary energetics and carcass characteristics. Asian-Australas. J. Anim. Sci. 2014, 27, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Fluharty, F.L.; McClure, K.E. Effects of Dietary Energy Intake and Protein Concentration on Performance and Visceral Organ Mass in Lambs. J. Anim. Sci. 1997, 75, 604–610. [Google Scholar] [CrossRef]
- Haddad, S.G.; Nasr, R.E.; Muwalla, M.M. Optimum dietary crude protein level for finishing Awassi lambs. Small Rumin. Res. 2001, 39, 41–46. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Russell, J.B. Accounting for the effects of a ruminal nitrogen deficiency within the structure of the Cornell net carbohydrate and protein system. J. Anim. Sci. 2000, 78, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; Doreau, M.; Edwards, J.E.; Moorby, J.M.; Pinloche, E.; Newbold, C.J. Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation. J. Nutr. 2012, 142, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Rahman, M.A.U.; Yang, H.; Shao, T.; Qiu, Q.; Su, H.; Cao, B. Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian-Australas. J. Anim. Sci. 2018, 31, 1643–1653. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Z.; Moraes, L.E.; Shen, J.; Yu, Z.; Zhu, W. Effects of Incremental Urea Supplementation on Rumen Fermentation, Nutrient Digestion, Plasma Metabolites, and Growth Performance in Fattening Lambs. Animals 2019, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmos Colmenero, J.J.; Broderick, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Bahrami-Yekdangi, M.; Ghorbani, G.R.; Khorvash, M.; Khan, M.A.; Ghaffari, M.H. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites. J. Anim. Sci. 2016, 94, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Balcells, J.; Guada, J.A.; Castrillo, C.; Gasa, J. Rumen digestion and urinary excretion of purine derivatives in response to urea supplementation of sodium-treated straw fed to sheep. Br. J. Nutr. 1993, 69, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Soto, R.C.; Muhammed, S.A.; Newbold, C.J.; Stewart, C.S.; Wallace, R.J. Influence of peptides, amino acids and urea on microbial activity in the rumen of sheep receiving grass hay and on the growth of rumen bacteria in vitro. Anim. Feed Sci. Technol. 1994, 49, 151–161. [Google Scholar] [CrossRef]
- Meyer, J.H.; Hargus, W.A. Factors influencing food intake of rats fed low-protein rations. Am. J. Physiol. Content 1959, 197, 1350–1352. [Google Scholar] [CrossRef]
- Radcliffe, J.D.; Webster, A.J.F. Regulation of food intake during growth in fatty and lean female Zucker rats given diets of different protein content. Br. J. Nutr. 1976, 36, 457–469. [Google Scholar] [CrossRef]
- Ruíz Nuño, A.R.; Uribe Gómez, J.J.; Orozco Hernández, J.R.; Fuentes Hernandez, V.O. The effect of different protein concentrations in the diet of fattening dorper and pelibuey lambs. J. Anim. Vet. Adv. 2009, 8, 1049–1051. [Google Scholar]
- Rodríguez, A.B.; Bodas, R.; Landa, R.; López-Campos, Ó.; Mantecón, A.R.; Giráldez, F.J. Animal performance, carcass traits and meat characteristics of Assaf and Merino×Assaf growing lambs. Livest. Sci. 2011, 138, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Muir, L.A.; Rickes, E.L.; Duquette, P.F.; Smith, G.E. Control of Wheat-Induced Lactic Acidosis in Sheep by Thiopeptin and Related Antiobiotics. J. Anim. Sci. 1980, 50, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.N.; Song, J.; Kim, E.J.; Chang, J.; Kim, C.-H.; Seo, S.; Chang, M.B.; Bae, G.-S. Effects of short-term fasting on in vivo rumen microbiota and in vitro rumen fermentation characteristics. Asian-Australas. J. Anim. Sci. 2019, 32, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Bodas, R.; Giráldez, F.J.; López, S.; Rodríguez, A.B.; Mantecón, A.R. Inclusion of sugar beet pulp in cereal-based diets for fattening lambs. Small Rumin. Res. 2007, 71, 250–254. [Google Scholar] [CrossRef]
- Kaneko, J.J. (Ed.) Appendixes. In Clinical Biochemistry of Domestic Animals; Academic Press: New York, NY, USA, 1980; pp. 785–797. [Google Scholar]
- Jahoor, F.; Bhattiprolu, S.; Del Rosario, M.; Burrin, D.; Wykes, L.; Frazer, M. Chronic Protein Deficiency Differentially Affects the Kinetics of Plasma Proteins in Young Pigs. J. Nutr. 1996, 126, 1489–1495. [Google Scholar] [CrossRef] [Green Version]
- Connell, A.; Calder, A.G.; Anderson, S.E.; Lobley, G.E. Hepatic protein synthesis in the sheep: Effect of intake as by use of stable-isotope-labelled glycine, leucine and phenylalanine. Br. J. Nutr. 1997, 77, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Knaus, W.F.; Beermann, D.H.; Tedeschi, L.O.; Czajkowski, M.; Fox, D.G.; Russell, J.B. Effects of urea, isolated soybean protein and blood meal on growing steers fed a corn-based diet. Anim. Feed Sci. Technol. 2002, 102, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Shaker, M.M.; Abdullah, A.Y.; Kridli, R.T.; Bláha, J.; Šáda, I.; Sovják, R. Fattening performance and carcass value of Awassi ram lambs, F1 crossbreds of Romanov x Awassi and Charollais x Awassi in Jordan. Czech J. Anim. Sci. 2002, 47, 429–438. [Google Scholar]
- Biçer, O.; Güney, O.; Pekel, E. Effect of slaughter weight on carcass characteristics of awassi male lambs. J. Appl. Anim. Res. 1995, 8, 85–90. [Google Scholar] [CrossRef]
- Abdullah, A.Y.; Qudsieh, R.I. Carcass characteristics of Awassi ram lambs slaughtered at different weights. Livest. Sci. 2008, 117, 165–175. [Google Scholar] [CrossRef]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekhit, A.E.D.A.; Hopkins, D.L.; Fahri, F.T.; Ponnampalam, E.N. Oxidative processes in muscle systems and fresh meat: Sources, markers, and remedies. Compr. Rev. Food Sci. Food Saf. 2013, 12, 565–597. [Google Scholar] [CrossRef]
- Martínez-Cerezo, S.; Sañudo, C.; Panea, B.; Medel, I.; Delfa, R.; Sierra, I.; Beltrán, J.A.; Cepero, R.; Olleta, J.L. Breed, slaughter weight and ageing time effects on physico-chemical characteristics of lamb meat. Meat Sci. 2005, 69, 325–333. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Hegarty, R.S.; Walker, P.J.; Pethick, D.W. Relationship between animal age, intramuscular fat, cooking loss, pH, shear force and eating quality of aged meat from sheep. Aust. J. Exp. Agric. 2006, 46, 879–884. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Butler, K.L.; Burnett, V.F.; McDonagh, M.B.; Jacobs, J.L.; Hopkins, D.L. Aged Vacuum Packaged Lamb Cuts Are Less Brown than Fresh Muscle Cuts under Simulated Retail Display. Food Nutr. Sci. 2013, 4, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Callejas-Cárdenas, A.R.; Caro, I.; Blanco, C.; Villalobos-Delgado, L.H.; Prieto, N.; Bodas, R.; Giráldez, F.J.; Mateo, J. Effect of vacuum ageing on quality changes of lamb steaks from early fattening lambs during aerobic display. Meat Sci. 2014, 98, 646–651. [Google Scholar] [CrossRef]
- Moloney, A.P.; Kennedy, C.; Noci, F.; Monahan, F.J.; Kerry, J.P. Lipid and colour stability of M. longissimus muscle from lambs fed camelina or linseed as oil or seeds. Meat Sci. 2012, 92, 1–7. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Lamb, T.A.; Kerr, M.J.; van de Ven, R.J.; Ponnampalam, E.N. Examination of the effect of ageing and temperature at rigor on colour stability of lamb meat. Meat Sci. 2013, 95, 311–316. [Google Scholar] [CrossRef]
- Jacob, R.H.; Thomson, K.L. The importance of chill rate when characterising colour change of lamb meat during retail display. Meat Sci. 2012, 90, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Fernández, A.M. Effect of ageing time on suckling lamb meat quality resulting from different carcass chilling regimes. Meat Sci. 2014, 96, 682–687. [Google Scholar] [CrossRef] [PubMed]
LP | MP | HP | |
---|---|---|---|
Ingredients (g/kg) | |||
Barley | 532 | 512 | 490 |
Corn | 210 | 199 | 189 |
Soybean meal, 48% | 58 | 86 | 115 |
Barley straw | 150 | 150 | 150 |
Molasses | 10 | 10 | 10 |
Urea | 4.8 | 7.1 | 9.5 |
Soybean oil | 6 | 6 | 6 |
Mineral–vitamin premix | 25 | 25 | 25 |
Sodium bicarbonate | 5 | 5 | 5 |
Nutritive value (g/kg DM) | |||
Dry matter (g/kg) | 878 | 889 | 881 |
aNDFom | 236 | 237 | 250 |
Crude protein | 134 | 157 | 173 |
Potential RDP 1 | 117 | 148 | 168 |
Effective RDP 2 | 73 | 92 | 99 |
Fat | 37.6 | 22.7 | 29.4 |
Ash | 5.90 | 6.50 | 7.81 |
Metabolizable energy (MJ/kg DM) | 11.9 | 11.8 | 12.0 |
Cost (€/kg DM) | 0.368 | 0.371 | 0.382 |
LP | MP | HP | SED 1 | p Value | |
---|---|---|---|---|---|
DMI, g/day | 1256 | 1401 | 1464 | 97.36 | 0.108 |
Average daily gain, g/day | 221 a | 268 ab | 297 b | 24.55 | 0.015 |
Feed conversion ratio, g/g | 5.82 b | 5.32 ab | 4.97 a | 0.284 | 0.021 |
Residual feed intake, g | 14.35 | 5.72 | −20.07 | 19.682 | 0.405 |
Final body weight, kg | 45.0 | 48.5 | 50.7 | 2.62 | 0.094 |
LP | MP | HP | SED 1 | p Value | |
---|---|---|---|---|---|
In vivo parameters | |||||
pH | 6.54 | 6.72 | 6.43 | 0.257 | 0.579 |
Ammonia-N, mg/L | 114 | 123 | 114 | 19.3 | 0.886 |
VFA concentration, mmol/L | 119 | 98 | 140 | 22.8 | 0.304 |
Acetate, % | 55.8 | 53.9 | 58.7 | 2.02 | 0.161 |
Propionate, % | 24.4 | 29.9 | 19.3 | 4.41 | 0.151 |
Butyrate, % | 13.0 | 9.9 | 16.5 | 2.70 | 0.145 |
Branched fatty acids, % | 5.53 | 4.35 | 3.75 | 0.914 | 0.296 |
Valerate and caproate, % | 1.33 | 1.90 | 1.71 | 0.279 | 0.224 |
Acetate/Propionate | 2.52 | 1.86 | 3.11 | 0.474 | 0.112 |
In vitro fermentation using starch as substrate | |||||
pH | 6.11 | 6.21 | 6.36 | 0.135 | 0.281 |
Gas production, mmol | 2.79 | 2.59 | 2.02 | 0.375 | 0.201 |
Ammonia-N, mg/L | 62.8 a | 71.2 a | 165.2 b | 25.79 | 0.035 |
VFA production, mmol | 3.49 | 3.53 | 2.98 | 0.257 | 0.135 |
Acetate, % | 48.8 | 49.7 | 46.9 | 2.09 | 0.437 |
Propionate, % | 37.5 | 38.5 | 33.3 | 9.18 | 0.840 |
Butyrate, % | 11.8 | 9.0 | 15.5 | 7.74 | 0.709 |
Branched fatty acids, % | 1.41 | 1.20 | 2.57 | 0.673 | 0.168 |
Valerate and caproate, % | 0.54 a | 1.52 b | 1.72 b | 0.380 | 0.043 |
Acetate/Propionate | 1.61 | 1.38 | 1.47 | 0.399 | 0.897 |
In vitro fermentation using NDF from straw as substrate | |||||
pH | 6.93 | 6.98 | 6.71 | 0.093 | 0.053 |
Gas production, mmol | 1.02 | 0.94 | 1.12 | 0.115 | 0.334 |
Ammonia-N, mg/L | 146 | 136 | 209 | 33.2 | 0.251 |
VFA production, mmol | 1.55 a | 1.54 a | 2.48 b | 0.300 | 0.029 |
Acetate | 68.6 | 65.4 | 55.1 | 4.42 | 0.051 |
Propionate | 21.6 | 23.6 | 31.1 | 5.29 | 0.259 |
Butyrate, % | 5.63 | 6.54 | 9.13 | 1.455 | 0.125 |
Branched fatty acids, % | 3.20 | 3.11 | 3.03 | 1.189 | 0.991 |
Valerate and caproate, % | 0.97 | 1.45 | 1.62 | 0.261 | 0.185 |
Acetate/Propionate | 3.39 | 2.99 | 1.87 | 0.775 | 0.223 |
Dietary Treatments | RSD 1 | Sampling Days | RSD 2 | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LP | MP | HP | 35 | 70 | Diet | Day | Diet * Day | |||
Acid–base status | ||||||||||
pH | 7.43 | 7.43 | 7.43 | 0.032 | 7.44 | 7.43 | 0.033 | 0.938 | 0.191 | 0.421 |
HCO3−, mmol/L | 27.6 | 26.2 | 26.9 | 1.66 | 27.6 | 26.2 | 1.06 | 0.215 | <0.001 | 0.971 |
pCO2, mmHg | 44.7 | 42.9 | 44.0 | 4.54 | 44.6 | 43.1 | 3.70 | 0.675 | 0.137 | 0.444 |
Anion gap, mmol/L | 15.5 | 15.6 | 15.3 | 1.58 | 14.6 | 16.3 | 2.23 | 0.922 | 0.004 | 0.555 |
tCO2, mmol/L | 28.9 | 27.5 | 28.3 | 1.76 | 29.0 | 27.5 | 1.10 | 0.228 | <0.001 | 0.955 |
Na, mmol/L | 148 | 147 | 147 | 1.5 | 148 | 148 | 1.9 | 0.336 | 0.047 | 0.680 |
K, mmol/K | 5.38 | 5.25 | 5.53 | 0.802 | 5.73 | 5.05 | 0.645 | 0.740 | <0.001 | 0.801 |
Cl, mmol/L | 110 | 110 | 111 | 1.9 | 111 | 109 | 2.2 | 0.461 | 0.009 | 0.341 |
Biochemical profile | ||||||||||
Urea, mg/dL | 33.3 a | 41.3 b | 36.9 ab | 6.01 | 34.8 | 39.6 | 5.98 | 0.016 | 0.005 | 0.335 |
Protein, g/L | 59.5 a | 61.8 ab | 63.5 b | 2.90 | 59.3 | 63.9 | 3.50 | 0.018 | <0.001 | 0.895 |
Albumin, g/L | 35.2 a | 37.8 b | 38.1 b | 2.08 | 35.8 | 38.2 | 2.30 | 0.010 | <0.001 | 0.121 |
ALT, U/L | 15.4 | 17.6 | 18.0 | 2.82 | 17.7 | 16.2 | 1.91 | 0.102 | 0.006 | 0.435 |
AST, U/L | 96.9 | 94.0 | 92.1 | 17.04 | 91.6 | 97.1 | 14.88 | 0.813 | 0.163 | 0.355 |
Creatinine, mg/dL | 1.11 | 1.10 | 1.12 | 0.085 | 1.07 | 1.15 | 0.062 | 0.745 | <0.001 | 0.222 |
Glucose, mg/dL | 101 a | 108 b | 111 b | 5.3 | 105 | 109 | 6.4 | 0.001 | 0.015 | 0.051 |
Lactate, mg/dL | 21.6 | 19.7 | 17.6 | 5.55 | 18.5 | 20.7 | 9.28 | 0.435 | 0.276 | 0.576 |
Ca, mg/dL | 11.2 a | 11.6 ab | 11.8 b | 0.47 | 11.1 | 12.0 | 0.61 | 0.019 | <0.001 | 0.066 |
P, mg/dL | 8.77 | 8.80 | 9.02 | 0.905 | 8.58 | 9.15 | 0.224 | 0.776 | 0.018 | 0.327 |
Cholesterol, mg/dL | 68.4 | 62.8 | 73.2 | 10.28 | 66.4 | 69.9 | 7.27 | 0.104 | 0.073 | 0.144 |
Triglycerides, mmol/L | 33.8 | 33.7 | 37.8 | 6.03 | 45.2 | 25.1 | 5.97 | 0.223 | <0.001 | 0.232 |
LP | MP | HP | SED 1 | p Value | |
---|---|---|---|---|---|
Cold carcass weight (CCW), kg 2 | 22.8 | 24.7 | 26.1 | 1.50 | 0.117 |
Dressing percentage, % | 50.6 | 50.7 | 51.1 | 0.83 | 0.809 |
Chilling losses, % | 2.43 | 1.77 | 1.84 | 0.296 | 0.067 |
pH at 24 h | 5.71 | 5.82 | 5.72 | 0.052 | 0.065 |
Pelvic and renal fat, % of CCW | 2.26 | 2.07 | 2.56 | 0.304 | 0.280 |
Subcutaneous fat depth, mm 2 | 7.2 | 10.0 | 8.9 | 2.45 | 0.280 |
L, cm | 63.8 | 65.6 | 65.9 | 1.29 | 0.140 |
F, cm | 42.2 | 42.8 | 42.8 | 0.68 | 0.426 |
TH, cm | 27.9 | 28.5 | 28.3 | 0.51 | 0.413 |
CIC, g/cm | 334 | 356 | 385 | 25.9 | 0.160 |
Subcutaneous fat color | |||||
L* | 68.5 | 69.6 | 68.0 | 1.51 | 0.572 |
a* | 1.88 | 2.24 | 2.79 | 0.459 | 0.154 |
b* | 8.11 | 7.69 | 8.19 | 0.749 | 0.772 |
Commercial cuts, % 3 | |||||
Higher priced | 52.9 | 52.6 | 52.6 | 0.47 | 0.674 |
Medium priced | 18.2 | 18.3 | 18.2 | 0.36 | 0.943 |
Lower priced | 26.5 | 27.0 | 26.6 | 0.464 | 0.516 |
Longissimus dorsi characteristics | |||||
Total weight, % 4 | 4.91 | 4.80 | 4.80 | 0.24 | 0.752 |
Area, square cm 5 | 15.9 | 15.8 | 15.3 | 0.21 | 0.903 |
Leg tissue composition, % | |||||
Muscle | 60.1 | 59.6 | 60.4 | 1.31 | 0.704 |
Fat | 15.9 | 17.3 | 17.5 | 1.48 | 0.279 |
Bone | 22.0 | 21.2 | 20.8 | 0.82 | 0.125 |
Remainders | 2.05 | 1.91 | 1.40 | 0.377 | 0.053 |
Dietary Treatments | RSD 1 | Storage Time (Days) | RSD 2 | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LP | MP | HP | 0 | 2 | 5 | 10 | Diet | Day | Diet * Day | |||
L. thoracis, raw | ||||||||||||
Composition, g/kg | ||||||||||||
Water | 769 | 764 | 761 | 9.6 | - | - | - | - | - | 0.192 | - | - |
Protein | 191 | 196 | 195 | 6.7 | - | - | - | - | - | 0.215 | - | - |
Intramuscular fat | 28.6 | 28.9 | 29.4 | 8.0 | - | - | - | - | - | 0.974 | - | - |
Ash | 11.3 | 11.7 | 11.8 | 1.1 | - | - | - | - | - | 0.592 | - | - |
Color and color stability | ||||||||||||
L* | 39.0 | 38.0 | 38.2 | 1.31 | 37.6 | 38.6 | 38.8 | 38.6 | 2.46 | 0.060 | 0.160 | 0.996 |
a* | 8.19 | 8.26 | 8.50 | 0.921 | 7.41 c | 9.10 a | 8.63 ab | 8.12 bc | 1.74 | 0.412 | 0.001 | 0.799 |
b* | 10.3 | 9.8 | 10.5 | 1.13 | 8.3 c | 11.4 a | 10.5 a | 10.7 a | 1.96 | 0.134 | 0.001 | 0.644 |
a*/b* | 0.81 | 0.87 | 0.83 | 0.347 | 0.916 a | 0.819 ab | 0.840 ab | 0.778 b | 0.624 | 0.185 | 0.003 | 0.952 |
Rλ610/Rλ5254 | 1.76 | 1.77 | 1.78 | 0.324 | 1.69 c | 1.89 a | 1.78 b | 1.75 bc | 0.600 | 0.845 | 0.001 | 0.872 |
Rλ630/Rλ5804 | 2.47 | 2.47 | 2.45 | 0.418 | 2.95 a | 2.69 b | 2.20 c | 2.01 d | 0.774 | 0.914 | 0.001 | 0.189 |
Rλ572/Rλ5254 | 0.879 | 0.877 | 0.874 | 0.199 | 0.748 d | 0.857 c | 0.927 b | 0.975 a | 0.368 | 0.907 | 0.001 | 0.925 |
L. lumborum, cooked | ||||||||||||
Cooking losses, % | 21.4 | 21.6 | 21.3 | 3.91 | 19.9 | 22.9 | - | 2.94 | 0.986 | 0.001 | 0.515 | |
Shear force, N | 93.8 | 89.4 | 81.9 | 17.8 | 92.8 | 83.9 | - | 9.38 | 0.339 | 0.001 | 0.834 | |
L. thoracis, cooked | ||||||||||||
∆TBARS, mg MDA/kg 3 | 2.68 | 3.12 | 3.34 | 0.953 | - | - | - | - | 0.306 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saro, C.; Mateo, J.; Caro, I.; Carballo, D.E.; Fernández, M.; Valdés, C.; Bodas, R.; Giráldez, F.J. Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs. Animals 2020, 10, 2177. https://doi.org/10.3390/ani10112177
Saro C, Mateo J, Caro I, Carballo DE, Fernández M, Valdés C, Bodas R, Giráldez FJ. Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs. Animals. 2020; 10(11):2177. https://doi.org/10.3390/ani10112177
Chicago/Turabian StyleSaro, Cristina, Javier Mateo, Irma Caro, Diego Eloy Carballo, Miguel Fernández, Carmen Valdés, Raúl Bodas, and Francisco Javier Giráldez. 2020. "Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs" Animals 10, no. 11: 2177. https://doi.org/10.3390/ani10112177
APA StyleSaro, C., Mateo, J., Caro, I., Carballo, D. E., Fernández, M., Valdés, C., Bodas, R., & Giráldez, F. J. (2020). Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs. Animals, 10(11), 2177. https://doi.org/10.3390/ani10112177