Home Range and Habitat Use of Breeding Black-necked Cranes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Population and Identification of Breeding Families
2.3. Locating Families and Data Collection
2.4. Home-Range Size, Overlap, and Site Fidelity
2.5. Size and Proportions of Habitat Types within Crane Home Ranges
3. Results
3.1. Home Range
3.2. Habitat Use
4. Discussion
4.1. Black-necked Cranes Display Strong Territoriality during Breeding Season
4.2. Black-necked Cranes May Increase Marsh Utilization during Postfledging Stage
- (1)
- Demand for food by young cranes: Precocial waterfowl require an immense amount of calcium during the first month of growth due to rapid growth rates [43]. Wetlands, even high-altitude wetlands, can offer very high concentrations of food such as crabs, gastropods, and insects [44,45]. However, it is unlikely that high-altitude meadows provide an equivalent amount of such foods. The observed difference in habitats within the home range of cranes may therefore be the result of the availability of essential foods. Observations on the Black-necked Crane in other breeding areas often reported that Black-necked Cranes forage in marshes [46], which supports this view. Consequently, differences in marsh area within the measured home range could be related to the availability of calcium-rich foods.
- (2)
- The demand for safety by young cranes: The increased utilization of marshes by Black-necked Cranes during the postfledging stage may also be due to safety concerns [47]. Water depth and vegetation height in marsh habitats significantly exceed those in marsh-meadow and meadow habitats (see Supplementary File S1). Compared with marsh meadows and meadows, marshes may be a safer environment, which may have been the initial reason why marsh habitats were chosen for nesting [23]. During the postfledging stage, young cranes have just emerged from their shells, and their mobility is weak. In the Zoige wetland, likely natural enemies during this period are the Tibetan Fox (Vulpes ferrilata), the Red Fox (Vulpes vulpes), and the Upland Buzzard (Buteo hemilasius). Therefore, to protect young cranes, their parents tend to reduce the overall range of activities and choose safer areas for their activities. Other birds also display similar tendencies, such as the Black-tailed Godwit (Limosa limosa) in the Netherlands, where families with chicks stay mainly in herb-rich fields [9]. Therefore, food and safety may be the main driving factor in the selection of this habitat during the postfledging stage.
4.3. Role of Meadows and Marsh Meadows during Breeding Season
4.4. Influence of Grazing Activities during Breeding Stages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krebs, J.R.; Wilson, J.D.; Bradbury, R.B.; Siriwardena, G.M. The second silent spring? Nature 1999, 400, 611–612. [Google Scholar] [CrossRef]
- Newton, I. The recent declines of farmland bird populations in Britain: An appraisal of causal factors and conservation actions. Int. J. Avian Sci. 2004, 146, 579–600. [Google Scholar] [CrossRef]
- Donald, P.F.; Green, R.E.; Heath, M.F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. B Biol. Sci. 2001, 268, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, G.X.; Wang, Y.B. Changes in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004. Environ. Monit. Assess. 2011, 180, 189–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Tietze, D.T.; Fritz, A.; Lu, Z.; Burgi, M.; Storch, I. Rewilding cultural landscape potentially puts both endemism at risk: A Tibetan Plateau case study. Biol. Conserv. 2018, 224, 75–86. [Google Scholar] [CrossRef]
- Redfern, C.P.F. Lapwing nest sites and chikc mobility in relation to habitat. Bird Study 1982, 29, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, H. Arrival and habitat use by lapwings in the early breeding season. Int. J. Avian Sci. 1989, 131, 377–388. [Google Scholar] [CrossRef]
- Johansson, O.C.; Blomqvist, D. Habitat selection and diet of lapwing Vanellus vanellus chicks on coastal farmland in SW Sweden. J. Appl. Ecol. 1996, 33, 1030–1040. [Google Scholar] [CrossRef]
- Kruk, M.; Noordervliet, M.A.W.; Ter Keurs, W.J. Survival of black-tailed godwit chicks Limosa limosa in intensively exploited grassland areas in The Netherlands. Biol. Conserv. 1997, 80, 127–133. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Renault, O.; Potter, T.; Tichit, M. Variability of Suitable Habitats for Waders: Does Grazing Managment Help? Wageningen Academic Publishers: Wageningen, The Netherlands, 2004. [Google Scholar]
- Peron, G. The time frame of home-range studies: From function to utilization. Biol. Rev. 2019, 94, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Durant, D.; Tichit, M.; Kernéïs, E.; Fritz, H. Management of agricultural wet grasslands for breeding waders: Integrating ecological and livestock system perspectives—A review. Biodivers. Conserv. 2008, 17, 2275–2295. [Google Scholar] [CrossRef]
- BirdLife International. Grus nigricollis (Black-necked Crane). Available online: http://dx.doi.org/10.2305/IUCN.UK.2017-1.RLTS.T22692162A110659467.en (accessed on 15 April 2019).
- Han, X.S.; Guo, Y.M.; Mi, C.R.; Huettmann, F.; Wen, L.J. Machine learning model analysis of breeding habitats for the Black-necked Crane in central Asian uplands under anthropogenic pressures. Sci. Rep. 2017, 7, 6114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Luo, J. Distribution and number of Black-necked Crane in ruoergai marshes, China. Sichuan J. Zool. 1991, 10, 37–38. [Google Scholar]
- Li, Z.M.; Li, F.S. Black-necked Crane Study; Shanghai Technological and Educational Press: Shanghai, China, 2005. [Google Scholar]
- Bishop, M.A.; Li, F. Effects of farming practices in Tibet on wintering Black-necked Crane (Grus nigricollis) diet and food availability. Biodivers. Sci. 2002, 10, 393–398. [Google Scholar]
- Qian, F.W.; Wu, H.Q.; Gao, L.B.; Zhang, H.G.; Li, F.S.; Zhong, X.Y.; Yang, X.J.; Zheng, G.M. Migration routes and stopover sites of Black-necked Cranes determined by satellite tracking. J. Field Ornithol. 2009, 80, 19–26. [Google Scholar] [CrossRef]
- Zhou, C.; Yu, H.R.; Geng, Y.; Liu, W.; Zheng, S.; Yang, N.; Meng, Y.; Dou, L.; Price, M.; Ran, J.H.; et al. A high-quality draft genome assembly of the Black-necked Crane (Grus nigricollis) based on nanopore sequencing. Genome Biol. Evol. 2019, 11, 3332–3340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; An, B.; Shu, M.L.; Zhao, C.M.; Yang, X.J.; Suo, Y.L.; Se, Y.J.; Dabu, X. Incubation strategies of the Black-necked Crane (Grus nigricollis) in relation to ambient temperature and time of day. Avian Res. 2017, 8, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.H.; Liu, S.Y.; Zeng, Z.Y.; Shao, K.Q.; Lin, Q.; Zhang, M. The population and distrubution of Black-necked Crane (Grus nigricollis) in xiaman nature reserve in sichuan. Chin. J. Appl. Environ. Biol. 1999, 5, 40–44. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Li, F.S.; Ran, J.H.; Zhao, C.H.; Zhang, M.; Li, H. Nest size and its contributing factors for Black-necked Cranes Grus nigricollis. Pak. J. Zool. 2018, 50, 877–884. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Y.J.; DuBay, S.G.; Zhao, C.H.; Wang, B.; Ran, J.H. Dung-associated arthropods influence foraging ecology and habitat selection in Black-necked Cranes (Grus nigricollis) on the Qinghai–Tibet Plateau. Ecol. Evol. 2019, 9, 2096–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, F.L.; Liu, N.; Cangjue, Z.; Li, J.C.; Yang, L.; Li, F.X. Diurnal time-activity budgets of Grus nigricollis for the pre-laying phase in northern Tibet. J. Zhejiang For. Coll. 2007, 24, 686–691. [Google Scholar]
- Zhang, J.D.; Hull, V.; Ouyang, Z.Y. The review of home range studies. Acta Ecol. Sin. 2013, 33, 26–36. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B.D.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Xiang, S.; Guo, R.Q.; Wu, N.; Sun, S.C. Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau. Ecol. Eng. 2009, 35, 553–562. [Google Scholar] [CrossRef]
- Wu, H.Q.; Zha, K.; Zhang, M.; Yang, X.J. Nest site selection by Black-necked Crane Grus nigricollis in the Ruoergai Wetland, China. Bird Conserv. Int. 2009, 19, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Dou, L.; Li, H.; Li, F.; Zhang, M.; Zheng, Z.; Ran, J. Survey on the Black-necked Cranes during the breeding period at sichuan ruoergai wetland national nature reserve. Sichuan J. Zool. 2013, 32, 770–773. (In Chinese) [Google Scholar]
- Tian, Y. The vegetation type and its distribution regularity under different habitats in Ruoergai Plateau. J. Yangtze Univ. 2005, 2, 1–5. (In Chinese) [Google Scholar] [CrossRef]
- Duyck, J.; Finn, C.; Hutcheon, A.; Vera, P.; Salas, J.; Ravela, S. Sloop: A pattern retrieval engine for individual animal identification. Pattern Recognit. 2015, 48, 1059–1073. [Google Scholar] [CrossRef]
- Buchanan, K.; Perera, T.; Carere, C.; Carter, T.; Hailey, A.; Hubrecht, R.; Jennings, D.; Metcalfe, N.; Pitcher, T.; Peron, F.; et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 2012, 83, 301–309. [Google Scholar] [CrossRef]
- Fair, J.M.; Paul, E.; Jones, J. Guidelines to the Use of Wild Birds in Research; Ornithological Council: Washington, DC, USA, 2010. [Google Scholar]
- Jiang, Z.Q. Studies on the Population Dynamicsand Reproductive Behaviorof Black-necked Cranes (Grus Nigricollis) at Ruoergai Wetland; Sichuan University: Chengdu, China, 2015. [Google Scholar]
- Rodgers, A.R.; Carr, A.P. HRE: The Home Range Extension for ArcView; Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research: Thunder Bay, ON, Canada, 1998.
- Worton, B.J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 1989, 70, 164–168. [Google Scholar] [CrossRef]
- Burt, W.H. Territoriality and home range concepts as applied to mammals. J. Mammal. 1943, 24, 346–352. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Doucette, L.I. Home range and territoriality of Australian owlet-nightjars Aegotheles cristatus in diverse habitats. J. Ornithol. 2010, 151, 673–685. [Google Scholar] [CrossRef]
- Zeng, G.W.; Chen, G.F.; Li, C.N.; Ye, J. The comparative study of remote sensing image classification method based on ERDAS. Adv. Mater. Res. 2012, 546–547, 542–547. [Google Scholar] [CrossRef]
- RCoreTeam. R: The R Project for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 6 November 2016).
- Avila, D.D.; Benitez, E.A.C.; Ferrer-Sanchez, Y. Modeling the effect of colonial breeding in Bubulcus ibis (Aves: Ardeidae) on biomass and energy flows of coastal mangrove. Rev. Biol. Trop. 2019, 67, 784–809. [Google Scholar]
- Perillo, G.M.E.; Minkoff, D.R.; Piccolo, M.C. Novel mechanism of stream formation in coastal wetlands by crab-fish-groundwater interaction. Geo Mar. Lett. 2005, 25, 214–220. [Google Scholar] [CrossRef]
- Niggebrugge, K.; Durance, I.; Watson, A.M.; Leuven, R.; Ormerod, S.J. Applying landscape ecology to conservation biology: Spatially explicit analysis reveals dispersal limits on threatened wetland gastropods. Biol. Conserv. 2007, 139, 286–296. [Google Scholar] [CrossRef]
- Zhang, L.X.; An, B.; Shu, M.L.; Yang, X.J. Nest-site selection, reproductive ecology and shifts within core-use areas of Black-necked Cranes at the northern limit of the Tibetan Plateau. PeerJ 2017, 5, e2939. [Google Scholar] [CrossRef] [Green Version]
- Cox, W.A.; Thompson, F.R., III; Cox, A.S.; Faaborg, J. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J. Wildl. Manag. 2014, 78, 183–193. [Google Scholar] [CrossRef]
- Horgan, F.G. Shady field boundaries and the colonisation of dung by coprophagous beetles in Central American pastures. Agric. Ecosyst. Environ. 2002, 91, 25–36. [Google Scholar] [CrossRef]
- Helden, A.J.; Anderson, A.; Sheridan, H.; Purvis, G. The role of grassland sward islets in the distribution of arthropods in cattle pastures. Insect Conserv. Divers. 2010, 3, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Baral, H.S.; Bhandari, B.B. Importance of high altitude wetlands for protection of avian diversity in the Hindu Kush Himalayas. Initiation 2011, 4, 96–102. [Google Scholar] [CrossRef]
- Han, D.Y.; Yang, Y.X.; Yang, Y.; Li, K. Species composition and succession of swamp vegetation along grazing gradients in the Zoige Plateau, China. Acta Ecol. Sin. 2011, 31, 5946–5955. (In Chinese) [Google Scholar]
- Prasad, S.N.; Kumar, A.; Tiwari, A.K.; Vijayan, V.S. Conservation of wetlands of India—A review. Trop. Ecol. 2002, 43, 173–186. [Google Scholar]
- Li, F. IUCN Black-necked Crane (Grus nigricollis) conservation plan. Zool. Res. 2014, 35, 3–9. [Google Scholar] [CrossRef]
- Beatty, W.S.; Kesler, D.C.; Webb, E.B.; Raedeke, A.H.; Naylor, L.W.; Humburg, D.D. The role of protected area wetlands in waterfowl habitat conservation: Implications for protected area network design. Biol. Conserv. 2014, 176, 144–152. [Google Scholar] [CrossRef]
- Fuller, R.J.; Gough, S.J. Changes in sheep numbers in Britain: Implications for bird populations. Biol. Conserv. 1999, 91, 73–89. [Google Scholar] [CrossRef]
- Watkinson, A.R.; Ormerod, S.J. Grasslands, grazing and biodiversity: Editors’ introduction. J. Appl. Ecol. 2001, 38, 233–237. [Google Scholar]
- Evans, D.M.; Redpath, S.M.; Evans, S.A.; Elston, D.A.; Gardner, C.J.; Dennis, P.; Pakeman, R.J. Low intensity, mixed livestock grazing improves the breeding abundance of a common insectivorous passerine. Biol. Lett. 2006, 2, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.H. The Reproductive Investment Trade-OFF and Reproductive Success of the Black-necked Crane (Grus nigricollis) in Zoige Wetland; Sichuan University: Chengdu, China, 2018. [Google Scholar]
50% FKP | 95% FKP | |||||||
---|---|---|---|---|---|---|---|---|
N0 | N1 | Overlap Area (ha, Mean ± SE) | Overlap Degree | N2 | Overlap Area (ha, Mean ± SE) | Overlap Degree | ||
PI | 26 | 0 | 0 | 0 | 22 | 17.83 ± 7.9 | 0.08 ± 0.02 | |
IN | 11 | 0 | 0 | 0 | 9 | 19.03 ± 9.01 | 0.09 ± 0.02 | |
PF | 10 | 1 | 0.12 | 0 | 7 | 7.49 ± 2.93 | 0.08 ± 0.02 | |
FF | 9 | 1 | 0.65 | 0.04 | 7 | 9.87 ± 3.82 | 0.06 ± 0.02 |
50% (n = 13) | 95% (n = 13) | |||
---|---|---|---|---|
Overlap Area (ha, Mean ± SE) | Site-Fidelity Level | Overlap Area (ha, Mean ± SE) | Site-Fidelity Level | |
PI: IN | 6.06 ± 2.43 | 0.22 ± 0.06 | 116.06 ± 36.24 | 0.62 ± 0.03 |
PI: PF | 3.01 ± 0.93 | 0.2 ± 0.06 | 64.68 ± 16.98 | 0.5 ± 0.05 |
PI: FF | 5.17 ± 2.48 | 0.19 ± 0.06 | 79.95 ± 19.45 | 0.53 ± 0.06 |
IN: PF | 6.12 ± 2.54 | 0.25 ± 0.06 | 71.78 ± 19.02 | 0.56 ± 0.03 |
IN: FF | 2.42 ± 1.23 | 0.1 ± 0.05 | 56.44 ± 12.99 | 0.45 ± 0.06 |
PF: FF | 1.1 ± 0.57 | 0.1 ± 0.05 | 27.98 ± 4.11 | 0.35 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Jin, Y.; Wu, Y.; Zhao, C.; He, X.; Wang, B.; Ran, J. Home Range and Habitat Use of Breeding Black-necked Cranes. Animals 2020, 10, 1975. https://doi.org/10.3390/ani10111975
Liu W, Jin Y, Wu Y, Zhao C, He X, Wang B, Ran J. Home Range and Habitat Use of Breeding Black-necked Cranes. Animals. 2020; 10(11):1975. https://doi.org/10.3390/ani10111975
Chicago/Turabian StyleLiu, Wei, Yuyi Jin, Yongjie Wu, Chenhao Zhao, Xingcheng He, Bin Wang, and Jianghong Ran. 2020. "Home Range and Habitat Use of Breeding Black-necked Cranes" Animals 10, no. 11: 1975. https://doi.org/10.3390/ani10111975