Replacement of Soybean Meal with Heat-Treated Canola Meal in Finishing Diets of Meatmaster Lambs: Physiological and Meat Quality Responses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Protein Sources and Experimental Diet Formulation
2.3. Chemical Analyses
2.4. Animal Management
2.5. Growth Performance
2.6. Blood Collection and Analysis
2.7. Carcass Measurements
2.8. Meat Quality Traits
2.9. Statistical Analysis
3. Results
3.1. Feed Intake and Growth Performance
3.2. Blood Parameters
3.3. Carcass and Meat Quality Parameters
4. Discussion
4.1. Feed Intake and Growth Performance
4.2. Hematology and Serum Biochemistry
4.3. Carcass and Meat Quality Traits
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khojely, D.M.; Ibrahim, S.E.; Sapey, E.; Han, T. History, current status, and prospects of soybean production and research in sub-Saharan Africa. Crop. J. 2018, 6, 226–235. [Google Scholar] [CrossRef]
- Dlamini, T.S.; Tshabalala, P.; Mutengwa, T. Soybeans production in South Africa. OCL 2014, 21. [Google Scholar] [CrossRef]
- Wanasundara, J.P.D.; McIntosh, T.C.; Perera, S.P.; Withana-Gamage, T.S.; Mitra, P. Canola/rapeseed protein-functionality and nutrition. OCL 2016, 23. [Google Scholar] [CrossRef] [Green Version]
- National Agricultural Marketing Council (NACM). The South African Soybean Value Chain; Markets and Economic Research Centre: Pretoria, South Africa, 2011; pp. 1–94.
- Department of Agriculture, Forestry and Fisheries (DAFF). A Profile of the South African Canola Market Value Chain; DAFF: Pretoria, South Africa, 2018.
- Harker, K.N.; O’Donovan, J.T.; Turkington, T.K.; Blackshaw, R.E.; Lupwayi, N.Z.; Smith, E.G.; Klein-Gebbinck, H.; Dosdall, L.M.; Hall, L.M.; Willenborg, C.J.; et al. High-yield no-till canola production on the Canadian prairies. Can. J. Plant Sci. 2012, 92, 221–233. [Google Scholar] [CrossRef]
- Hickling, D. Maximized utilization of canola co-products in livestock industry. In Proceedings of the 29th Western Nutrition Conference, University of Alberta, Edmonton, AB, Canada, 23–24 September 2008. [Google Scholar]
- Wickramasuriya, S.S.; Yi, Y.-J.; Yoo, J.; Kang, N.K.; Heo, J.M. A review of canola meal as an alternative feed ingredient for ducks. J. Anim. Sci. Technol. 2015, 57, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newkirk, R.W.; Classen, H.L.; Scott, T.A.; Edney, M.J. The digestibility and content of amino acids in toasted and non-toasted canola meals. Can. J. Anim. Sci. 2003, 83, 131–139. [Google Scholar] [CrossRef]
- Wright, C.F.; von Keyserlingk, M.A.G.; Swift, M.L.; Fisher, L.J.; Shelford, J.A.; Dinn, N.E. Heat and lignosulfonate-treated canola meal as a source of ruminal undegradable protein for lactating dairy cows. J. Dairy Sci. 2005, 88, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Colombini, S.; Costa, S.; Karsli, M.A.; Faciola, A.P. Chemical and ruminal in vitro evaluation of Canadian canola meals produced over 4 years. J. Dairy Sci. 2016, 99, 7956–7970. [Google Scholar] [CrossRef] [Green Version]
- Newkirk, R. Canola Meal Feed Industry Guide, 5th ed.; Canadian International Grains Institute: Winnipeg, MB, Canada, 2015. [Google Scholar]
- Kamalak, A.; Canbolat, Ö.; Gürbüz, Y.; Özay, O. Protected protein and amino acids in ruminant nutrition. KSU. J. Sci. Eng. 2005, 8, 84–88. [Google Scholar]
- Van Der Poel, A.F.B.; Prestløkken, E.; Goelema, J.O. Feed processing: Effects on nutrient degradation and digestibility. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd ed.; Dijkstra, J., Forbes, J.M., France, J., Eds.; CABI: Wallingford, UK, 2005; pp. 627–661. [Google Scholar]
- Eghbali, M.; Kafilzadeh, F.; Hozhabri, F.; Afshar, S.; Kazemi-Bonchenari, M. Treating canola meal changes in situ degradation, nutrient apparent digestibility, and protein fractions in sheep. Small Rumin. Res. 2011, 96, 136–139. [Google Scholar] [CrossRef]
- Taghinejad-Roudbaneh, M.; Ebrahimi, S.; Azizi, S.; Shawrang, P. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal. Radiat. Phys. Chem. 2010, 79, 1264–1269. [Google Scholar] [CrossRef]
- Kafilzadeh, F.; Sahebiala, M.; Heidary, N. The effect of physical and chemical treatments of canola seed varieties on crude protein fractions using CNCPS and in vitro gas production. J. Agric. Technol. 2013, 9, 1411–1421. [Google Scholar]
- Yu, P.; McKinnon, J.J.; Soita, H.W.; Christensen, C.R.; Christensen, D. Use of synchrotron-based FTIR microspectroscopy to determine protein secondary structures of raw and heat-treated brown and golden flaxseeds: A novel approach. Can. J. Anim. Sci. 2005, 85, 437–448. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; pp. 244–270. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of Association of Official Analytical Chemists International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005; pp. 1–77. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries (DAFF). Agricultural Product Standards Act (Act No.119 of 1990); DAFF: Pretoria, South Africa, 1990.
- Statistical Analysis System Institute Inc. SAS/Stat Users’ Guide, Release 9.1.2; SAS: Carry, NC, USA, 2010. [Google Scholar]
- Dabiri, N. Effects of Different Dietary Energy and Protein Levels at Fixed Slaughter Weight on Performance and Carcass Characteristics of Arabi Fattening lambs. J. Fish. Livest. Prod. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Irshaid, R.H.; Harb, M.Y.; Titi, H.H. Replacing soybean meal with sunflower seed meal in the ration of Awassi ewes and lambs. Small Rumin. Res. 2003, 50, 109–116. [Google Scholar] [CrossRef]
- Ward, A.; Tawila, G.A.; Sawsan, M.A.; Gad, M.; El-Muniary, M.M. Improving the nutritive value of cottonseed meal by adding iron on growing lambs diets. World J. Agric. Sci. 2008, 4, 533–537. [Google Scholar]
- Nagalakshmi, D.; Dhanalakshimi, K.; Himabindu, D. Replacement of grountnut cake with sunflower and karanj seed cake on performance, nutrient utilization, immune response and carcass characteristics in Nellore lambs. Small Rumin. Res. 2011, 97, 12–20. [Google Scholar] [CrossRef]
- Wiese, S.C.; White, C.L.; Masters, D.G.; Milton, J.T.B.; Davidson, R.H. Growth and carcass characteristics of prime lambs fed diets containing urea, lupins or canola meal as a crude protein source. Aust. J. Exp. Agric. 2003, 43, 1193–1197. [Google Scholar] [CrossRef]
- Khalid, M.F.; Sarwar, M.; Mahr, U.N.; Zia, U.R. Response of growing lambs fed on different vegetable protein sources with or without probiotics. Int. J. Agric. Biol. 2011, 13, 332–338. [Google Scholar]
- Santos-Silva, J.; Bessa, R.J.B.; Mendes, I.A. The effect of supplementation with expanded sunflower seed on carcass and meat quality of lambs raised on pasture. Meat Sci. 2003, 65, 1301–1308. [Google Scholar] [CrossRef]
- Rezaeipour, V.; Ghoorchi, T.; Hasani, S.; Ghorbani, G.R. Effects of canola meal diets on growth performance, carcass characteristics and thyroid hormones in Atabay finishing lambs. J. Anim. Sci. 2016, 5, 246–251. [Google Scholar]
- Prima, A.; Purbowati, E.; Rianto, E.; Purnomoadi, A. The effect of dietary protein levels on body weight gain, carcass production, nitrogen emission, and efficiency of productions related to emissions in thin-tailed lambs. Vet. World 2019, 12, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.B.; Swain, R.K.; Sahu, B.K.; Sawantaray, D.P. Effect of bypass protein supplementation on nutrient utilization, milk production and its composition in crossbred cows on paddy straw based ration. Anim. Nutr. Feed Technol. 2006, 6, 123–133. [Google Scholar]
- Kramer, J.W. Normal hematology of cattle, sheep and goats. In Hematology, 5th ed.; Feldman, B.F., Zinkl, J.G., Eds.; LWW: Philadelphia, PA, USA, 2000; pp. 1075–1084. [Google Scholar]
- Huisman, J.; Tolman, G.H. Anti-nutritional factors in the plant proteins of diets for non-ruminats. In Recent Advances in Animal Nutrition; Haresign, W., Cole, D.J.A., Eds.; Butterworth-Heinemann: Oxford, UK, 1992; Volume 68, pp. 3–31. [Google Scholar]
- Nega, T.; Woldes, Y. review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J. Nutr. Heal. Food Eng. 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Njidda, A.A.; Shuai’bu, A.A.; Isidahomen, C.E. Haematology and serum biochemical indices of sheep in semi-arid environment of Northern Nigeria. Glob. J. Sci. Front. Res. 2014, 14, 49–56. [Google Scholar]
- Merck Manual. Haematologic Reference Ranges. Available online: https://www.merckvetmanual.com/special-subjects/reference-guides/serum-biochemical-reference-ranges (accessed on 5 August 2020).
- Tambuwal, F.M.; Agale, B.M.; Bangana, A. Haematological and biochemical values of apparently healthy Red Sokoto goats. In Proceedings of the 27th Annual Conference Nigerian Society of Animal Production (NSAP), FUTA, Akure, Nigeria, 17–21 March 2002; pp. 50–53. [Google Scholar]
- Paula, E.F.E.; de Souza, D.F.; Monteiro, A.L.G.; Santana, M.H.A.; Gilaverte, S.; Junior, P.; Dittrich, R.L. Residual feed intake and hematological and metabolic blood profiles of Ile de France lambs. R. Bras. Zootec. 2013, 42, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Huang, S.; Li, S.; Wang, S.; Dong, S.; Cui, D.; Qi, Z.; Liu, Y. Hematologic, Serum biochemical Parameters, fatty acid and amino acid of Longissimus dorsi muscle in meat quality of Tibetan sheep. Acta Sci. Vet. 2015, 43, 1306. [Google Scholar]
- Stevanovic, O.; Stojiljkovic, M.; Nedic, D.; Radoja, D.; Nikolic, V.; Prodanovic, R.; Ivanov, S.; Vujanac, I. Variation of blood serum biochemical parameters in Karakachan sheep. Biotechnol. Anim. Husb. 2015, 31, 55–62. [Google Scholar] [CrossRef]
- Paracova, J.; Fazekasova, D.; Mackova, D.; Nagyova, M. The physiological values of AST and ALT in the blood serum of sheep, rabbits and horses according to sex. Chem. Pap. 1998, 52, 454. [Google Scholar]
- Caldeira, R.M.; Belo, A.; Santos, C.; Vazques, M.; Portugal, A. The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Res. 2007, 68, 233–241. [Google Scholar] [CrossRef]
- Sekali, M.; Marume, U.; Mlambo, V.; Strydom, P. Growth performance, hematology, and meat quality characteristics of Mutton Merino lambs fed canola-based diets. Trop. Anim. Heal. Prod. 2016, 48, 1115–1121. [Google Scholar] [CrossRef]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Strydom, P.; Muchenje, V.; Marufu, M.C. Nutritional status, growth performance and carcass characteristics of Nguni steers supplemented with Acacia karroo leaf-meal. Livest. Sci. 2009, 126, 206–214. [Google Scholar] [CrossRef]
- Majdoub-Mathlouthi, L.; Said, B.; Say, A.; Kraiem, K. Effect of concentrate level and slaughter body weight on growth performances, carcass traits and meat quality of Barbarine lambs fed oat hay based diet. Meat Sci. 2013, 93, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.J.; Warner, R.D. Effects of antemortem exercise on water holding capacity of lamb Longissimus thoracis et lumborum: Ion distribution and protein proteolysis post mortem. Meat Sci. 2007, 75, 406–414. [Google Scholar] [CrossRef]
- Starkey, C.; Geesink, G.H.; Oddy, V.H.; Hopkins, D.L. Explaining the variation in lamb longissimus shear force across and within ageing periods using protein degradation, sarcomere length and collagen characteristics. Meat Sci. 2015, 105, 32–37. [Google Scholar] [CrossRef]
- Warris, P.D. Measuring the Composition and Physical Characteristics of Meat. In Meat Science: An Introductory Text; CABI Publishing, CAB International: Wallingford, UK, 2000; pp. 229–251. [Google Scholar]
- Bianchini, W.; Silveira, A.C.; Jorge, A.M.; Arrigoni, M.D.B.; Martins, C.L.; Rodrigues, É.; Hadlich, J.C.; Andrighetto, C. Efeito do grupo genético sobre as características de carcaça e maciez da carne fresca e maturada de bovinos superprecoces. Rev. Bras. de Zootec. 2007, 36, 2109–2117. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.; Oiseth, S.; Purslow, P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Teixeira, A.; Batista, S.M.G.; Delfa, R.; Cadavez, V. Lamb meat quality of two breeds with protected origin designation. Influence of breed, sex and live weight. Meat Sci. 2005, 71, 530–536. [Google Scholar] [CrossRef]
- Chikwanha, O.; Muchenje, V.; Nolte, J.E.; Dugan, M.E.; Mapiye, C. Grape pomace (Vitis vinifera L. cv. Pinotage) supplementation in lamb diets: Effects on growth performance, carcass and meat quality. Meat Sci. 2019, 147, 6–12. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes e a review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Bertram, H.C.; Andersen, H.J.; Karlsson, A.H.; Horn, P.; Hedegaard, J.; Nørgaard, L.; Engelsen, S.B. Prediction of technological quality (cooking loss and Napole Yield) of pork based on fresh meat characteristics. Meat Sci. 2003, 65, 707–712. [Google Scholar] [CrossRef]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 2016, 89, 739–748. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Experimental Diets 1 | ||||
---|---|---|---|---|---|
CON | CM50 | CM100 | HCM50 | HCM100 | |
Coarse yellow maize | 383.00 | 383.00 | 383.00 | 383.00 | 383.00 |
Soybean meal | 253.00 | 126.50 | 0.00 | 126.50 | 0.00 |
Lucerne hay | 122.00 | 122.00 | 122.00 | 122.00 | 122.00 |
Wheat bran | 90.00 | 80.00 | 70.00 | 80.00 | 70.00 |
Soyhulls | 79.00 | 69.50 | 60.00 | 69.50 | 60.00 |
Sugarcane molasses | 43.00 | 43.00 | 43.00 | 43.00 | 43.00 |
Limestone powder | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
Salt coarse | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Ammonium chloride | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Premix B | 2.20 | 2.20 | 2.20 | 2.20 | 2.20 |
Urea | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
Untreated canola meal | 0.00 | 146.09 | 292.20 | 0.00 | 0.00 |
Heated canola meal | 0.00 | 0.00 | 0.00 | 146.09 | 292.20 |
Parameters | Experimental Diets 1 | ||||
---|---|---|---|---|---|
CON | CM50 | CM100 | HCM50 | HCM100 | |
Dry matter (g/kg) | 894.99 | 894.42 | 893.93 | 905.68 | 900.35 |
Ash | 86.53 | 68.38 | 68.39 | 65.15 | 72.99 |
Organic matter | 808.45 | 826.04 | 825.54 | 840.53 | 827.36 |
Crude protein | 160.1 | 160.2 | 160.0 | 160.1 | 160.1 |
Neutral detergent fiber | 156.23 | 195.51 | 220.62 | 307.41 | 307.32 |
Acid detergent fiber | 103.65 | 116.81 | 122.58 | 146.17 | 126.29 |
Acid detergent lignin | 30.35 | 53.62 | 53.94 | 63.08 | 64.08 |
Parameters 1 | Experimental Diets 2 | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | CM50 | CM100 | HCM50 | HCM100 | |||
Initial weight (kg) | 24.2 | 24.6 | 24.7 | 25.4 | 24.9 | 1.31 | 0.978 |
ADFI (kg/day) | 1.26 | 1.24 | 1.26 | 1.25 | 1.21 | 0.05 | 0.931 |
ADG (kg/day) | 0.23 | 0.22 | 0.22 | 0.23 | 0.21 | 0.01 | 0.180 |
FCR | 5.47 | 5.81 | 5.73 | 5.42 | 5.89 | 0.21 | 0.401 |
Parameters 1 | Experimental Diets 2 | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CM50 | CM100 | HCM50 | HCM100 | |||
Erythrocytes (×1012/L) | 8.72 | 8.70 | 8.90 | 6.74 | 8.04 | 0.54 | 0.104 |
Hemoglobin (g/dL) | 13.34 a | 12.26 ab | 12.58 ab | 11.75b | 11.59 b | 0.33 | 0.006 |
Hematocrit (L/L) | 0.29 | 0.29 | 0.29 | 0.26 | 0.25 | 0.02 | 0.262 |
MCV (fL) | 33.29 | 33.24 | 34.07 | 31.63 | 31.48 | 1.26 | 0.502 |
MCH (pg) | 15.43 | 14.23 | 15.88 | 14.60 | 14.48 | 0.66 | 0.440 |
MCHC (g/dL) | 46.24 | 43.60 | 46.53 | 40.39 | 46.00 | 2.75 | 0.325 |
RDW | 11.50 | 11.49 | 11.91 | 29.86 | 8.94 | 7.61 | 0.426 |
Leucocytes (×109/L) | 10.41 | 8.43 | 8.09 | 7.61 | 10.14 | 0.90 | 0.167 |
Neutrophils (×109/L) | 3.14 | 2.33 | 3.63 | 3.30 | 3.13 | 0.57 | 0.635 |
Lymphocytes (×109/L) | 6.83 | 5.60 | 4.00 | 4.95 | 6.59 | 0.74 | 0.100 |
Monocytes (×109/L) | 0.39 | 0.39 | 0.33 | 0.19 | 0.30 | 0.07 | 0.363 |
Eosinophils (×109/L) | 0.05 | 0.11 | 0.13 | 0.10 | 0.12 | 0.04 | 0.751 |
Platelets (×109/L) | 281.0 | 310.9 | 327.4 | 226.4 | 343.6 | 37.37 | 0.329 |
Parameters 1 | Experimental Diets 2 | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CM50 | CM100 | HCM50 | HCM100 | |||
Total protein (g/L) | 69.63 | 72.00 | 71.00 | 68.71 | 70.63 | 1.19 | 0.390 |
Albumin (g/L) | 40.25 | 40.88 | 40.50 | 39.71 | 40.13 | 0.69 | 0.827 |
AST (IU/L) | 133.1 ab | 135.7 ab | 159.88 a | 129.14 ab | 103.25 b | 13.48 | 0.036 |
Creatinine (µmol/L) | 53.25 | 61.25 | 58.75 | 56.57 | 64.13 | 3.53 | 0.256 |
Carcass Traits | Experimental Diets 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CM50 | CM100 | HCM50 | HCM100 | |||
Slaughter weight (kg) | 42.0 | 41.2 | 41.6 | 43.3 | 40.7 | 1.62 | 0.850 |
Fat score | 4.25 | 4.25 | 4.25 | 4.67 | 3.75 | 0.45 | 0.763 |
Hot carcass weight (kg) | 20.4 | 20.4 | 20.2 | 20.3 | 19.6 | 0.90 | 0.965 |
Cold carcass weight (kg) | 20.0 | 20.0 | 19.8 | 19.9 | 19.2 | 0.89 | 0.963 |
Carcass length (cm) | 63.9 | 61.5 | 64.0 | 65.0 | 64.8 | 1.03 | 0.166 |
Dressing % | 48.5 | 49.3 | 48.6 | 46.4 | 48.0 | 0.73 | 0.150 |
Meat Quality Parameters | Experimental Diets 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CM50 | CM100 | HCM50 | HCM100 | |||
pHu | 5.85 | 5.56 | 5.73 | 5.69 | 5.53 | 0.10 | 0.219 |
Shear force (N) | 8.08 | 7.69 | 8.29 | 9.27 | 7.88 | 0.74 | 0.689 |
Cooking loss (%) | 29.5 | 28.4 | 30.5 | 29.7 | 27.6 | 0.59 | 0.517 |
Drip loss (%) | 12.8 | 13.1 | 13.0 | 14.8 | 13.5 | 0.86 | 0.598 |
Water-holding capacity (%) | 5.01 | 4.30 | 4.28 | 4.63 | 5.57 | 1.25 | 0.512 |
Meat lightness (L*) | 37.8 | 39.2 | 39.8 | 41.8 | 39.5 | 1.29 | 0.383 |
Meat redness (a*) | 13.4 | 13.1 | 12.7 | 11.7 | 13.4 | 1.05 | 0.822 |
Meat yellowness (b*) | 13.5 | 14.1 | 13.6 | 14.3 | 15.3 | 0.89 | 0.673 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekali, M.; Mlambo, V.; Marume, U.; Mathuthu, M. Replacement of Soybean Meal with Heat-Treated Canola Meal in Finishing Diets of Meatmaster Lambs: Physiological and Meat Quality Responses. Animals 2020, 10, 1735. https://doi.org/10.3390/ani10101735
Sekali M, Mlambo V, Marume U, Mathuthu M. Replacement of Soybean Meal with Heat-Treated Canola Meal in Finishing Diets of Meatmaster Lambs: Physiological and Meat Quality Responses. Animals. 2020; 10(10):1735. https://doi.org/10.3390/ani10101735
Chicago/Turabian StyleSekali, Mpolokeng, Victor Mlambo, Upenyu Marume, and Manny Mathuthu. 2020. "Replacement of Soybean Meal with Heat-Treated Canola Meal in Finishing Diets of Meatmaster Lambs: Physiological and Meat Quality Responses" Animals 10, no. 10: 1735. https://doi.org/10.3390/ani10101735