K1 Antigen Is Associated with Different AST Profile in Escherichia coli: A One-Month-Long Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Criteria and Demographic/Clinical Characteristics
2.2. AST Determination
2.3. K1 Phenotypic Determination
2.4. Statistical Analyses
2.5. Ethical Considerations
3. Results
3.1. Demographic Characteristics of the Cohort
3.2. K1-Antigen Distribution through Clinical Sample Type
3.3. Distribution of AST Phenotypes among K1-Positive and K1-Negative Strains
3.4. Proportion of Pluri-Resistant Strains According to K1-Antigen Status
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schiffer, M.S.; Oliveira, E.; Glode, M.P.; McCracken, G.H.; Sarff, L.M.; Robbins, J.B. A Review: Relation between Invasiveness and the K1 Capsular Polysaccharide of Escherichia Coli. Pediatr. Res. 1976, 10, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Kauffmann, F.; Vahlne, G. About the importance of the serological change of the boron for the bacteriophage effect in the coli group. Acta Pathol. Microbiol. Scand. 1945, 22, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, R.; DeWitt, C.W. Isolation and Characterization of the K1 (L) Antigen of Escherichia Coli. J. Bacteriol. 1966, 91, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Orskov, F.; Orskov, I.; Jann, B.; Jann, K. Immunoelectrophoretic Patterns of Extracts from All Escherichia Coli O and K Antigen Test Strains: Correlation with Pathogenicity. Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 1971, 79, 142–152. [Google Scholar] [CrossRef]
- Orskov, I.; Orskov, F.; Jann, B.; Jann, K. Acidic Polysaccharide Antigens of a New Type from E.Coli Capsules. Nature 1963, 200, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.E. Studies on Pathogenic B. Coli from Bovine Sources. IV. A Biochemical Study of the Capsular Substance. J. Exp. Med. 1927, 46, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Kauffmann, F. On the Significance of L Antigens for the Serology, Immunology and Pathogenicity of Escherichia Species. Zentralbl. Bakteriol. Orig. A 1974, 229, 178–189. [Google Scholar]
- Glynn, A.A.; Brumfitt, W.; Howard, C.J. K Antigens of Escherichia Coli and Renal Involvement in Urinary-Tract Infections. Lancet 1971, 1, 514–516. [Google Scholar] [CrossRef]
- Glynn, A.A.; Howard, C.J. The Sensitivity to Complement of Strains of Escherichia Coli Related to Their K Antigens. Immunology 1970, 18, 331–346. [Google Scholar] [PubMed]
- Obata-Yasuoka, M.; Ba-Thein, W.; Tsukamoto, T.; Yoshikawa, H.; Hayashi, H. Vaginal Escherichia Coli Share Common Virulence Factor Profiles, Serotypes and Phylogeny with Other Extraintestinal E. coli. Microbiology 2002, 148, 2745–2752. [Google Scholar] [CrossRef] [Green Version]
- Robbins, J.B.; McCracken, G.H.; Gotschlich, E.C.; Orskov, F.; Orskov, I.; Hanson, L.A. Escherichia Coli K1 Capsular Polysaccharide Associated with Neonatal Meningitis. N. Engl. J. Med. 1974, 290, 1216–1220. [Google Scholar] [CrossRef]
- Kaijser, B. Immunology of Escherichia Coli: K Antigen and Its Relation to Urinary-Tract Infection. J. Infect. Dis. 1973, 127, 670–677. [Google Scholar] [CrossRef]
- Kim, K.J.; Elliott, S.J.; Di Cello, F.; Stins, M.F.; Kim, K.S. The K1 Capsule Modulates Trafficking of E. Coli-Containing Vacuoles and Enhances Intracellular Bacterial Survival in Human Brain Microvascular Endothelial Cells. Cell Microbiol. 2003, 5, 245–252. [Google Scholar] [CrossRef]
- Stins, M.F.; Prasadarao, N.V.; Ibric, L.; Wass, C.A.; Luckett, P.; Kim, K.S. Binding Characteristics of S Fimbriated Escherichia Coli to Isolated Brain Microvascular Endothelial Cells. Am. J. Pathol. 1994, 145, 1228–1236. [Google Scholar] [PubMed]
- Mekalanos, J.J. Environmental Signals Controlling Expression of Virulence Determinants in Bacteria. J. Bacteriol. 1992, 174, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bingen-Bidois, M.; Clermont, O.; Bonacorsi, S.; Terki, M.; Brahimi, N.; Loukil, C.; Barraud, D.; Bingen, E. Phylogenetic Analysis and Prevalence of Urosepsis Strains of Escherichia Coli Bearing Pathogenicity Island-like Domains. Infect. Immun. 2002, 70, 3216–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Roy, I.; Gupta, M.K.; Kumar, M.; Agarwal, S.K. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Gram-Negative Bacteria in Septicaemic Neonates in a Tertiary Care Hospital. J. Med. Microbiol. 2003, 52, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Schrag, S.J.; Farley, M.M.; Petit, S.; Reingold, A.; Weston, E.J.; Pondo, T.; Hudson Jain, J.; Lynfield, R. Epidemiology of Invasive Early-Onset Neonatal Sepsis, 2005 to 2014. Pediatrics 2016, 138, e20162013. [Google Scholar] [CrossRef] [Green Version]
- Huynh, B.-T.; Padget, M.; Garin, B.; Herindrainy, P.; Kermorvant-Duchemin, E.; Watier, L.; Guillemot, D.; Delarocque-Astagneau, E. Burden of Bacterial Resistance among Neonatal Infections in Low Income Countries: How Convincing Is the Epidemiological Evidence? BMC Infect. Dis. 2015, 15, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza-Palomar, N.; Balasch-Carulla, M.; González-Di Lauro, S.; Céspedes, M.C.; Andreu, A.; Frick, M.A.; Linde, M.A.; Soler-Palacin, P. Escherichia Coli Early-Onset Sepsis: Trends over Two Decades. Eur. J. Pediatr. 2017, 176, 1227–1234. [Google Scholar] [CrossRef]
- Weissman, S.J.; Hansen, N.I.; Zaterka-Baxter, K.; Higgins, R.D.; Stoll, B.J. Emergence of Antibiotic Resistance-Associated Clones Among Escherichia Coli Recovered From Newborns With Early-Onset Sepsis and Meningitis in the United States, 2008–2009. J. Pediatric Infect. Dis. Soc. 2016, 5, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Cameron, D.R.; Howden, B.P.; Peleg, A.Y. The Interface between Antibiotic Resistance and Virulence in Staphylococcus Aureus and Its Impact upon Clinical Outcomes. Clin. Infect. Dis. 2011, 53, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasch, O.; Camoez, M.; Domínguez, M.A.; Padilla, B.; Pintado, V.; Almirante, B.; Lepe, J.A.; Lagarde, M.; Ruiz de Gopegui, E.; Martínez, J.A.; et al. Predictive Factors for Early Mortality among Patients with Methicillin-Resistant Staphylococcus Aureus Bacteraemia. J. Antimicrob. Chemother. 2013, 68, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Roux, D.; Danilchanka, O.; Guillard, T.; Cattoir, V.; Aschard, H.; Fu, Y.; Angoulvant, F.; Messika, J.; Ricard, J.-D.; Mekalanos, J.J.; et al. Fitness Cost of Antibiotic Susceptibility during Bacterial Infection. Sci. Transl. Med. 2015, 7, 297ra114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skurnik, D.; Roux, D.; Cattoir, V.; Danilchanka, O.; Lu, X.; Yoder-Himes, D.R.; Han, K.; Guillard, T.; Jiang, D.; Gaultier, C.; et al. Enhanced in Vivo Fitness of Carbapenem-Resistant OprD Mutants of Pseudomonas Aeruginosa Revealed through High-Throughput Sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 20747–20752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, C.; Suarez, C.; Gozalo, M.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; Calbo, E.; Rodríguez-Baño, J.; et al. Prospective Multicenter Study of the Impact of Carbapenem Resistance on Mortality in Pseudomonas Aeruginosa Bloodstream Infections. Antimicrob. Agents Chemother. 2012, 56, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Karami, N.; Nowrouzian, F.; Adlerberth, I.; Wold, A.E. Tetracycline Resistance in Escherichia Coli and Persistence in the Infantile Colonic Microbiota. Antimicrob. Agents Chemother. 2006, 50, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Moseley, S.L.; Roberts, P.L.; Stamm, W.E. Aerobactin and Other Virulence Factor Genes among Strains of Escherichia Coli Causing Urosepsis: Association with Patient Characteristics. Infect. Immun. 1988, 56, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Horcajada, J.P.; Soto, S.; Gajewski, A.; Smithson, A.; Jiménez de Anta, M.T.; Mensa, J.; Vila, J.; Johnson, J.R. Quinolone-Resistant Uropathogenic Escherichia Coli Strains from Phylogenetic Group B2 Have Fewer Virulence Factors than Their Susceptible Counterparts. J. Clin. Microbiol. 2005, 43, 2962–2964. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, H.; Li, Y.; Hao, C. Association between Virulence Profile and Fluoroquinolone Resistance in Escherichia Coli Isolated from Dogs and Cats in China. J. Infect. Dev. Ctries 2017, 11, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Baky, R.M.; Ibrahim, R.A.; Mohamed, D.S.; Ahmed, E.F.; Hashem, Z.S. Prevalence of Virulence Genes and Their Association with Antimicrobial Resistance Among Pathogenic E. Coli Isolated from Egyptian Patients with Different Clinical Infections. Infect. Drug Resist. 2020, 13, 1221–1236. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Budzyńska, A.; Gospodarek, E. Detection of K1 Antigen of Escherichia Coli Rods Isolated from Pregnant Women and Neonates. Folia Microbiol. 2014, 59, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S. Pathogenesis of Bacterial Meningitis: From Bacteraemia to Neuronal Injury. Nat. Rev. Neurosci. 2003, 4, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Watt, S.; Lanotte, P.; Mereghetti, L.; Moulin-Schouleur, M.; Picard, B.; Quentin, R. Escherichia Coli Strains from Pregnant Women and Neonates: Intraspecies Genetic Distribution and Prevalence of Virulence Factors. J. Clin. Microbiol. 2003, 41, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, T.K.; Valtonen, M.V.; Parkkinen, J.; Väisänen-Rhen, V.; Finne, J.; Orskov, F.; Orskov, I.; Svenson, S.B.; Mäkelä, P.H. Serotypes, Hemolysin Production, and Receptor Recognition of Escherichia Coli Strains Associated with Neonatal Sepsis and Meningitis. Infect. Immun. 1985, 48, 486–491. [Google Scholar] [CrossRef] [Green Version]
- Bollmann, R.; Seeburg, A.; Parschau, J.; Schönian, G.; Sokolowska-Köhler, W.; Halle, E.; Presber, W. Genotypic and Phenotypic Determination of Five Virulence Markers in Clinical Isolates of Escherichia Coli. FEMS Immunol. Med. Microbiol. 1997, 17, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Ananias, M.; Yano, T. Serogroups and Virulence Genotypes of Escherichia Coli Isolated from Patients with Sepsis. Braz. J. Med. Biol. Res. 2008, 41, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidron, A.I.; Edwards, J.R.; Patel, J.; Horan, T.C.; Sievert, D.M.; Pollock, D.A.; Fridkin, S.K.; National Healthcare Safety Network Team. Participating National Healthcare Safety Network Facilities NHSN Annual Update: Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 2008, 29, 996–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallen, A.J.; Hidron, A.I.; Patel, J.; Srinivasan, A. Multidrug Resistance among Gram-Negative Pathogens That Caused Healthcare-Associated Infections Reported to the National Healthcare Safety Network, 2006-2008. Infect. Control Hosp. Epidemiol. 2010, 31, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Cisowska, A.; Lewczyk, E.; Korzekwa, K.; Wojnicz, D.; Jankowski, S.; Doroszkiewicz, W. Evaluation of sensitivity to antibiotics of microorganisms isolated from children with urinary tract infections. Pol. Merkur. Lekarski 2003, 14, 322–326. [Google Scholar]
- Fujita, K.; Yoshioka, H.; Sakata, H.; Murono, K.; Kakehashi, H.; Kaeriyama, M.; Tsukamoto, T. K1 Antigen, Serotype and Antibiotic Susceptibility of Escherichia Coli Isolated from Cerebrospinal Fluid, Blood and Other Specimens from Japanese Infants. Acta Paediatr. Jpn. 1990, 32, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Nolewajka-Lasak, I.; Rajca, M.; Kamiński, K.; Kunicka, M.; Król, W. Antibiotic sensitivity of Enterobacteriaceae isolated from women vagina and uterine cervix. Med. Dosw. Mikrobiol. 2003, 55, 351–356. [Google Scholar] [PubMed]
- Jamie, W.E.; Edwards, R.K.; Duff, P. Antimicrobial Susceptibility of Gram-Negative Uropathogens Isolated from Obstetric Patients. Infect. Dis. Obstet. Gynecol. 2002, 10, 123–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, B.K.; Ilikj, M.; McCloskey, C.B.; Chavez-Bueno, S. Antibiotic Resistance and Molecular Characterization of Bacteremia Escherichia Coli Isolates from Newborns in the United States. PLoS ONE 2019, 14, e0219352. [Google Scholar] [CrossRef]
Demographic or Biological Parameters | K1-Positive Strain (n = 114) | K1-Negative Strain (n = 182) | ||
---|---|---|---|---|
Sex (M/F) | 31/83 | 49/133 | ||
Age (mean, SD) | 61.9 (27.3) | 61.3 (27.7) | ||
Sample nature (n, % of the whole group) | Urine sample (all) (n = 235, 79.4% of the whole cohort) | 90 (38.3) | 145 (61.7) | |
Urine sample (catheter) (n = 37) (% of the urine sample group) | 16 (17.8) | 21 (11.5) | ||
Blood sample (n = 31; 10.5% of the whole cohort) | 12 (38.7) | 19 (61.3) | ||
Genital sample (n = 11; 3.7% of the whole cohort) | 4 (36.4) | 7 (63.6) | ||
Genital sample (Female) (n = 10) (% of the genital sample group) | 3 (75) | 7 (100) | ||
Puncture fluid (n = 11; 3.7% of the whole cohort) | 3 (27.3) | 8 (72.7) | ||
Neonatal sample (Gastric lavage, Placenta) (n = 4; 1.4% of the whole cohort) | 2 (50) | 2 (50) | ||
Respiratory sample (n = 2; 0.7% of the whole cohort) | 2 (100) | 0 (0) | ||
Otolaryngology—Ophthalmology Sample (n = 2; 0.7% of the whole cohort) | 1 (50) | 1 (50) |
Antibiotic Susceptibility Testing Results | K1-Positive Strain (n; %) | K1-Negative Strain (n; %) | p-Value | |
---|---|---|---|---|
β lactam (n = 296) | ||||
All susceptible (n = 123) | 53 (46.5) | 70 (38.5) | - | |
≥1 Resistance (n = 173) | 61 (53.5) | 112 (61.5) | ||
Ampicillin-resistant (n = 137/296; 46.3%) | 45 (39.5) | 92 (50.5) | - | |
Ticarcillin-resistant (n = 133/296) | 42 (26.8) | 91 (50.0) | <0.05 | |
Resistance to Ampicillin + inhibitor (n = 64/296) | 17 (14.9) | 47 (25.8) | <0.05 | |
Resistance to Ticarcillin + inhibitor (n = 11/24) | 3 (37.5) | 8 (50.0) | - | |
Resistance to Piperacillin + inhibitor (n = 24/296) | 6 (5.3) | 18 (9.9) | - | |
ESBL (n = 8/296) | 2 (1.8) | 6 (3.3) | - | |
Resistance to 2nd gen. Cephalosporin (n = 9/262) | 2 (1.8) | 7 (4.7) | - | |
Resistance to 3rd gen. Cephalosporin (n = 7/296) | 2 (1.8) | 5 (2.7) | - | |
Resistance to 4th gen. Cephalosporin (n = 2/24) | 1 (11.1) | 1 (6.7) | - | |
Temocillin-resistant (n = 41/258) | 16 (16.2) | 25 (15.7) | - | |
Aztreonam-resistant (n = 3/19) | 1 (12.5) | 2 (18.2) | - | |
Carbapenem-resistant (n = 0/296; 0%) | 0 (-) | 0 (-) | - | |
Aminoglycoside-resistant (n = 11/296) | ||||
All | 2 (1.75) | 9 (4.94) | - | |
G (n = 8) | 2 (100) | 6 (66.7) | ||
GT (n = 1) | 0 (-) | 1 (11.1) | ||
A (n = 2) | 0 (-) | 2 (22.2) | ||
Quinolones (n = 44/296) | All | 8 (7.0) | 36 (19.8) | <0.01 |
Nalidixic acid only (n = 2) (% of the quinolone-resistant subgroup) | 0 (0) | 2 (100) | - | |
Quinolones-resistant (n = 44/296) | 8 (7.0) | 36 (19.8) | <0.01 | |
Trimethoprim—sulfamethoxazole -resistant (n = 69/296) | 14 (12.3) | 55 (30.2) | <0.01 | |
Furan-resistant (n = 1/275) | 0 (-) | 1 (0.6) | - | |
Fosfomycin-resistant (n = 4/259) | 1 (1.0) | 3 (1.9) | - |
Antibiotic Susceptibility Testing Results | K1-Positive Strain (n = 114) | K1-Negative Strain (n = 182) | p-Value | |
---|---|---|---|---|
Pluri-resistance (n; %) | 21 (18.4) | 76 (41.8) | <0.01 | |
Number of antimicrobial classes incompletely susceptible * (mean; SEM) | 0.68 (0.07) | 1.11 (0.08) | <0.01 | |
Number of strains presenting X incompletely susceptible antimicrobial classes ** | ||||
1 class (n = 104; 35.1%) | 46 (40.4) | 58 (31.9) | - | |
2 classes (n = 56; 18.9%) | 12 (10.5) | 44 (24.2) | <0.01 | |
3 classes (n = 13; 4.4%) | 2 (1.8) | 11 (6.0) | - *** | |
4 classes (n = 5; 1.7%) | 0 (0) | 5 (2.7) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proquot, M.; Jamal, L.N.; Plouzeau-Jayle, C.; Michaud, A.; Broutin, L.; Burucoa, C.; Cremniter, J.; Pichon, M. K1 Antigen Is Associated with Different AST Profile in Escherichia coli: A One-Month-Long Pilot Study. Microorganisms 2021, 9, 1884. https://doi.org/10.3390/microorganisms9091884
Proquot M, Jamal LN, Plouzeau-Jayle C, Michaud A, Broutin L, Burucoa C, Cremniter J, Pichon M. K1 Antigen Is Associated with Different AST Profile in Escherichia coli: A One-Month-Long Pilot Study. Microorganisms. 2021; 9(9):1884. https://doi.org/10.3390/microorganisms9091884
Chicago/Turabian StyleProquot, Maelys, Lovasoa Najaraly Jamal, Chloe Plouzeau-Jayle, Anthony Michaud, Lauranne Broutin, Christophe Burucoa, Julie Cremniter, and Maxime Pichon. 2021. "K1 Antigen Is Associated with Different AST Profile in Escherichia coli: A One-Month-Long Pilot Study" Microorganisms 9, no. 9: 1884. https://doi.org/10.3390/microorganisms9091884