Influence of Genotype and Slaughter Age on the Content of Selected Minerals and Fatty Acids in the Longissimus Thoracis Muscle of Crossbred Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Carcass Quality
2.3. Mineral Content of Meat
2.4. Fatty Acid Profile
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Williamson, C.S.; Foster, R.K.; Stanner, S.A.; Buttriss, J.L. Red meat in the diet. Nutr. Bull. 2005, 30, 323–355. [Google Scholar] [CrossRef]
- Webb, E.; O’Neill, H. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Breslow, J.L. n−3 Fatty acids and cardiovascular disease. Am. J. Clin. Nutr. 2006, 83, 1477S–1482S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.M. Dietary fatty acids and human health. Anim. Res. 2000, 49, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Azain, M.J. Conjugated linoleic acid and its effects on animal products and health in single-stomached animals. Proc. Nutr. Soc. 2003, 62, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Hartigh, L.J.D. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pr. 2014, 8, e525–e532. [Google Scholar] [CrossRef] [PubMed]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- Biesalski, H.-K. Meat as a component of a healthy diet – are there any risks or benefits if meat is avoided in the diet? Meat Sci. 2005, 70, 509–524. [Google Scholar] [CrossRef]
- Gibson, R.S.; Heath, A.-L.M.; Limbaga, M.L.S.; Prosser, N.; Skeaff, C.M. Are changes in food consumption patterns associated with lower biochemical zinc status among women from Dunedin, New Zealand? Br. J. Nutr. 2001, 86, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Tam, M.; Gómez, S.; González-Gross, M.; Marcos, A. Possible roles of magnesium on the immune system. Eur. J. Clin. Nutr. 2003, 57, 1193–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holló, G.; Nuernberg, K.; Holló, I.; Csapó, J.; Seregi, J.; Repa, I.; Ender, K. Effect of feeding on the composition of longissmus muscle of Hungarian Grey and Holstein Friesian bulls. – III. Amino acid composition and mineral content. Arch. Anim. Breed. 2007, 50, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida-Mendoza, M.; de Moreno, L.A.; Uzcátegui-Bracho, S.; Rincón-Villalobos, G.; Huerta-Leidenz, N. Mineral content of longissimus dorsi thoracis from water buffalo and Zebu-influenced cattle at four comparative ages. Meat Sci. 2007, 75, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Ramos, A.; Saadoun, A.; Brito, G. Selenium, copper, zinc, iron and manganese content of seven meat cuts from Hereford and Braford steers fed pasture in Uruguay. Meat Sci. 2010, 84, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Czerwonka, M.; Szterk, A. The effect of meat cuts and thermal processing on selected mineral concentration in beef from Holstein–Friesian bulls. Meat Sci. 2015, 105, 75–80. [Google Scholar] [CrossRef]
- Purchas, R.; Busboom, J. The effect of production system and age on levels of iron, taurine, carnosine, coenzyme Q10, and creatine in beef muscles and liver. Meat Sci. 2005, 70, 589–596. [Google Scholar] [CrossRef]
- Hintze, K.J.; Lardy, G.P.; Marchello, M.J.; Finley, J.W. Areas with high concentrations of selenium in the soil and forage produce beef with enhanced concentrations of selenium. J. Agric. Food Chem. 2001, 49, 1062–1067. [Google Scholar] [CrossRef]
- Hintze, K.J.; Lardy, G.P.; Marchello, M.J.; Finley, J.W. Selenium Accumulation in Beef: Effect of Dietary Selenium and Geographical Area of Animal Origin. J. Agric. Food Chem. 2002, 50, 3938–3942. [Google Scholar] [CrossRef]
- Malau-Aduli, A.E.O.; Siebert, B.D.; Bottema, C.D.K.; Pitchford, W.S. A comparison of the fatty acid composition of triacylglycerols in adipose tissue from Limousin and Jersey cattle. Aust. J. Agric. Res. 1997, 48, 715. [Google Scholar] [CrossRef] [Green Version]
- Malau-Aduli, A.E.O.; Siebert, B.D.; Bottema, C.D.K.; Pitchford, W.S. Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. J. Anim. Sci. 1998, 76, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Dhiman, T.R.; Zaman, S.; Olson, K.C.; Bingham, H.R.; Ure, A.L.; Pariza, M.W. Influence of Feeding Soybean Oil on Conjugated Linoleic Acid Content in Beef. J. Agric. Food Chem. 2005, 53, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Morales, R.; Folch, C.; Iraira, S.; Teuber, N.; E Realini, C. Nutritional Quality of Beef Produced in Chile from Different Production Systems. Chil. J. Agric. Res. 2012, 72, 80–86. [Google Scholar] [CrossRef] [Green Version]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Warren, H.E.; Scollan, N.; Enser, M.; Hughes, S.I.; Richardson, R.I.; Wood, J.D. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: Animal performance, carcass quality and muscle fatty acid composition. Meat Sci. 2008, 78, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Loudon, K.M.; Tarr, G.; Pethick, D.; Lean, I.; Polkinghorne, R.; Mason, M.; Dunshea, F.; Gardner, G.; McGilchrist, P. The Use of Biochemical Measurements to Identify Pre-Slaughter Stress in Pasture Finished Beef Cattle. Animals 2019, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Nogalski, Z.; Pogorzelska-Przybyłek, P.; Wielgosz-Groth, Z.; Sobczuk-Szul, M.; Purwin, C.; Winiarski, R.; Niedźwiedź, J. Slaughter value of crossbred beef steers as depending on fattening intensity and slaughter age of animals. Zywn. Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2013, 88, 51–60. [Google Scholar] [CrossRef]
- Kien, S. The classification of carcass of adult bovine animals in the EUROP; Meat and Fat Research Institute: Warsaw, Poland, 2004. [Google Scholar]
- Council Regulation (EC) No 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Slaughter. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:303:0001:0030:EN:PDF (accessed on 29 October 2020).
- PN-EN 14084. In Foodstuffs—Determination of Trace Elements—Determination of Lead, Cadmium, Zinc, Copper and Iron by Atomic Absorption Spectrometry (AAS) after Microwave Digestion; Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish)
- PN-EN 15505. In Foodstuffs—Determination of Trace Elements—Determination of Sodium and Magnesium by Flame Atomic Absorption Spectrometry (AAS) After Microwave Digestion; Polish Committee for Standardization: Warsaw, Poland, 2009. (In Polish)
- PN-ISO 1444. In Meat and Meat Products—Determination of free Fat Content; Polish Committee for Standardization,: Warsaw, Poland, 2000. (In Polish)
- Żegarska, Z.; Jaworski, J.; Borejszo, Z. Ocena zmodyfikowanej metody Peiskera otrzymywania estrów metylowych kwasów tłuszczowych. Acta Acad. Agric. ac Tech. Olst. 1991, 24, 25–33. (In Polish) [Google Scholar]
- PN-EN ISO 5509. Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids; Polish Committee for Standardization: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- StatSoft Inc. Statistica (Data Analysis Software System); Version 13.3; TIBCO Software Inc.: Palo Alto, CA, USA, 2019. [Google Scholar]
- Chambaz, A.; Morel, I.; Scheeder, M.R.L.; Kreuzer, M.; Dufey, P.-A. Characteristics of steers of six beef breeds fattened from eight months of age and slaughtered at a target level of intramuscular fat I. Growth Performance and carcass quality. Arch. Tierz. 2001, 44, 395–411. [Google Scholar] [CrossRef]
- Nogalski, Z.; Wielgosz-Groth, Z.; Purwin, C.; Nogalska, A.; Sobczuk-Szul, M.; Winarski, R.; Pogorzelska, P. The Effect of Slaughter Weight and Fattening Intensity on Changes in Carcass Fatness in Young Holstein-Friesian Bulls. Ital. J. Anim. Sci. 2014, 13, 2824. [Google Scholar] [CrossRef] [Green Version]
- Pilarczyk, R. Concentrations of Toxic and Nutritional Essential Elements in Meat from Different Beef Breeds Reared under Intensive Production Systems. Biol. Trace Element Res. 2014, 158, 36–44. [Google Scholar] [CrossRef]
- Domaradzki, P.; Florek, M.; Staszowska, A.; Litwińczuk, Z. Evaluation of the Mineral Concentration in Beef from Polish Native Cattle. Biol. Trace Element Res. 2015, 171, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilarczyk, R. Elemental Composition of Muscle Tissue of Various Beef Breeds Reared Under Intensive Production Systems. Int. J. Environ. Res. 2014, 8, 931–940. [Google Scholar] [CrossRef]
- Mateescu, R.G.; Garmyn, A.J.; Tait, R.G.; Duan, Q.; Liu, Q.; Mayes, M.S.; Garrick, D.J.; van Eenennaam, A.L.; Vanoverbeke, D.L.; Hilton, G.G.; et al. Genetic parameters for concentrations of minerals in longissimus muscle and their associations with palatability traits in Angus cattle1. J. Anim. Sci. 2013, 91, 1067–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IOM. Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Elements. Institute of Medicine of the National Academies: Washington, DC, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545442/table/appJ_tab3/?report=objectonly (accessed on 17 October 2020).
- Doornenbal, H.; Murray, A.C. Effects of Age, Breed, Sex and Muscle on Certain Mineral Concentrations in Cattle. J. Food Sci. 1981, 47, 55–58. [Google Scholar] [CrossRef]
- Kotula, A.W.; Lusby, W.R. Mineral Composition of Muscles of 1- to 6-Year-Old Steers. J. Anim. Sci. 1982, 54, 544–548. [Google Scholar] [CrossRef]
- Littledike, E.T.; Wittum, T.E.; Jenkins, T.G. Effect of breed, intake, and carcass composition on the status of several macro and trace minerals of adult beef cattle. J. Anim. Sci. 1995, 73, 2113–2119. [Google Scholar] [CrossRef]
- Ramos, A.; Cabrera, M.; Saadoun, A. Bioaccessibility of Se, Cu, Zn, Mn and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed pasture. Meat Sci. 2012, 91, 116–124. [Google Scholar] [CrossRef]
- Duckett, S.K.; Neel, J.P.S.; Fontenot, J.P.; Clapham, W.M. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content1. J. Anim. Sci. 2009, 87, 2961–2970. [Google Scholar] [CrossRef] [Green Version]
- García-Vaquero, M.; Alonso-Alvarez, C.; Benedito, J.L.; Blanco-Penedo, I.; López-Alonso, M. Effect of type of muscle and Cu supplementation on trace element concentrations in cattle meat. Food Chem. Toxicol. 2011, 49, 1443–1449. [Google Scholar] [CrossRef]
- Alberti, P.; Panea, B.; Sanudo, C.; Olleta, J.; Ripoll, G.; Ertbjerg, P.; Christensen, M.; Gigli, S.; Failla, S.; Concetti, S.; et al. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest. Sci. 2008, 114, 19–30. [Google Scholar] [CrossRef]
- Pesonen, M.; Honkavaara, M.; Huuskonen, A.K. Effect of breed on production, carcass traits and meat quality of Aberdeen Angus, Limousin and Aberdeen Angus×Limousin bulls offered a grass silage-grain-based diet. Agric. Food Sci. 2012, 21, 361–369. [Google Scholar] [CrossRef]
- British Department of Health. Nutritional aspects of cardiovascular disease: Report of the cardiovascular review group committee on medical aspects of food policy. Nutr. Asp. Cardiovasc. Dis. 1994, 46, 1–186. [Google Scholar]
- De Freitas, A.; Lobato, J.; Cardoso, L.; Tarouco, J.; Vieira, R.; Dillenburg, D.; Castro, I. Nutritional composition of the meat of Hereford and Braford steers finished on pastures or in a feedlot in southern Brazil. Meat Sci. 2014, 96, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Ugarković, N.K.; Ivanković, A.; Konjačić, M. Effect of breed and age on beef carcass quality, fatness and fatty acid composition. Arch. Anim. Breed. 2013, 56, 958–970. [Google Scholar] [CrossRef]
Specification | Silage | Triticale | Rapeseed Meal | Concentrate I | Concentrate II |
---|---|---|---|---|---|
DM 1 (g) | 397 ± 0.91 | 881 ± 0.96 | 887 ± 0.68 | 883.9 ± 1.12 | 885.5 ± 1.27 |
On DM basis (g∙kg−1) | |||||
Organic matter | 920 ± 2.46 | 981 ± 0.95 | 927 ± 1.05 | 928 ± 1.14 | 921 ± 1.39 |
Crude protein | 141 ± 1.48 | 133 ± 1.32 | 388 ± 1.39 | 191 ± 1.15 | 175 ± 1.13 |
NDF 2 | 569 ± 5.31 | 193 ± 1.63 | 310 ± 0.68 | 214 ± 1.21 | 205 ± 1.92 |
ADF 3 | 387 ± 0.92 | 44 ± 0.65 | 228 ± 0.67 | 88 ± 1.85 | 76 ± 1.22 |
UFV 4 | 0.80 ± 0.03 | 1.21 ± 0.33 | 1.01 ± 0.05 | 1.11 ± 0.03 | 1.12 ± 0.02 |
PDIN 5 | 82.2 ± 1.64 | 89 ± 0.38 | 259 ± 0.57 | 127.2 ± 0.41 | 116.4 ± 1.23 |
PDIE 6 | 69.5 ± 0.58 | 109 ± 1.03 | 163 ± 1.56 | 118.6 ± 1.26 | 113.1 ± 1.71 |
Specification | BW 1 < 300 kg | BW 1 > 300 kg |
---|---|---|
Grass silage (% DM in diets) | 75 | 75 |
Concentrate I (% DM in diets) | 25 | |
Concentrate II (% DM in diets) | 25 | |
DM 2 (g) | 509.6 ± 0.78 | 514.6 ± 0.95 |
On DM basis (g∙kg−1) | ||
Crude protein | 153 ± 1.23 | 149 ± 1.18 |
NDF 3 | 472 ± 1.56 | 463 ± 3.01 |
ADF 4 | 311 ± 0.89 | 295 ± 2.09 |
UFV 5 | 0.88 ± 0.09 | 0.88 ± 0.03 |
PDIN 6 | 93.6 ± 0.45 | 90.8 ± 1.03 |
PDIE 7 | 81.6 ± 1.08 | 80.6 ± 1.63 |
Specification | Crossbred Bulls (C) | Slaughter Age (Months) (SA) | SE 8 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PHF 1 × HH 2 | PHF 1 × LM 3 | PHF 1 × CH 4 | 15 | 18 | 21 | C | SA | C × SA | ||
BW 5 before slaughter (kg) | 505.0 | 497.7 | 513.5 | 424.3 A | 494.8 B | 596.9 C | 10.96 | 0.651 | 0.000 | 0.076 |
Dressing percentage (%) | 58.06 | 59.42 A | 57.63 B | 58.01 a | 57.88 a | 59.22 b | 0.26 | 0.008 | 0.044 | 0.351 |
Conformation score 6 (pts) | 7.8 | 7.7 | 7.3 | 7.1 A | 7.2 A | 8.4 B | 0.19 | 0.472 | 0.007 | 0.884 |
Fatness score 7 (pts) | 5.5 a | 4.2 b | 4.9 | 3.9 A | 4.9 | 5.8 B | 0.21 | 0.018 | 0.000 | 0.355 |
Minerals | Crossbred Bulls (C) | Slaughter Age (Months) (SA) | SE 10 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PHF 1 × HH 2 | PHF 1 × LM 3 | PHF 1 × CH 4 | 15 | 18 | 21 | C | SA | C × SA | ||
K 5 | 4963.4 A | 4750.2 B | 4979.8 A | 4886.1 | 4932.5 | 4874.9 | 30.165 | 0.002 | 0.671 | 0.257 |
Na 6 | 613.6 | 634.2 | 599.8 | 619.9 | 599.6 | 628.2 | 10.084 | 0.355 | 0.471 | 0.059 |
Mg 7 | 212.7 A | 183.0 B | 217.5 A | 207.6 | 199.3 | 206.3 | 3.592 | 0.000 | 0.499 | 0.096 |
Zn 8 | 54.9 | 38.5 | 53.3 | 39.4 b | 63.9 a | 43.4 b | 3.598 | 0.095 | 0.008 | 0.405 |
Fe 9 | 17.5 | 15.4 b | 18.1 a | 15.0 B | 17.0 | 19.0 A | 0.436 | 0.011 | 0.000 | 0.170 |
Fatty Acids | Crossbred Bulls (C) | Slaughter Age (Months) (SA) | SE 7 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PHF 1 × HH 2 | PHF 1 × LM 3 | PHF 1 × CH 4 | 15 | 18 | 21 | C | SA | C × SA | ||
IMF 5 (%) | 1.58 | 1.34 | 1.49 | 1.07 b | 1.54 | 1.80 a | 0.125 | 0.697 | 0.045 | 0.118 |
∑SFAs 6 | 49.50 | 49.74 | 48.68 | 50.50 A | 49.56 | 47.83 B | 0.377 | 0.436 | 0.008 | 0.115 |
C 10:0 capric | 0.045 | 0.047 | 0.041 | 0.050 a | 0.043 | 0.040 b | 0.002 | 0.185 | 0.018 | 0.847 |
C 12:0 lauric | 0.061 | 0.069 | 0.059 | 0.071 a | 0.059 b | 0.059 b | 0.002 | 0.065 | 0.015 | 0.983 |
C 13:0 tridecanoic | 0.011 | 0.013 | 0.010 | 0.013 | 0.011 | 0.011 | 0.001 | 0.443 | 0.546 | 0.405 |
C 14:0 iso | 0.065 | 0.064 | 0.060 | 0.065 | 0.067 | 0.057 | 0.002 | 0.657 | 0.271 | 0.483 |
C 14:0 myristic | 2.492 | 2.521 | 2.366 | 2.615 | 2.365 | 2.399 | 0.054 | 0.446 | 0.116 | 0.134 |
C 15:0 anteiso | 0.210 | 0.209 | 0.188 | 0.219 a | 0.221 a | 0.167 b | 0.008 | 0.391 | 0.006 | 0.316 |
C 15:0 pentadecanoic | 0.471 | 0.471 | 0.447 | 0.485 a | 0.487 a | 0.417 b | 0.013 | 0.644 | 0.033 | 0.252 |
C 16:0 iso | 0.433 | 0.359 | 0.486 | 0.426 | 0.405 | 0.448 | 0.029 | 0.215 | 0.834 | 0.407 |
C 16:0 palmitic | 25.72 | 26.24 | 25.17 | 26.13 | 25.29 | 25.72 | 0.255 | 0.229 | 0.406 | 0.274 |
C 17:0 margaric | 1.033 | 1.049 | 1.013 | 1.088 a | 1.051 | 0.956 b | 0.020 | 0.744 | 0.022 | 0.248 |
C 18:0 stearic | 18.77 | 18.49 | 18.65 | 19.18 a | 19.38 a | 17.35 b | 0.367 | 0.945 | 0.039 | 0.096 |
C 20:0 arachidic | 0.131 | 0.145 | 0.129 | 0.136 | 0.128 | 0.141 | 0.004 | 0.183 | 0.424 | 0.217 |
C 22:0 behenic | 0.053 | 0.064 | 0.058 | 0.061 | 0.055 | 0.058 | 0.003 | 0.335 | 0.704 | 0.055 |
Fatty Acids | Crossbred Bulls (C) | Slaughter Age (Months) (SA) | SE 10 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PHF 1 × HH 2 | PHF 1 × LM 3 | PHF 1 × CH 4 | 15 | 18 | 21 | C | SA | C × SA | ||
∑UFAs 5 | 50.50 | 50.26 | 51.32 | 49.48 B | 50.43 | 52.26 A | 0.380 | 0.443 | 0.007 | 0.115 |
∑MUFAs 6 | 43.76 | 43.53 | 43.85 | 42.52 b | 43.33 | 45.29 a | 0.409 | 0.939 | 0.011 | 0.052 |
C 14:1 myristoleic | 0.476 | 0.541 | 0.546 | 0.569 | 0.453 | 0.540 | 0.028 | 0.507 | 0.203 | 0.152 |
C 16:1 palmitoleic | 2.719 | 2.548 | 2.729 | 2.671 | 2.473 | 2.852 | 0.087 | 0.621 | 0.197 | 0.140 |
C 17:1 margaricoleic | 0.619 | 0.595 | 0.683 | 0.648 | 0.601 | 0.646 | 0.022 | 0.237 | 0.611 | 0.155 |
C 18:1 T6+9 elaidic | 0.523 | 0.470 | 0.480 | 0.479 | 0.523 | 0.471 | 0.019 | 0.485 | 0.477 | 0.344 |
C 18:1 T10+11 vaccenic | 1.501 | 1.507 | 1.496 | 1.638 | 1.458 | 1.408 | 0.050 | 0.996 | 0.147 | 0.434 |
C 18:1 C9 oleic | 35.56 | 35.51 | 35.35 | 34.17 B | 35.43 | 36.82 A | 0.370 | 0.965 | 0.009 | 0.055 |
C 18:1 C11 | 1.385 | 1.393 | 1.510 | 1.394 | 1.385 | 1.510 | 0.027 | 0.104 | 0.105 | 0.595 |
C 18:1 C12 | 0.195 | 0.183 | 0.204 | 0.195 | 0.202 | 0.184 | 0.006 | 0.386 | 0.481 | 0.636 |
C 18:1 C13 | 0.242 | 0.245 | 0.273 | 0.234 | 0.246 | 0.279 | 0.010 | 0.370 | 0.164 | 0.082 |
C 18:1 T16 | 0.376 | 0.361 | 0.363 | 0.363 | 0.385 | 0.351 | 0.008 | 0.720 | 0.237 | 0.461 |
C 20:1 gadoleic | 0.168 | 0.178 | 0.177 | 0.157 b | 0.177 | 0.189 a | 0.005 | 0.679 | 0.045 | 0.344 |
∑PUFAs 7 | 6.74 | 6.73 | 7.47 | 6.96 | 7.10 | 6.97 | 0.288 | 0.496 | 0.976 | 0.306 |
C 18:2 linoleic | 3.722 | 3.681 | 4.208 | 3.962 | 3.921 | 3.729 | 0.163 | 0.349 | 0.825 | 0.337 |
C 18:2 C9 T13 | 0.338 | 0.362 | 0.351 | 0.324 | 0.344 | 0.383 | 0.011 | 0.644 | 0.066 | 0.059 |
C 18:2 C9 T11 (CLA) | 0.289 | 0.287 | 0.295 | 0.278 | 0.302 | 0.291 | 0.007 | 0.893 | 0.369 | 0.804 |
C 18:3 α-linolenic | 0.905 | 0.947 | 0.980 | 0.941 | 0.978 | 0.913 | 0.035 | 0.679 | 0.746 | 0.144 |
C 20:2 eicosadienoic | 0.038 | 0.076 | 0.047 | 0.042 | 0.041 | 0.079 | 0.011 | 0.309 | 0.241 | 0.257 |
C 20:4 arachidonic | 0.851 | 0.784 | 1.004 | 0.833 | 0.911 | 0.895 | 0.062 | 0.340 | 0.862 | 0.357 |
C 20:5 eicosapentaenoic (EPA) | 0.155 | 0.176 | 0.182 | 0.157 | 0.172 | 0.185 | 0.012 | 0.637 | 0.639 | 0.249 |
C 22:5 docosapentaenoic (DPA) | 0.355 | 0.392 | 0.397 | 0.349 | 0.389 | 0.405 | 0.021 | 0.670 | 0.529 | 0.076 |
C 22:6 docosahexaenoic (DHA) | 0.056 | 0.070 | 0.040 | 0.035 | 0.044 | 0.086 | 0.009 | 0.427 | 0.061 | 0.550 |
∑n-6 PUFAs 8 | 4.611 | 4.542 | 5.259 | 4.836 | 4.873 | 4.703 | 0.222 | 0.360 | 0.948 | 0.354 |
∑n-3 PUFAs 9 | 1.520 | 1.585 | 1.598 | 1.530 | 1.584 | 1.589 | 0.072 | 0.892 | 0.933 | 0.131 |
Ratios | Crossbred Bulls (C) | Slaughter Age (Months) (SA) | SE 8 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PHF 1 × HH 2 | PHF 1 × LM 3 | PHF 1 × CH 4 | 15 | 18 | 21 | C | SA | C × SA | ||
MUFA 5/SFA 6 | 0.89 | 0.88 | 0.91 | 0.85 B | 0.88 | 0.95 A | 0.014 | 0.600 | 0.006 | 0.053 |
PUFA 7/SFA | 0.14 | 0.14 | 0.16 | 0.139 | 0.145 | 0.147 | 0.006 | 0.416 | 0.892 | 0.355 |
n-6/n-3 PUFA | 3.10 | 2.84 B | 3.30 A | 3.25 a | 3.08 | 2.92 b | 0.052 | 0.000 | 0.012 | 0.294 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momot, M.; Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M. Influence of Genotype and Slaughter Age on the Content of Selected Minerals and Fatty Acids in the Longissimus Thoracis Muscle of Crossbred Bulls. Animals 2020, 10, 2004. https://doi.org/10.3390/ani10112004
Momot M, Nogalski Z, Pogorzelska-Przybyłek P, Sobczuk-Szul M. Influence of Genotype and Slaughter Age on the Content of Selected Minerals and Fatty Acids in the Longissimus Thoracis Muscle of Crossbred Bulls. Animals. 2020; 10(11):2004. https://doi.org/10.3390/ani10112004
Chicago/Turabian StyleMomot, Martyna, Zenon Nogalski, Paulina Pogorzelska-Przybyłek, and Monika Sobczuk-Szul. 2020. "Influence of Genotype and Slaughter Age on the Content of Selected Minerals and Fatty Acids in the Longissimus Thoracis Muscle of Crossbred Bulls" Animals 10, no. 11: 2004. https://doi.org/10.3390/ani10112004
APA StyleMomot, M., Nogalski, Z., Pogorzelska-Przybyłek, P., & Sobczuk-Szul, M. (2020). Influence of Genotype and Slaughter Age on the Content of Selected Minerals and Fatty Acids in the Longissimus Thoracis Muscle of Crossbred Bulls. Animals, 10(11), 2004. https://doi.org/10.3390/ani10112004