Biofertilizer Activity of Azospirillum sp. B510 on the Rice Productivity in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description and Field Management
2.2. Rice Cultivars
2.3. Azospirillium Inoculation of Rice Seedlings
2.4. Colonization Assay Using Ds-Red-Tagged Azospirillum
2.5. Evaluation of Plant Growth and Yield
2.6. Statistical Analysis
3. Results
3.1. The Endophytic Colonization of Azospirillium sp. B510 in Japonica and Ghanaian Rice
3.2. Effect of Azospirillium sp. B510 Inoculation on the Growth-Promotion in Ghana Rice in a Paddy Field in Japan
3.3. Characteristic Response of Cultivars to Azospirillum sp. B510 Inoculation among Fertilization
3.4. Effect of Azospirillum sp. B510 Inoculation on Growth and Yield of Commercial Rice Production in Ghana
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nation (FAO). Country Fact Sheet on Food and Agriculture Policy Trends-Ghana; Food and Agricultural Organization (FAO): Rome, Italy, 2018; Available online: httpp://www.fao.org/ag/agp/agpc/doc/counprof/PDF%20files/Ghana-English.pdf (accessed on 6 May 2019).
- Shahbandeh, M. Rice-Statistics and Facts. Available online: https://www.statista.com/topics/1443/rice/ (accessed on 7 August 2021).
- Fahad, S.; Adnan, M.; Noor, M.; Arif, M.; Alam, M.; Khan, I.A.; Ullah, H.; Wahid, F.; Mian, I.A.; Jamal, Y.; et al. Major constraints for global rice production. In Advances in Rice Research for Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Nahar, K., Biswas, J.K., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 1–22. ISBN 978-0-12-814332-2. [Google Scholar]
- USDA-United States Department of Agriculture (USDA). World Agricultural Production, United States Department of Agriculture Circular Series (WAP 7-21). July 2021. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 8 August 2021).
- MOFA. Ministry of Food and Agriculture, Ghana. Agricultural Sector Progress Report 2017. 2017. Available online: http://mofa.gov.gh/site/wp-pontent/uploads/2018/09/mofa%202017%20agricultural%20progress%20report_final.ppmed.mofa.pdf (accessed on 5 July 2017).
- Oteng, J.W.; Rice Production and Development in Ghana. Bulletin de La Commission Internationale Du Riz (FAO); Noticiario de La Comision Internacional Del Arroz (FAO). 1997. Available online: http://www.fao.org/3/v6017T/V6017T05.htm (accessed on 23 December 2019).
- Asuming-Brempong, S.; Osei-Asare, Y.B. Has imported rice crowded-out domestic rice production in Ghana? What has been the role of policy? In Proceedings of the Second International Conference of African Association of Agricultural Economists, Accra, Ghana, 20–22 August 2007.
- Asuming-Brempong, S.; Gyasi, K.O.; Marfo, K.A.; Diagne, A.; Wiredu, A.N.; Asuming, B.A.; Haleegoah, J.; Frimpong, B.N. The Exposure and Adoption of New Rice for Africa (NERICAs) among Ghanaian Rice Farmers: What Is the Evidence? Afr. J. Agric. Res. 2011, 6, 5911–5917. [Google Scholar] [CrossRef][Green Version]
- International Rice Research Institute—IRRI. Rice Production and Processing. 2011. Available online: http://irri.org/about-rice/rice-facts/rice-production-and-processing (accessed on 1 January 2012).
- Ministry of Food and Agriculture (MoFA). Agriculture in Ghana: Facts and figures, 2015. In Annual Report by the Statistics, Research and Information Directorate (SRID), MoFA, as Part of MoFA’s Policy Planning, Monitoring and Evaluation Activities; Ministry of Food and Agriculture: Accra, Ghana, 2016. [Google Scholar]
- International Rice Research Institute—IRRI. Rice Basics. 2010. Available online: http://irri.org/about-rice/rice-facts/rice-basics (accessed on 1 January 2012).
- Tanko, M.; Ismaila, S.; Sadiq, S.A. Planting for Food and Jobs (PFJ): A Panacea for Productivity and Welfare of Rice Farmers in Northern Ghana. Cogent Econ. Financ. 2019, 7, 1693121. [Google Scholar] [CrossRef]
- Avis, T.J.; Valérie, G.; Antoun, H.; Tweddell, R.J. Multifaceted Beneficial Effects of Rhizosphere Microorganisms on Plant Health and Productivity. Soil Biol. Biochem. 2008, 40, 1733–1740. [Google Scholar] [CrossRef]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A Potential Approach for Sustainable Agriculture Development. Environ. Sci. Pollut. Res. Int. 2017, 24, 3315–3335. [Google Scholar] [CrossRef]
- Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.-C. Perspectives and Challenges of Microbial Application for Crop Improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef][Green Version]
- Vessey, J.K. Plant Growth Promoting Rhizobacteria as Biofertilizers. Plant. Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Plant Growth and Health Promoting Bacteria; Maheshwari, D.K. (Ed.) Microbiology Monographs; Springer: Berlin/Heidelberg, Germany, 2011; Volume 18, ISBN 978-3-642-13611-5. [Google Scholar]
- Ashrafuzzaman, M.; Hossen, F.A.; Ismail, M.R.; Hoque, A.; Islam, M.Z.; Shahidullah, S.M.; Meon, S. Efficiency of Plant Growth-Promoting Rhizobacteria (PGPR) for the Enhancement of Rice Growth. Afr. J. Biotechnol. 2009, 8, 1247–1252. [Google Scholar] [CrossRef]
- Zhu, Y.; She, X. Evaluation of the Plant-Growth-Promoting Abilities of Endophytic Bacteria from the Psammophyte Ammodendron Bifolium. Can. J. Microbiol. 2018, 64, 253–264. [Google Scholar] [CrossRef][Green Version]
- Boleta, E.H.M.; Shintate Galindo, F.; Jalal, A.; Santini, J.M.K.; Rodrigues, W.L.; de Lima, B.H.; Arf, O.; da Silva, M.R.; Buzetti, S.; Teixeira Filho, M.C.M. Inoculation with Growth-Promoting Bacteria Azospirillum Brasilense and Its Effects on Productivity and Nutritional Accumulation of Wheat Cultivars. Front. Sustain. Food Syst. 2020, 4, 607262. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of Action of Plant Growth Promoting Bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef][Green Version]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef][Green Version]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Revitalization of Plant Growth Promoting Rhizobacteria for Sustainable Development in Agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Besen, M.R.; Neto, A.F.G.; Neto, M.E.; Zampar, E.J.d.O.; Costa, E.J.d.O.; Cordioli, V.R.; Inoue, T.T.; Batista, M.A. Nitrogen Fertilization and Leaf Spraying with Azospirillum Brasilense in Wheat: Effects on Mineral Nutrition and Yield. Rev. Ciênc. Agroveterinárias 2020, 19, 483–493. [Google Scholar] [CrossRef]
- Cavite, H.J.M.; Mactal, A.G.; Evangelista, E.V.; Cruz, J.A. Growth and Yield Response of Upland Rice to Application of Plant Growth-Promoting Rhizobacteria. J. Plant Growth Regul. 2021, 40, 494–508. [Google Scholar] [CrossRef]
- Masuda, S.; Sasaki, K.; Kazama, Y.; Kisara, C.; Takeda, S.; Hanzawa, E.; Minamisawa, K.; Sato, T. Mapping of Quantitative Trait Loci Related to Primary Rice Root Growth as a Response to Inoculation with Azospirillum Sp. Strain B510. Commun. Integr. Biol. 2018, 11, 1–6. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Caballero-Mellado The Genus Azospirillum. Molecular and Microbial Ecology Program, Nitrogen Fixation Research Center, UNAM, Ap. P. 565-A, Cuernavaca, Mor., Mexico. Available online: http://www.biblioweb.tic.unam.mx/libros/microbios/Cap10/ (accessed on 14 April 2021).
- Mishra, P.; Dash, D.; Rejuvenation of Biofertilizer for Sustainableagriculture and Economic Development. Consilience: The Journalof Sustainable Development 11(1):41–6 (3) (PDF) Biofertilizers: A Potential Approach for Sustainable Agriculture Development. 2014. Available online: https://www.researchgate.net/publication/310622142_biofertilizers_a_potential_approach_for_sustainable_agriculture_development (accessed on 19 May 2020).
- Farrar, K.; Bryant, D.; Cope-Selby, N. Understanding and Engineering Beneficial Plant-Microbe Interactions: Plant Growth Promotion in Energy Crops. Plant Biotechnol. J. 2014, 12, 1193–1206. [Google Scholar] [CrossRef][Green Version]
- Schnitzer, S.A.; Klironomos, J.; HilleRisLambers, J.; Kinkel, L.L.; Reich, P.B.; Xiao, K.; Rillig, M.C.; Sikes, B.A.; Callaway, R.M.; Mangan, S.A.; et al. Soil Microbes Drive the Classic Plant Diversity-Productivity Pattern. Ecology 2011, 92, 296–303. [Google Scholar] [CrossRef]
- Sasaki, K.; Ikeda, S.; Eda, S.; Mitsui, H.; Hanzawa, E.; Kisara, C.; Kazama, Y.; Kushida, A.; Shinano, T.; Minamisawa, K.; et al. Impact of Plant Genotype and Nitrogen Level on Rice Growth Response to Inoculation with Azospirillum Sp. Strain B510 under Paddy Field Conditions. Soil Sci. Plant Nutr. 2010, 56, 636–644. [Google Scholar] [CrossRef][Green Version]
- Bonanomi, G.; Cesarano, G.; Antignani, V.; Maio, C.D.; Filippis, F.D.; Scala, F. Conventional Farming Impairs Rhizoctonia Solani Disease Suppression by Disrupting Soil Food Web. J. Phytopathol. 2018, 166, 663–673. [Google Scholar] [CrossRef]
- Roger, P.A.; Zimmerman, W.J.; Lumpkin, T.A. Microbiological management of wetland rice fields. In Soil Microbial Ecology; Applications in Agricultural and Environmental Management; Marcel Dekker: New York, NY, USA, 1993; pp. 417–455. [Google Scholar]
- Elbeltagy, A.; Nishioka, K.; Suzuki, H.; Sato, T.; Sato, Y.-I.; Morisaki, H.; Mitsui, H.; Minamisawa, K. Isolation and Characterization of Endophytic Bacteria from Wild and Traditionally Cultivated Rice Varieties. Soil Sci. Plant Nutr. 2000, 46, 617–629. [Google Scholar] [CrossRef]
- Isawa, T.; Yasuda, M.; Awazaki, H.; Minamisawa, K.; Shinozaki, S.; Nakashita, H. Azospirillum Sp. Strain B510 Enhances Rice Growth and Yield. Microbes Environ. 2010, 25, 58–61. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fujita, M.; Kusajima, M.; Okumura, Y.; Nakajima, M.; Minamisawa, K.; Nakashita, H. Effects of Colonization of a Bacterial Endophyte, Azospirillum Sp. B510, on Disease Resistance in Tomato. Biosci. Biotechnol. Biochem. 2017, 81, 1657–1662. [Google Scholar] [CrossRef][Green Version]
- Yasuda, M.; Isawa, T.; Shinozaki, S.; Minamisawa, K.; Nakashita, H. Effects of Colonization of a Bacterial Endophyte, Azospirillum Sp. B510, on Disease Resistance in Rice. Biosci. Biotechnol. Biochem. 2009, 73, 2595–2599. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Naher, K.; Miwa, H.; Okazaki, S.; Yasuda, M. Effects of Different Sources of Nitrogen on Endophytic Colonization of Rice Plants by Azospirillum Sp. B510. Microbes Environ. 2018, 33, 301–308. [Google Scholar] [CrossRef][Green Version]
- Bao, Z.; Sasaki, K.; Okubo, T.; Ikeda, S.; Anda, M.; Hanzawa, E.; Kakizaki, K.; Sato, T.; Mitsui, H.; Minamisawa, K. Impact of Azospirillum Sp. B510 Inoculation on Rice-Associated Bacterial Communities in a Paddy Field. Microbes Environ. 2013, 28, 487–490. [Google Scholar] [CrossRef][Green Version]
- Nomura, T.; Arakawa, N.; Yamamoto, T.; Ueda, T.; Adachi, S.; Yonemaru, J.; Abe, A.; Takagi, H.; Yokoyama, T.; Ookawa, T. Next Generation Long-Culm Rice with Superior Lodging Resistance and High Grain Yield, Monster Rice 1. PLoS ONE 2019, 14, e0221424. [Google Scholar] [CrossRef] [PubMed]
- Ghana Meteorological Agency. Ghana-Rainwatch-September-30-2014.Pdf. Available online: https://www.meteo.gov.gh/gmet/download/ghana-rainwatch-september-30-2014 (accessed on 22 March 2021).
- Spaargaren, O.C.; Deckers, J. The world reference base for soil resources. In Soils of Tropical Forest Ecosystems; Schulte, A., Ruhiyat, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 21–28. [Google Scholar]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 22 March 2021).
- Kumar, A.; Maurya, B.R.; Raghuwanshi, R. Isolation and Characterization of PGPR and Their Effect on Growth, Yield and Nutrient Content in Wheat (Triticum Aestivum L.). Biocatal. Agric. Biotechnol. 2014, 3, 121–128. [Google Scholar] [CrossRef]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; de Carlan, C.L.N.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O.; et al. Everything You Must Know about Azospirillum and Its Impact on Agriculture and Beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Pereg, L.; de-Bashan, L.E.; Bashan, Y. Assessment of Affinity and Specificity of Azospirillum for Plants. Plant Soil 2016, 399, 389–414. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Tofazzal Islam, M. Co-Inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum Aestivum L.) in the Alluvial Soil Under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017, 36, 608–617. [Google Scholar] [CrossRef]
- De Aquino, J.P.A.; de Macedo, F.B.; Antunes, J.E.L.; Figueiredo, M.D.V.B.; de Alcântara, F.; de Araujo, A.S.F. Plant Growth-Promoting Endophytic Bacteria on Maize and Sorghum1. Pesqui. Agropecuária Trop. 2019, 49, e56241. [Google Scholar] [CrossRef]
- Rudrappa, T.; Czymmek, K.J.; Paré, P.W.; Bais, H.P. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria. Plant Physiol. 2008, 148, 1547–1556. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kanasugi, M.; Sarkodee-Addo, E.; Ansong Omari, R.; Mohammad Golam Dastogeer, K.; Fujii, Y.; Oppong Abebrese, S.; Bam, R.; Asuming-Brempong, S.; Okazaki, S. Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria and Fungi In Six Tropic Savanna Regions in Ghana. Sustainability 2020, 12, 5835. [Google Scholar] [CrossRef]
- Ishii, S.; Ohno, H.; Tsuboi, M.; Otsuka, S.; Senoo, K. Identification and Isolation of Active N 2 O Reducers in Rice Paddy Soil. ISME J. 2011, 5, 1936–1945. [Google Scholar] [CrossRef][Green Version]
- Tarus, D.; Mensah, A.; Masso, C.; Watiti, J.; Nang’ayo, F. Bio-Fertilizer Regulation in Ghana: Capacity Limitations to Effective Enforcement. Gates Open Res. 2019, 3, 1299. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial Inoculants: Reviewing the Past, Discussing the Present and Previewing an Outstanding Future for the Use of Beneficial Bacteria in Agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef]
- Simiyu, N.S.W.; Tarus, D.; Watiti, J.; Nang’ayo, F. Effective Regulation of Bio-Fertilizers and Bio-Pesticide: A Potential Avenue to Increase Agricultural Productivity; Compro II policy series n1; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkodee-Addo, E.; Tokiwa, C.; Bonney, P.; Aboagye, D.A.; Yeboah, A.; Abebrese, S.O.; Bam, R.; Nartey, E.K.; Okazaki, S.; Yasuda, M. Biofertilizer Activity of Azospirillum sp. B510 on the Rice Productivity in Ghana. Microorganisms 2021, 9, 2000. https://doi.org/10.3390/microorganisms9092000
Sarkodee-Addo E, Tokiwa C, Bonney P, Aboagye DA, Yeboah A, Abebrese SO, Bam R, Nartey EK, Okazaki S, Yasuda M. Biofertilizer Activity of Azospirillum sp. B510 on the Rice Productivity in Ghana. Microorganisms. 2021; 9(9):2000. https://doi.org/10.3390/microorganisms9092000
Chicago/Turabian StyleSarkodee-Addo, Elsie, Chihiro Tokiwa, Patrick Bonney, Daniel Asiamah Aboagye, Alex Yeboah, Samuel Oppong Abebrese, Ralph Bam, Eric Kwesi Nartey, Shin Okazaki, and Michiko Yasuda. 2021. "Biofertilizer Activity of Azospirillum sp. B510 on the Rice Productivity in Ghana" Microorganisms 9, no. 9: 2000. https://doi.org/10.3390/microorganisms9092000