Combining Crude Glycerin with Chitosan Can Manipulate In Vitro Ruminal Efficiency and Inhibit Methane Synthesis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dietary Preparation
2.2. Mixed Rumen Inoculum
2.3. Design and Substrate Preparation
2.4. Chemical Analyses and Fermentation Measurements
2.5. Statistical Analysis and Gas Kinetics
3. Results and Discussion
3.1. Nutritional Content of Feed Test
3.2. Gas Production Profiles
3.3. In Vitro Rumen Parameters and CH4 Concentration
3.4. In Vitro Digestibility
3.5. Concentration Total Volatile Fatty Acid and Profiles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s role in climate change and air pollution. In Livestock’s Long Shadow: Environmental Issues and Options; Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., de Haan, C., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; pp. 79–123. [Google Scholar]
- Hristov, A.N.; Ott, T.; Tricarico, J.; Rotz, A.; Waghorn, G.; Adesogan, A.; Dijkstra, J.; Montes, F.; Oh, J.; Kebreab, E.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 2013, 91, 5095–5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaharabata, S.K.; Schuepp, P.H.; Desjardins, R.L. Estimating methane emissions from dairy cattle housed in a barn and feedlot using an atmospheric tracer. Environ. Sci. Technol. 2015, 34, 3296–3302. [Google Scholar] [CrossRef]
- AbuGhazaleh, A.A.; Abo El-Nor, S.; Ibrahim, S.A. The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters. J. Anim. Physiol. Anim. Nutr. 2011, 95, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, S.M.; Cho, Y.B.; Kam, D.K.; Lee, S.C.; Kim, C.H.; Seo, S. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Anim. Feed Sci. Technol. 2011, 166, 269–274. [Google Scholar] [CrossRef]
- Van Cleef, E.H.C.B.; Almeida, M.T.C.; Perez, H.L.; Paschoaloto, J.R.; Filho, E.S.C.; Ezequiel, J.M.B. Effects of partial or total replacement of corn cracked grain with high concentrations of crude glycerin on rumen metabolism of crossbred sheep. Small Rum. Res. 2018, 159, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Avila, J.S.; Chaves, A.V.; Hernandez-Calva, M.; Beauchemin, K.A.; McGinn, S.M.; Wang, Y.; Harstad, O.M.; McAllister, T.A. Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Anim. Feed Sci. Technol. 2011, 166, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Haryati, R.P.; Jayanegara, A.; Laconi, E.B.; Ridla, M.; Suptijah, P. Evaluation of chitin and chitosan from insect as feed additives to mitigate ruminal methane emission. AIP Con. Proc. 2019, 2120, 040008. [Google Scholar] [CrossRef]
- Zanferari, F.; Vendramini, T.H.A.; Rentas, M.F.; Gardinal, R.; Calomeni, G.D.; Mesquita, L.G.; Takiya, C.S.; Rennó, F.P. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 2018, 101, 10939–10952. [Google Scholar] [CrossRef]
- Goiri, I.; Garcia-Rodriguez, A.; Oregui, L.M. Effects of chitosans on in vitro rumen digestion and fermentation of maize silage. Anim. Feed Sci. Technol. 2009, 148, 276–287. [Google Scholar] [CrossRef]
- Toan, N.V. Production of chitin and chitosan from partially autolyzed shrimp shell materials. Open Biom. J. 2009, 1, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC: Arlington, VA, USA, 1998. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the digestion of forage crops. J. Br. Grass. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS. User’s Guide: Statistics, Version 6, 12th ed.; SAS Inst. Inc.: Cary, NC, USA, 1998. [Google Scholar]
- Lage, J.F.; Paulino, P.V.; Pereira, L.G.; Duarte, M.S.; Valadares Filho, S.C.; Oliveira, A.S.; Souza, N.K.; Lima, J.C. Carcass characteristics of feedlot lambs fed crude glycerin contaminated with high concentrations of crude fat. Meat Sci. 2014, 96, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, N.A.; Anderson, R.C.; Tedeschi, L.O.; Callaway, T.R.; Edrington, T.S.; Nisbert, D.J. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro. Biores. Technol. 2010, 101, 8469–8472. [Google Scholar] [CrossRef]
- Ferraro, S.M.; Mendoza, G.D.; Miranda, L.A.; Gutierrez, C.G. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed Sci. Technol. 2009, 154, 112–118. [Google Scholar] [CrossRef]
- Vito, E.S.; Messana, J.D.; Castagnino, P.S.; Granja-Salcedo, Y.T.; Dallantonia, E.E.; Berchielli, T.T. Effect of crude glycerine in supplement on the intake, rumen fermentation, and microbial profile of Nellore steers grazing tropical grass. Livest. Sci. 2016, 192, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Goiri, I.; Oregui, L.M.; Garcia-Rodriguez, A. Use of chitosans to modulate ruminal fermentation of 50:50 forage-to-concentrate diet in sheep. J. Anim. Sci. 2010, 88, 749–755. [Google Scholar] [CrossRef]
- Araújo, A.P.A.; Venturelli, B.C.; Santos, M.C.B.; Gardinal, R.; Cônsolo, N.R.B.; Calomeni, G.D.; Freitas, J.E.; Barletta, R.V.; Gandra, J.R.; Paiva, P.G.; et al. Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim. Feed Sci. Technol. 2015, 206, 114–118. [Google Scholar] [CrossRef]
- Chung, Y.C.; Su, Y.P.; Chen, C.C.; Jia, G.; Wang, H.L.; Wu, J.C.G.; Lin, J.G. Relationship between antibacterial activity of chitosans and surface characteristics of cell wall. Acta Pharm. Sin. 2004, 25, 932–936. [Google Scholar]
- Schröder, A.; Südekum, K.H. Glycerol as a By-Product of Biodiesel Production in Diets for Ruminants; Wratten, N., Salisbury, P.A., Eds.; International rapeseed congress: Canberra, Australia, 1999; p. 241. [Google Scholar]
- Saleem, A.M.; Zanouny, A.I.; Singar, A.M. Effect of glycerol supplementation during early lactation on milk yield, milk composition, nutrient digestibility and blood metabolites of dairy buffaloes. Animal 2018, 12, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, T.A.; Paiva, P.G.; Jesus, E.F.; Almeida, G.F.; Zanferari, F.; Costa, A.G.V.B.; Bueno, I.C.S.; Rennó, F.P. Dietary chitosan improves nitrogen use and feed conversion in diets for mid-lactation dairy cows. Anim. Feed Sci. Technol. 2017, 201, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Paiva, P.G.; de Jesus, E.F.; Valle, T.A.D.; Almeida, G.F.; Costa, A.G.V.B.; Consentini, C.E.C.; Zanferari, F.; Takiya, C.S.; Bueno, I.C.S.; Rennó, F.P. Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim. Prod. Sci. 2016, 57, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Almeida, M.T.C.; Ezequiel, J.M.B.; Paschoaloto, J.R.; Perez, H.L.; Carvalho, V.B.; Filho, E.S.C.; van Cleef, E.H.C.B. Rumen and liver measurements of lambs fed with high inclusions of crude glycerin in adaptation and finishing period of feedlot. Small Rum. Res. 2018, 167, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rico, D.E.; Chung, Y.H.; Martinez, C.M.; Cassidy, T.W.; Heyler, K.S.; Varga, G.A. Effects of partially replacing dietary starch with dry glycerol in a lactating cow diet on ruminal fermentation during continuous culture. J. Dairy Sci. 2012, 95, 3310–3317. [Google Scholar] [CrossRef] [Green Version]
- Chanjula, P.; Pakdeechanuan, P.; Wattanasit, S. Effects of dietary crude glycerin supplementation on nutrient digestibility, ruminal fermentation, blood metabolites, and nitrogen balance of goats. Asian Australas. J. Anim. Sci. 2014, 27, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Pinloche, E.; Preskett, D.; Newnold, C.J. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol. 2016, 92, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.O.C.; Goes, R.H.T.B.; Gandra, J.R.; Takiya, C.S.; Branco, A.F.; Jacaúna, A.G.; Oliveira, R.T.; Souza, C.J.S.; Vaz, M.S.M. Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim. Feed Sci. Technol. 2017, 225, 73–80. [Google Scholar] [CrossRef]
Items | TMR1 | TMR2 | TMR3 | Chitosan |
---|---|---|---|---|
Ingredients (kg dry matter; DM) | ||||
Rice straw | 30.00 | 30.00 | 30.00 | |
Crude glycerin a | 0.00 | 10.50 | 21.00 | |
Cassava chips | 40.00 | 30.00 | 20.00 | |
Rice bran | 7.40 | 6.90 | 6.31 | |
Palm kernel meal | 9.00 | 9.00 | 9.00 | |
Soybean meal | 9.00 | 9.00 | 9.00 | |
Molasses, liquid | 1.00 | 1.00 | 1.00 | |
Urea | 2.10 | 2.10 | 2.19 | |
Pure sulfur | 0.50 | 0.50 | 0.50 | |
Mineral premix b | 0.50 | 0.50 | 0.50 | |
Salt | 0.50 | 0.50 | 0.50 | |
Chemical composition | ||||
Dry matter, % | 92.58 | 92.55 | 92.84 | 98.90 |
Organic matter, %DM | 92.92 | 95.12 | 94.20 | 99.73 |
Ash, %DM | 7.08 | 4.88 | 5.80 | 0.27 |
Crude protein, %DM | 14.32 | 14.06 | 14.05 | 0.53 |
Ether extract, %DM | 1.03 | 4.82 | 8.19 | - |
Neutral detergent fiber, %DM | 46.21 | 44.53 | 40.98 | - |
Acid detergent fiber, %DM | 19.32 | 18.45 | 18.23 | - |
Solubility, % | - | - | - | 98.70 |
Deacetylation degree, % | - | - | - | 88.00 |
Treatment | Crude Glycerin (%) | Chitosan (%) | Gas Production Parameters a | Cumulative Gas (mL/g DM Basis) | ||
---|---|---|---|---|---|---|
b | c | L | ||||
1 | 0 | 68.68 | 0.071 | 2.87 | 68.68 | 66.09 |
2 | 0 | 66.86 | 0.072 | 2.70 | 66.86 | 64.27 |
3 | 0 | 67.63 | 0.091 | 2.75 | 67.63 | 65.04 |
4 | 10.5 | 71.73 | 0.078 | 3.11 | 71.73 | 69.14 |
5 | 10.5 | 71.89 | 0.092 | 3.10 | 71.89 | 69.30 |
6 | 10.5 | 72.25 | 0.093 | 3.54 | 72.25 | 69.66 |
7 | 21 | 69.91 | 0.085 | 2.98 | 69.91 | 67.32 |
8 | 21 | 70.46 | 0.077 | 3.09 | 70.46 | 67.87 |
9 | 21 | 69.37 | 0.084 | 2.97 | 69.37 | 66.78 |
SEM | 5.56 | 0.004 | 1.22 | 5.56 | 4.51 | |
Main effect | ||||||
Crude glycerin | ||||||
0 | 67.72 | 0.08 | 2.77 | 65.13 | ||
10.5 | 71.96 | 0.09 | 3.25 | 69.36 | ||
21 | 69.91 | 0.08 | 3.01 | 67.32 | ||
SEM | 4.56 | 0.01 | 1.45 | 4.15 | ||
p-Value | 0.54 | 0.78 | 0.12 | 0.65 | ||
Chitosan | ||||||
0 | 70.11 | 0.08 | 2.99 | 67.51 | ||
1 | 69.74 | 0.08 | 2.96 | 67.14 | ||
2 | 69.75 | 0.09 | 3.09 | 67.16 | ||
SEM | 5.55 | 0.01 | 1.23 | 4.89 | ||
p-Value | 0.87 | 0.19 | 0.54 | 0.45 | ||
Interaction | ||||||
p-Value | 0.47 | 0.25 | 0.32 | 0.77 |
Treatment | Crude Glycerin (%) | Chitosan (%) | pH | NH3-N (mg/dL) | Methane (mL/1 g Dry Matter Substrate) | |||
---|---|---|---|---|---|---|---|---|
2 h | 4 h | 2 h | 4 h | 2 h | 4 h | |||
1 | 0 | 0 | 6.71 | 6.66 | 16.33 | 17.10 | 12.74 | 40.84 |
2 | 0 | 1 | 6.73 | 6.69 | 16.75 | 16.89 | 11.10 | 38.22 |
3 | 0 | 2 | 6.71 | 6.66 | 16.46 | 16.78 | 13.70 | 30.46 |
4 | 10.5 | 0 | 6.72 | 6.70 | 16.68 | 16.96 | 10.94 | 34.64 |
5 | 10.5 | 1 | 6.72 | 6.65 | 16.52 | 16.77 | 10.70 | 34.50 |
6 | 10.5 | 2 | 6.74 | 6.71 | 16.61 | 16.82 | 10.94 | 24.72 |
7 | 21 | 0 | 6.69 | 6.65 | 14.64 | 14.71 | 12.68 | 24.72 |
8 | 21 | 1 | 6.70 | 6.65 | 15.56 | 15.66 | 9.82 | 22.46 |
9 | 21 | 2 | 6.76 | 6.67 | 14.61 | 15.38 | 9.84 | 18.92 |
SEM | 0.02 | 0.01 | 1.15 | 2.19 | 1.50 | 2.76 | ||
Main effect | ||||||||
Crude glycerin | ||||||||
0 | 6.72 | 6.67 | 16.51 | 16.92 | 12.51 | 36.51 | ||
10.5 | 6.73 | 6.69 | 16.60 | 16.85 | 10.86 | 31.29 | ||
21 | 6.72 | 6.66 | 17.94 | 15.25 | 10.78 | 22.03 | ||
SEM | 0.03 | 0.02 | 1.23 | 2.15 | 1.45 | 2.89 | ||
p-value | 0.12 | 0.32 | 0.45 | 0.87 | 0.15 | 0.04 | ||
Chitosan | ||||||||
0 | 6.71 | 6.67 | 15.88 | 16.26 | 12.12 | 33.40 | ||
1 | 6.72 | 6.66 | 16.28 | 16.44 | 10.54 | 31.73 | ||
2 | 6.74 | 6.68 | 15.89 | 16.33 | 11.49 | 24.70 | ||
SEM | 0.02 | 0.01 | 1.17 | 2.20 | 1.36 | 2.78 | ||
p-value | 0.36 | 0.56 | 0.72 | 0.30 | 0.68 | 0.03 | ||
Interaction | ||||||||
p-value | 0.90 | 0.48 | 0.16 | 0.24 | 0.25 | 0.24 |
Treatment | Crude Glycerin (%) | Chitosan (%) | IVDMD (% DM) | IVOMD (% DM) | IVNDFD (% DM) | IVADFD (% DM) | ||||
---|---|---|---|---|---|---|---|---|---|---|
12 h | 24 h | 12 h | 24 h | 12 h | 24 h | 12 h | 24 h | |||
1 | 0 | 0 | 52.94 | 63.40 | 74.42 | 76.34 | 52.03 | 63.25 | 44.81 | 52.23 |
2 | 0 | 1 | 53.46 | 66.52 | 73.98 | 76.26 | 51.62 | 63.47 | 44.98 | 55.07 |
3 | 0 | 2 | 53.61 | 67.17 | 74.87 | 77.09 | 53.53 | 64.12 | 44.19 | 54.20 |
4 | 10.5 | 0 | 52.86 | 67.07 | 76.17 | 75.90 | 53.32 | 63.83 | 42.63 | 50.11 |
5 | 10.5 | 1 | 54.61 | 67.54 | 74.71 | 75.90 | 51.53 | 63.00 | 44.82 | 53.80 |
6 | 10.5 | 2 | 56.61 | 67.57 | 73.90 | 75.49 | 53.36 | 60.15 | 45.76 | 51.54 |
7 | 21 | 0 | 55.39 | 68.10 | 75.22 | 76.71 | 54.61 | 65.06 | 41.38 | 51.53 |
8 | 21 | 1 | 56.35 | 66.73 | 76.13 | 77.14 | 51.56 | 64.87 | 44.61 | 51.06 |
9 | 21 | 2 | 57.13 | 65.21 | 75.40 | 76.19 | 49.72 | 64.33 | 46.82 | 50.05 |
SEM | 3.05 | 3.44 | 4.23 | 5.34 | 3.45 | 3.89 | 2.78 | 2.98 | ||
Main effect | ||||||||||
Crude glycerin | ||||||||||
0 | 53.34 | 65.70 | 74.42 | 76.56 | 52.39 | 63.61 | 44.66 | 53.83 | ||
10.5 | 54.69 | 67.39 | 74.93 | 75.76 | 52.74 | 62.33 | 44.40 | 51.82 | ||
21 | 56.29 | 66.68 | 75.58 | 76.68 | 51.96 | 64.75 | 44.27 | 50.88 | ||
SEM | 3.10 | 3.21 | 4.12 | 5.31 | 3.25 | 3.77 | 2.45 | 2.88 | ||
p-Value | 0.09 | 0.11 | 0.54 | 0.36 | 0.85 | 0.45 | 0.12 | 0.09 | ||
Chitosan | ||||||||||
0 | 53.73 | 66.19 | 75.27 | 76.32 | 53.32 | 64.05 | 42.94 | 51.29 | ||
1 | 54.81 | 66.93 | 74.94 | 76.43 | 51.57 | 63.78 | 44.80 | 53.31 | ||
2 | 55.78 | 66.65 | 74.72 | 76.26 | 52.20 | 62.87 | 45.59 | 51.93 | ||
SEM | 3.00 | 3.12 | 3.98 | 5.01 | 3.01 | 3.55 | 2.13 | 2.08 | ||
p-Value | 0.11 | 0.84 | 0.23 | 0.77 | 0.62 | 0.12 | 0.33 | 0.88 | ||
Interaction | ||||||||||
p-Value | 0.12 | 0.31 | 0.55 | 0.62 | 0.74 | 0.12 | 0.65 | 0.22 |
Treatment | Crude Glycerin (%) | Chitosan (%) | Acetate (%) | Propionate (%) | Butyrate (%) | Acetate to Propionate Ratio | Total (mmol/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | 2 h | 4 h | 2 h | 4 h | 2 h | 4 h | 2 h | 4 h | |||
1 | 0 | 0 | 65.27 | 64.97 | 20.13 | 20.79 | 14.60 | 14.24 | 3.24 | 3.13 | 85.65 | 94.43 |
2 | 0 | 1 | 65.32 | 64.02 | 20.18 | 21.23 | 14.50 | 14.75 | 2.70 | 3.02 | 86.11 | 96.36 |
3 | 0 | 2 | 65.59 | 65.79 | 21.11 | 23.45 | 13.30 | 10.76 | 2.22 | 2.81 | 86.26 | 93.54 |
4 | 10.5 | 0 | 65.41 | 65.79 | 21.03 | 22.12 | 13.56 | 12.09 | 2.53 | 2.97 | 84.90 | 95.52 |
5 | 10.5 | 1 | 64.25 | 64.82 | 20.16 | 24.70 | 15.59 | 10.48 | 2.53 | 2.62 | 86.28 | 96.90 |
6 | 10.5 | 2 | 64.29 | 62.08 | 21.17 | 26.29 | 14.54 | 11.63 | 2.47 | 2.36 | 84.85 | 94.53 |
7 | 21 | 0 | 64.23 | 62.58 | 21.70 | 25.92 | 14.07 | 11.50 | 2.34 | 2.41 | 86.12 | 96.96 |
8 | 21 | 1 | 63.33 | 62.62 | 22.12 | 26.35 | 14.55 | 11.03 | 2.21 | 2.38 | 88.75 | 96.16 |
9 | 21 | 2 | 63.93 | 60.90 | 22.25 | 28.25 | 13.82 | 10.85 | 2.80 | 2.16 | 87.88 | 97.06 |
SEM | 5.43 | 6.45 | 1.53 | 1.55 | 1.31 | 1.48 | 0.15 | 0.14 | 6.99 | 7.87 | ||
Main effect | ||||||||||||
Crude glycerin | ||||||||||||
0 | 65.39 | 64.93 | 20.47 | 21.82 | 14.13 | 13.25 | 2.72 | 2.99 | 86.01 | 94.78 | ||
10.5 | 64.65 | 64.23 | 20.79 | 24.37 | 14.56 | 11.40 | 2.51 | 2.65 | 85.34 | 95.65 | ||
21 | 63.83 | 62.03 | 22.02 | 26.84 | 14.15 | 11.13 | 2.45 | 2.32 | 87.58 | 96.73 | ||
SEM | 5.33 | 6.66 | 1.51 | 1.53 | 1.33 | 1.51 | 0.16 | 0.13 | 7.15 | 8.98 | ||
p-Value | 0.99 | 0.58 | 0.25 | 0.03 | 0.55 | 0.45 | 0.12 | 0.02 | 0.22 | 0.34 | ||
Chitosan | ||||||||||||
0 | 64.97 | 64.45 | 20.95 | 22.94 | 14.08 | 12.61 | 2.70 | 2.84 | 85.56 | 95.64 | ||
1 | 64.30 | 63.82 | 20.82 | 24.09 | 14.88 | 12.09 | 2.48 | 2.67 | 87.05 | 96.47 | ||
2 | 64.60 | 62.92 | 21.51 | 26.00 | 13.89 | 11.08 | 2.50 | 2.44 | 86.33 | 95.04 | ||
SEM | 5.47 | 6.99 | 1.49 | 1.50 | 1.25 | 1.56 | 0.14 | 0.12 | 6.88 | 7.25 | ||
p-Value | 0.11 | 0.35 | 0.19 | 0.05 | 0.18 | 0.81 | 0.87 | 0.04 | 0.64 | 0.25 | ||
Interaction | ||||||||||||
p-Value | 0.33 | 0.09 | 0.11 | 0.84 | 0.45 | 0.54 | 0.33 | 0.32 | 0.45 | 0.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seankamsorn, A.; Cherdthong, A.; Wanapat, M. Combining Crude Glycerin with Chitosan Can Manipulate In Vitro Ruminal Efficiency and Inhibit Methane Synthesis. Animals 2020, 10, 37. https://doi.org/10.3390/ani10010037
Seankamsorn A, Cherdthong A, Wanapat M. Combining Crude Glycerin with Chitosan Can Manipulate In Vitro Ruminal Efficiency and Inhibit Methane Synthesis. Animals. 2020; 10(1):37. https://doi.org/10.3390/ani10010037
Chicago/Turabian StyleSeankamsorn, Anuthida, Anusorn Cherdthong, and Metha Wanapat. 2020. "Combining Crude Glycerin with Chitosan Can Manipulate In Vitro Ruminal Efficiency and Inhibit Methane Synthesis" Animals 10, no. 1: 37. https://doi.org/10.3390/ani10010037
APA StyleSeankamsorn, A., Cherdthong, A., & Wanapat, M. (2020). Combining Crude Glycerin with Chitosan Can Manipulate In Vitro Ruminal Efficiency and Inhibit Methane Synthesis. Animals, 10(1), 37. https://doi.org/10.3390/ani10010037