Effect of Phytase Derived from the E. coli AppA Gene on Weaned Piglet Performance, Apparent Total Tract Digestibility and Bone Mineralization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Digestibility
2.3. Bone Ash
2.4. Analyses
2.5. Statistical Analysis
3. Results
3.1. Diets
3.2. Animal Performance
3.3. Digestibility
3.4. Bone Ash
4. Discussion
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625. [Google Scholar] [CrossRef] [PubMed]
- Kornegay, E.T.; Harper, A.F. Environmental nutrition: Nutrient management strategies to reduce nutrient excretion of swine. Prof. Anim. Sci. 1997, 3, 99–111. [Google Scholar] [CrossRef]
- Stahly, T.S.; Lutz, T.R. The digestibility of phosphorus in dicalcium phosphate in pigs. Anim. Ind. Rep. 2004, 650, 115. [Google Scholar]
- Selle, P.H.; Ravindran, V. Phytate-degrading enzymes in pig nutrition. Livest. Sci. 2008, 113, 99–122. [Google Scholar] [CrossRef]
- Hu, H.L.; Wise, A.; Henderson, C. Hydrolysis of phytate and inositol tri-, tetra-, and penta-phosphates by the intestinal mucosa of the pig. Nutr. Res. 1996, 5, 781–787. [Google Scholar] [CrossRef]
- Sandberg, A.S.; Larsen, T.; Sandström, B. High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet. J. Nutr. 1993, 3, 559–566. [Google Scholar] [CrossRef]
- Jongbloed, A.W.; Kemme, P.A. Effect of pelleting mixed feeds on phytase activity and the apparent absorbability of phosphorus and calcium in pigs. Anim. Feed Sci. Technol. 1990, 28, 233–242. [Google Scholar] [CrossRef]
- Adeola, O.; Olukosi, O.A.; Jendza, J.A.; Dilger, R.N.; Bedford, M.R. Response of growing pigs to Peniophora lycii- and Escherichia coli-derived phytases or varying ratios of calcium to total phosphorus. Anim. Sci. 2006, 82, 637. [Google Scholar] [CrossRef]
- Reis de Souza, T.C.; Escobar, K.; Aguilera, G.A.; Ramírez, B.E.; Mariscal-Landín, R.G. Sesame meal as the first protein source in piglet starter diets and advantages of a phytase: A digestive study. S. Afr. J. Anim. Sci. 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.; Han, Y.; Lei, X.G. Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem. Biophys. Res. Commun. 1999, 257, 117–123. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Reichwald, K.; Hatzack, F. Application of a modified Haug and Lantzsch method for the rapid and accurate photometrical phytate determination in soybean, wheat, and maize meals. J. Agric. Food Chem. 2008, 56, 2888–2891. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, S.A.; Cowieson, A.J.; Hejdysz, M.; Rutkowski, A. Microbial phytase improves performance and bone traits in broilers fed diets based on soybean meal and containing lupin meal. Anim. Prod. Sci. 2016, 56, 1669–1676. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2016. [Google Scholar]
- Mendiburu, F.D. Agricolae: Statistical Procedures for Agricultural Res; R Package Version; 1.2-3; R Core Team: Vienna, Austria, 2015; Volume 1, pp. 2–3. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2014; Available online: http://www.Rproject.org/ (accessed on 2 September 2019).
- Campbell, G.L.; Bedford, M.R. Enzyme applications for monogastric feeds: A review. Can. J. Anim. Sci. 1992, 72, 449–466. [Google Scholar] [CrossRef]
- Selle, P.H.; Cadogan, D.J.; Bryden, W.L. Effects of phytase supplementation of phosphorus-adequate, lysine-deficient, wheat-based diets on growth performance of weaner pigs. Aust. J. Agric. Res. 2003, 54, 323. [Google Scholar] [CrossRef] [Green Version]
- Walk, C.L.; Bedford, M.R.; McElroy, A.P. Influence of limestone and phytase on broiler performance, gastrointestinal pH, and apparent ileal nutrient digestibility. Poult. Sci. 2012, 91, 1371–1378. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Wealleans, A.L.; Barnard, L.P.; Lane, S. Effect of increasing Buttiauxella phytase dose on nutrient digestibility and performance in weaned piglets fed corn or wheat based diets. Anim. Feed Sci. Technol. 2017, 234, 101–109. [Google Scholar] [CrossRef]
- Madrid, J.; Martínez, S.; López, C.; Hernández, F. Effect of phytase on nutrient digestibility, mineral utilization and performance in growing pigs. Livest. Sci. 2013, 154, 144–151. [Google Scholar] [CrossRef]
- Guggenbuhl, P.; Calvo, E.P.; Fru, F. Effect of high dietary doses of a bacterial 6 phytase in piglets fed a corn-soybean meal diet. J. Anim. Sci. 2016, 94, 307–309. [Google Scholar] [CrossRef]
- Cervantes, M.; Gómez, R.; Fierro, S.; Barrera, M.A.; Morales, A.; Araiza, B.A.; Zijlstra, R.T.; Sánchez, J.E.; Sauer, W.C. Ileal digestibility of amino acids, phosphorus, phytate and energy in pigs fed sorghum-based diets supplemented with phytase and Pancreatin®. J. Anim. Physiol. Anim. Nutr. 2011, 95, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.K.; Li, Q.Y.; Zhao, P.F.; Xu, X.; Tian, Q.Y.; Wang, H.L.; Pan, L.; Yu, S.; Piao, X.S. A new Buttiauxella phytase continuously hydrolyzes phytate and improves amino acid digestibility and mineral balance in growing pigs fed phosphorous-deficient diet. J. Anim. Sci. 2016, 94, 629–638. [Google Scholar] [CrossRef]
- Brown, R.G.; Sharma, V.D.; Young, L.C.; Buchanan-Smith, J.G. Connective tissue metabolism in swine II. Influence of energy level and ascorbate supplementation on hydroxyproline excretion. Can. J. Anim. Sci. 1971, 51, 439–443. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Cowieson, A.J.; Adeola, O.; Nyachoti, C.M. Ileal digestibility and endogenous flow of minerals and amino acids: Responses to dietary phytic acid in piglets. Br. J. Nutr. 2009, 102, 428–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varley, P.F.; Flynn, B.; Callan, J.J.; O’doherty, J.V. Effect of phytase level in a low phosphorus diet on performance and bone development in weaner pigs and the subsequent effect on finisher pig bone development. Livest. Sci. 2011, 138, 152–158. [Google Scholar] [CrossRef]
- Kühn, I.; Schollenberger, M.; Männer, K. Effect of dietary phytase level on intestinal phytate degradation and bone mineralization in growing pigs. J. Anim. Sci. 2016, 94, 264–267. [Google Scholar] [CrossRef]
- Wu, X.; Ruan, Z.; Zhang, Y.G.; Hou, Y.Q.; Yin, Y.L.; Li, T.J.; Huang, R.L.; Chu, W.Y.; Kong, X.F.; Gao, B.; et al. True digestibility of P in different resources of P ingredients. Asian Australas. J. Anim. 2008, 21, 107–119. [Google Scholar] [CrossRef]
Ingredients (%) | Basal Diets | |||
---|---|---|---|---|
Prestarter Diet (Days 1–21) | Starter Diet (Days 22–42) | |||
PC | NC | PC | NC | |
Corn | 68.32 | 69.52 | 70.04 | 70.91 |
Soybean meal (extracted) | 27.09 | 26.93 | 25.96 | 25.78 |
Limestone | 0.99 | 0.78 | 0.99 | 0.78 |
Monocalcium phosphate | 1.13 | 0.68 | 1.09 | 0.59 |
Premix 1 | 0.50 | 0.50 | 0.50 | 0.50 |
Salt | 0.50 | 0.50 | 0.50 | 0.50 |
Lysine-HCl | 0.53 | 0.54 | 0.32 | 0.32 |
L-threonine | 0.24 | 0.25 | 0.13 | 0.13 |
DL-methionine | 0.23 | 0.23 | 0.13 | 0.13 |
L-tryptophan | 0.06 | 0.07 | 0.05 | 0.05 |
Rapeseed oil | 0.42 | - | - | |
TiO2 | - | - | 0.30 | 0.30 |
Calculated nutrient content (%) | ||||
ME (MJ/kg) 2 | 13.60 | 13.60 | 13.69 | 13.69 |
Crude protein | 18.60 | 18.64 | 18.00 | 18.00 |
Crude fat | 3.63 | 3.25 | 3.27 | 3.31 |
Crude fiber | 3.25 | 3.27 | 3.23 | 3.24 |
Lysine (dig) | 1.18 | 1.18 | 0.98 | 0.98 |
Methionine + cystine (dig) | 0.71 | 0.71 | 0.61 | 0.61 |
Threonine (dig) | 0.77 | 0.77 | 0.64 | 0.64 |
Tryptophan (dig) | 0.21 | 0.21 | 0.19 | 0.19 |
Ca | 0.75 | 0.59 | 0.73 | 0.57 |
Ptotal | 0.61 | 0.51 | 0.60 | 0.49 |
Pdig | 0.32 | 0.22 | 0.30 | 0.20 |
Items | Crude Fiber | Crude Protein | Crude Ash | Crude Fat | Ca | P | Phytase Activity |
---|---|---|---|---|---|---|---|
Prestarter | |||||||
PC | 3.25 | 18.6 | 5.78 | 3.62 | 0.76 | 0.62 | 26 |
NC | 3.29 | 18.6 | 5.14 | 3.23 | 0.57 | 0.51 | 33 |
NC + appAT1 | 3.30 | 18.6 | 5.10 | 3.24 | 0.57 | 0.49 | 280 |
NC + appAT2 | 3.31 | 18.7 | 5.12 | 3.26 | 0.58 | 0.50 | 290 |
Starter | |||||||
PC | 3.23 | 17.7 | 4.65 | 3.30 | 0.71 | 0.66 | 17 |
NC | 3.24 | 17.5 | 4.95 | 3.31 | 0.58 | 0.48 | 21 |
NC + appAT1 | 3.26 | 18.0 | 4.91 | 3.33 | 0.57 | 0.48 | 290 |
NC + appAT2 | 3.24 | 17.9 | 4.93 | 3.31 | 0.57 | 0.47 | 295 |
Diet | Crude Protein | TiO2 | Ca | P |
---|---|---|---|---|
PC | 17.26 | 0.312 | 0.74 | 0.66 |
NC | 17.53 | 0.289 | 0.58 | 0.48 |
NC + appAT1 | 17.59 | 0.294 | 0.57 | 0.46 |
NC + appAT2 | 17.89 | 0.302 | 0.57 | 0.46 |
Diet | PC | NC | NC + appAT1 | NC + appAT2 | SEM | p |
---|---|---|---|---|---|---|
IBW (kg) | 9.90 | 10.0 | 9.93 | 10.0 | 0.096 | 0.804 |
FBW (kg) | 38.5 ab | 36.9 b | 39.4 a | 40.0 a | 0.313 | 0.013 |
BWG (kg/period) | ||||||
0–21 days | 11.5 a | 10.2 b | 12.4 a | 12.6 a | 0.213 | 0.002 |
21–42 days | 17.2 | 16.8 | 17.1 | 17.4 | 0.203 | 0.613 |
0–42 days | 28.6 a | 26.9 b | 29.4 a | 30.0 a | 0.303 | 0.013 |
FI (kg) | ||||||
0–21 days | 20.9 | 21.8 | 21.0 | 21.7 | 0.201 | 0.339 |
21–42 days | 36.4 | 36.9 | 35.8 | 35.7 | 0.261 | 0.174 |
0–42 days | 57.3 | 58.7 | 56.8 | 57.4 | 0.318 | 0.612 |
FCR (kg/kg) | ||||||
0–21 days | 1.844 b | 2.164 a | 1.700 b | 1.733 b | 0.036 | 0.012 |
21–42 days | 2.132 | 2.238 | 2.097 | 2.059 | 0.032 | 0.212 |
0–42 days | 2.010 b | 2.202 a | 1.929 b | 1.916 b | 0.028 | 0.024 |
Diet | ATTD (%) | |||
---|---|---|---|---|
DM | CP | P | Ca | |
PC | 77.0 | 63.0 | 40.7 a | 64.4 b |
NC | 76.2 | 61.6 | 27.6 b | 62.9 b |
NC + appAT1 | 76.9 | 64.7 | 46.8 a | 79.1 a |
NC + appAT2 | 79.1 | 67.2 | 48.4 a | 82.4 a |
SEM | 0.55 | 0.97 | 1.53 | 1.87 |
p | 0.140 | 0.069 | 0.002 | <0.001 |
Diet | Bone Ash (%) | Ash (g) | Ca (% of Ash) | P (% of Ash) |
---|---|---|---|---|
PC | 33.8 a | 2.23 | 33.2 b | 16.3 AB |
NC | 29.9 b | 1.76 | 32.8 b | 16.1 B |
NC + appAT1 | 34.3 a | 2.09 | 34.3 a | 16.3 AB |
NC + appAT2 | 34.6 a | 2.19 | 34.7 a | 16.5 A |
SEM | 0.38 | 0.04 | 0.14 | 0.06 |
p | 0.010 | 0.480 | <0.001 | 0.060 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewska, Z.; Nollet, L.; Lanckriet, A.; Vanderbeke, E.; Petkov, S.; Outchkourov, N.; Kasprowicz-Potocka, M.; Zaworska-Zakrzewska, A.; Kaczmarek, S.A. Effect of Phytase Derived from the E. coli AppA Gene on Weaned Piglet Performance, Apparent Total Tract Digestibility and Bone Mineralization. Animals 2020, 10, 121. https://doi.org/10.3390/ani10010121
Wiśniewska Z, Nollet L, Lanckriet A, Vanderbeke E, Petkov S, Outchkourov N, Kasprowicz-Potocka M, Zaworska-Zakrzewska A, Kaczmarek SA. Effect of Phytase Derived from the E. coli AppA Gene on Weaned Piglet Performance, Apparent Total Tract Digestibility and Bone Mineralization. Animals. 2020; 10(1):121. https://doi.org/10.3390/ani10010121
Chicago/Turabian StyleWiśniewska, Zuzanna, Lode Nollet, Anouk Lanckriet, Erik Vanderbeke, Spas Petkov, Nikolay Outchkourov, Małgorzata Kasprowicz-Potocka, Anita Zaworska-Zakrzewska, and Sebastian A. Kaczmarek. 2020. "Effect of Phytase Derived from the E. coli AppA Gene on Weaned Piglet Performance, Apparent Total Tract Digestibility and Bone Mineralization" Animals 10, no. 1: 121. https://doi.org/10.3390/ani10010121
APA StyleWiśniewska, Z., Nollet, L., Lanckriet, A., Vanderbeke, E., Petkov, S., Outchkourov, N., Kasprowicz-Potocka, M., Zaworska-Zakrzewska, A., & Kaczmarek, S. A. (2020). Effect of Phytase Derived from the E. coli AppA Gene on Weaned Piglet Performance, Apparent Total Tract Digestibility and Bone Mineralization. Animals, 10(1), 121. https://doi.org/10.3390/ani10010121