Re-Emergence and Spread of Haemorrhagic Septicaemia in Germany: The Wolf as a Vector?
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Spatiotemporal Analysis of HS Outbreaks
2.3. Whole Genome Sequencing (WGS)
2.4. Multilocus Sequence Typing and Phylogenetic Analysis
2.5. Determination of Virulence-Associated Genes
3. Results
3.1. Determination of P. multocida Capsular Type and HS Specific DNA Fragment KTT72/KTSP61
3.2. Spatiotemporal Analysis of HS Outbreaks in Respect of Proven Wolf Territories
3.3. Multilocus Sequence Typing and Core Genome Comparison
3.4. Distribution of Capsule, LPS, and Virulence-Associated Genes among PmB-ST122 Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haemorrhagic Septicaemia (Chapter 3.4.10.) in: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2021. Available online: https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/ (accessed on 12 July 2021).
- Cuevas, I.; Carbonero, A.; Cano-Terriza, D.; Pacheco, I.L.; Marín, J.C.; Borge, C. First outbreak of bovine haemorrhagic septicaemia caused by Pasteurella multocida type B in Spain – Short communication. Acta Veter. Hung. 2020, 68, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, M.R.; Wolcott, M.J.; Rimler, R.B.; Berlowski, B.M. Septicemic Pasteurellosis in Free-ranging Neonatal Pronghorn in Oregon. J. Wildl. Dis. 2000, 36, 383–388. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Eriksen, L.; Aalbaek, B.; Leifsson, P.S.; Basse, A.; Christiansen, T.; Eriksen, E.; Rimler, R.B. Hemorrhagic septicemia in fallow deer (Dama dama) caused by Pasteurella multocida multocida. J. Zoo Wildl. Med. 1999, 30, 285–292. [Google Scholar] [PubMed]
- Franson, J.C.; Smith, B.L. Septicemic Pasteurellosis in Elk (Cervus elaphus) on the United States National Elk Refuge, Wyoming. J. Wildl. Dis. 1988, 24, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Orynbayev, M.; Sultankulova, K.; Sansyzbay, A.; Rystayeva, R.; Shorayeva, K.; Namet, A.; Fereidouni, S.; Ilgekbayeva, G.; Barakbayev, K.; Kopeyev, S.; et al. Biological characterization of Pasteurella multocida present in the Saiga population. BMC Microbiol. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Soike, D.; Schulze, C.; Kutzer, P.; Ewert, B.; van der Grinten, E.; Schliephake, A.; Ewers, C.; Bethe, A.; Rau, J. Acute pas-teurellosis in fallow deer, cattle and pigs in a region of Eastern Germany. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Mackie, J. Haemorrhagic septicaemia in pigs. Aust. Veter. J. 1996, 74, 399–400. [Google Scholar] [CrossRef]
- Risco, D.; Fernández-Llario, P.; Cuesta, J.M.; García-Jiménez, W.L.; Gil Molino, M.; Gonçalves, P.; Martínez, R.; Gómez, L.; Garcia-Sanchez, A.; Rey, J.; et al. Fatal outbreak of systemic pasteurellosis in a wild boar (Sus scrofa) population from southwest Spain. J. Veter. Diagn. Investig. 2013, 25, 791–794. [Google Scholar] [CrossRef]
- Townsend, K.M.; Frost, A.J.; Lee, C.W.; Papadimitriou, J.M.; Dawkins, H.J.S. Development of PCR Assays for Species- and Type-Specific Identification of Pasteurella multocida Isolates. J. Clin. Microbiol. 1998, 36, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Ujvari, B.; Szeredi, L.; Pertl, L.; Tóth, G.; Erdélyi, K.; Jánosi, S.; Molnár, T.; Magyar, T. First detection of Pasteurella multocida type B:2 in Hungary associated with systemic pasteurellosis in backyard pigs. Acta Veter. Hung. 2015, 63, 141–156. [Google Scholar] [CrossRef]
- Townsend, K.M.; Boyce, J.D.; Chung, J.Y.; Frost, A.J.; Adler, B. Genetic Organization of Pasteurella multocida cap Loci and Development of a Multiplex Capsular PCR Typing System. J. Clin. Microbiol. 2001, 39, 924–929. [Google Scholar] [CrossRef]
- Brogden, K.A.; Rhoades, K.R.; Heddleston, K.L. A New Serotype of Pasteurella multocida Associated with Fowl Cholera. Avian Dis. 1978, 22, 185. [Google Scholar] [CrossRef] [PubMed]
- Heddleston, K.L.; E Gallagher, J.; A Rebers, P. Fowl cholera: Gel diffusion precipitin test for serotyping Pasteruella multocida from avian species. Avian Dis. 1972, 16, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.; John-White, M.; Turni, C.; Edmunds, M.; Michael, F.S.; Adler, B.; Blackall, P.; Cox, A.; Boyce, J.D. Development of a Rapid Multiplex PCR Assay To Genotype Pasteurella multocida Strains by Use of the Lipopolysaccharide Outer Core Biosynthesis Locus. J. Clin. Microbiol. 2014, 53, 477–485. [Google Scholar] [CrossRef]
- Moustafa, A.M.; Bennett, M.D.; Edwards, J.; Azim, K.; Mesaik, M.A.; Choudhary, M.I.; Pathanasophon, P.; Worarach, A.; Ali, Q.; Abubakar, M.; et al. Molecular typing of haemorrhagic septicaemia-associated Pasteurella multocida isolates from Pakistan and Thailand using multilocus sequence typing and pulsed-field gel electrophoresis. Res. Veter. Sci. 2013, 95, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, X.; Zhou, R.; Chen, H.; Wilson, B.A.; Wu, B. Pasteurella multocida: Genotypes and Genomics. Microbiol. Mol. Biol. Rev. 2019, 83. [Google Scholar] [CrossRef] [PubMed]
- Sting, R.; Blazey, B.; Schwabe, I.; Schwalm, A.K.; Müller, S.; Sprague, L.D.; Rau, J. Haemorrhagic septicaemia (septicaemic pasteurellosis) in cattle in Baden-Wuerttemberg (Germany). Berl. Munch. Tierarztl. Wochenschr. 2020, 133. [Google Scholar] [CrossRef]
- Annas, S.; Zamri-Saad, M.; Jesse, F.F.A.; Zunita, Z. New sites of localisation of Pasteurella multocida B:2 in buffalo surviving experimental haemorrhagic septicaemia. BMC Veter. Res. 2014, 10, 88. [Google Scholar] [CrossRef][Green Version]
- Shivachandra, S.B.; Viswas, K.N.; Kumar, A.A. A review of hemorrhagic septicemia in cattle and buffalo. Anim. Heal. Res. Rev. 2011, 12, 67–82. [Google Scholar] [CrossRef]
- Kędrak, A.; Borkowska-Opacka, B. Phenotypic characteristics of Pasteurella multocida strains isolated from cattle affected with haemorrhagic septicaemia. Bull. Vet. Inst. Pulawy 2001, 45, 171–176. [Google Scholar]
- Magyar, T.; Ujvári, B.; Szeredi, L.; Virsinger, N.; Albert, E.; Német, Z.; Csuka, E.; Biksi, I. Re-emergence of bovine haemorrhagic septicaemia in Hungary. Acta Veter. Hung. 2017, 65, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Rohkohl, J.; Schulze, C.; Bilk, S. Hemorrhagic septicemia on a dairy farm in Lower Saxony. Prakt Tierarzt. 2015, 96, 598–608. [Google Scholar]
- World Animal Health Information Database (WAHIS) Interface. Available online: https://www.oie.int/en/animal-health-in-the-world/the-world-animal-health-information-system/data-before-2005-handistatus (accessed on 12 July 2021).
- DBBW. Dokumentations- und Beratungsstelle des Bundes zum Thema Wolf. Available online: https://www.dbb-wolf.de/wolf-occurrence (accessed on 12 July 2021).
- QGIS Association; QGIS.org. QGIS Geographic Information System. Available online: https://qgis.org (accessed on 11 November 2020).
- Roehr, J.T.; Dieterich, C.; Reinert, K. Flexbar 3.0 – SIMD and multicore parallelization. Bioinformatics 2017, 33, 2941–2942. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Peng, Z.; Liang, W.; Wang, F.; Xu, Z.; Xie, Z.; Lian, Z.; Hua, L.; Zhou, R.; Chen, H.; Wu, B. Genetic and Phylogenetic Characteristics of Pasteurella multocida Isolates From Different Host Species. Front. Microbiol. 2018, 9, 1408. [Google Scholar] [CrossRef]
- Elliott, D.; Wilson, M.; Buckley, C.M.F.; Spratt, D.A. Cultivable Oral Microbiota of Domestic Dogs. J. Clin. Microbiol. 2005, 43, 5470–5476. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, H.; Liang, W.; Chen, Y.; Tang, X.; Chen, H.; Wu, B. A capsule/lipopolysaccharide/MLST genotype D/L6/ST11 of Pasteurella multocida is likely to be strongly associated with swine respiratory disease in China. Arch. Microbiol. 2017, 200, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Kramer-Schadt, S.; Wenzler, M.; Gras, P.; Knauer, F. Habitatmodellierung und Abschätzung der potenziellen Anzahl von Wolfsterritorien in Deutschland; Bundesamt für Naturschutz: Bonn, Germany, 2020; ISBN 978-3-89624-294-5. [Google Scholar] [CrossRef]
- Hindrikson, M.; Remm, J.; Pilot, M.; Godinho, R.; Stronen, A.V.; Baltrūnaité, L.; Czarnomska, S.; Leonard, J.; Randi, E.; Nowak, C.; et al. Wolf population genetics in Europe: A systematic review, meta-analysis and suggestions for conservation and management. Biol. Rev. 2017, 92, 1601–1629. [Google Scholar] [CrossRef]
- Czarnomska, S.D.; Jędrzejewska, B.; Borowik, T.; Niedziałkowska, M.; Stronen, A.V.; Nowak, S.; Mysłajek, R.; Okarma, H.; Konopiński, M.K.; Pilot, M.; et al. Concordant mitochondrial and microsatellite DNA structuring between Polish lowland and Carpathian Mountain wolves. Conserv. Genet. 2013, 14, 573–588. [Google Scholar] [CrossRef]
- Steyer, C.D. Erster Wolf in der Schorfheide entdeckt. Der Tagesspiegel, 23 March 2007. Available online: https://www.tagesspiegel.de (accessed on 9 August 2021).
- Fechter, D.; Storch, I. How Many Wolves (Canis lupus) Fit into Germany? The Role of Assumptions in Predictive Rule-Based Habitat Models for Habitat Generalists. PLoS ONE 2014, 9, e101798. [Google Scholar] [CrossRef]
- Stier, N.; Meißner-Hylanová, V.; Roth, M. Wolfstelemetrie in Mecklenburg-Vorpommern, Zwischenbericht 2016; Technical University Dresden: Tharandt, Germany, 2016. [Google Scholar]
- Jędrzejewski, W.; Schmidt, K.; Theuerkauf, J.; Jędrzejewska, B.; Kowalczyk, R. Territory size of wolves Canis lupus: Linking local (Białowieża Primeval Forest, Poland) and Holarctic-scale patterns. Ecography 2007, 30, 66–76. [Google Scholar] [CrossRef]
- Kittle, A.M.; Anderson, M.; Avgar, T.; Baker, J.A.; Brown, G.S.; Hagens, J.; Iwachewski, E.; Moffatt, S.; Mosser, A.; Patterson, B.R.; et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 2015, 84, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Holzapfel, M.; Kluth, G.; Reinhardt, I.; Ansorge, H. Wolf (Canis lupus) feeding habits during the first eight years of its occurrence in Germany. Mamm. Biol. 2012, 77, 196–203. [Google Scholar] [CrossRef]
- Reinhardt, I.; Kluth, G. Terrritorial and dispersal behaviour of wolves (Canis lupus) in Germany: Results of a first telemetry study. Nat. Landsch. 2016, 91, 262–271. [Google Scholar] [CrossRef]
- Andersen, L.W.; Harms, V.; Caniglia, R.; Czarnomska, S.D.; Fabbri, E.; Jędrzejewska, B.; Kluth, G.; Madsen, A.B.; Nowak, C.; Pertoldi, C.; et al. Long-distance dispersal of a wolf, Canis lupus, in northwestern Europe. Mammal Res. 2015, 60, 163–168. [Google Scholar] [CrossRef]
- Wolfsmonitoring.com. Wolfsterritorien in Niedersachsen - Territorium Barnstorf. Available online: https://www.wolfsmonitoring.com/monitoring/wolfsterritorien (accessed on 12 July 2021).
- De Alwis, M.C. Haemorrhagic Septicaemia, ACIAR Monograph No. 57; Australian Center for International Agricultural Research: Canberra, Australia, 1999. [Google Scholar]
- De Alwis, M.C.L.; Wijewardana, T.G.; Gomis, A.I.U.; Vipulasiri, A.A. Persistence of the carrier status in haemorrhagic septicaemia (Pasteurella multocida serotype 6:B infection) in Buffaloes. Trop. Anim. Heal. Prod. 1990, 22, 185–194. [Google Scholar] [CrossRef]
- Mech, L.D. The Wolves of Isle Royale. Fauna of the National Parks of the United States, Fauna Series 7; U.S. Government Printing Office: Washington, DC, USA, 1966. [Google Scholar]
- Niedersächsisches Ministerium für Umwelt, Energie, Bauen und Klimaschutz. Infoportal Wolf. Available online: https://www.umwelt.niedersachsen.de/startseite/themen_im_fokus/der_wolf_in_niedersachsen/nutztierrisse-in-niedersachsen-174833.html (accessed on 23 August 2021).
- Landesamt für Umweltschutz Sachsen-Anhalt. Nutztierrisszahlen in Sachsen-Anhalt. Available online: https://lau.sachsen-anhalt.de/naturschutz/das-wolfskompetenzzentrum-wzi/nutztierrisse/rissstatistik-st/ (accessed on 23 August 2021).
- Talan, D.A.; Citron, D.M.; Abrahamian, F.M.; Moran, G.J.; Goldstein, E.J. Bacteriologic Analysis of Infected Dog and Cat Bites. N. Engl. J. Med. 1999, 340, 85–92. [Google Scholar] [CrossRef] [PubMed]



| Gene Category and Name | PmB Isolates Germany/Hungary (n = 68) | Global PmB Strains (n = 35) |
|---|---|---|
| Positive strains (%) | ||
| Adhesins/colonization factors | ||
| ptfA | 100 | 100 |
| fimA | 100 | 97.1 |
| hsf-1 | 0 | 0 |
| hsf-2 | 100 | 97.1 |
| pfhB-igB | 100 | 94.3 |
| pfhB1 | 0 | 0 |
| pfhB2 | 100 | 100 |
| tad locus | 0 | 0 |
| Toxin | ||
| toxA | 0 | 0 |
| Iron regulation/acquisition | ||
| afuCBA | 100 | 100 |
| ccmABCDEF | 100 | 97.1 |
| exbBD-tonB | 100 | 97.1 |
| fecBCDE | 100 | 100 |
| fbpABC | 100 | 100 |
| fur | 100 | 100 |
| hgbA | 0 | 0 |
| hgbB | 100 | 94.3 |
| tbpA | 0 | 77.1 |
| Extracellular enzymes | ||
| nanB | 0 | 2.9 |
| nanH | 100 | 97.1 |
| neuA | 100 | 100 |
| nanATEK | 100 | 100 |
| nanR | 0 | 0 |
| pmHAS | 0 | 0 |
| siaPT-nanM | 100 | 100 |
| Oxidative stress | ||
| sodA | 100 | 97.1 |
| sodC | 100 | 97.1 |
| Secretion systems | ||
| T2SS (“DR93_1687”) | 0 | 0 |
| T2SS/T3SS (“DR93_1692”) | 0 | 0 |
| Outer membrane proteins/protectins | ||
| ompA | 100 | 97.1 |
| ompH | 100 | 97.1 |
| oma87 | 100 | 97.1 |
| plpB | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutzer, P.; Szentiks, C.A.; Bock, S.; Fritsch, G.; Magyar, T.; Schulze, C.; Semmler, T.; Ewers, C. Re-Emergence and Spread of Haemorrhagic Septicaemia in Germany: The Wolf as a Vector? Microorganisms 2021, 9, 1999. https://doi.org/10.3390/microorganisms9091999
Kutzer P, Szentiks CA, Bock S, Fritsch G, Magyar T, Schulze C, Semmler T, Ewers C. Re-Emergence and Spread of Haemorrhagic Septicaemia in Germany: The Wolf as a Vector? Microorganisms. 2021; 9(9):1999. https://doi.org/10.3390/microorganisms9091999
Chicago/Turabian StyleKutzer, Peter, Claudia A. Szentiks, Sabine Bock, Guido Fritsch, Tibor Magyar, Christoph Schulze, Torsten Semmler, and Christa Ewers. 2021. "Re-Emergence and Spread of Haemorrhagic Septicaemia in Germany: The Wolf as a Vector?" Microorganisms 9, no. 9: 1999. https://doi.org/10.3390/microorganisms9091999
APA StyleKutzer, P., Szentiks, C. A., Bock, S., Fritsch, G., Magyar, T., Schulze, C., Semmler, T., & Ewers, C. (2021). Re-Emergence and Spread of Haemorrhagic Septicaemia in Germany: The Wolf as a Vector? Microorganisms, 9(9), 1999. https://doi.org/10.3390/microorganisms9091999

